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This paper presents a model which can be used to represent many of the 
interconnection patterns commonly found in cellular networks. This model is 
then used to classify cellular networks according to the degree of regularity in 
their interconnection patterns. Specifically, three classes of cellular networks, 
corresponding to three forms of interconnection regularity, are defined. A 
concept of network realization is then developed to detect structural similarities 
in different networks and is used to compare the computational capabilities of 
these three classes. 

1. INTRODUCTION 

The  object of this paper is to investigate three different concepts of 
regularity for the interconnection patterns of cellular networks. A cellular 
network is first defined as an interconnection of identical finite state machines 
(cells). The  different kinds of intcrconnection regularity are then defined by 
means of different constraints on the allowable interconnection patterns. This  
paper  is specifically concerned with the question of whether certain types of 
constraints result in restrictions in the computational capabilities of the 
corresponding class of cellular networks. 

Early research on cellular networks was directed at the problem of deter- 
mining the computational capability of a specific network. Typical  of this 
approach is the work of von Neumann (1966), Lee (1963), and Coda (1968). 
Cole (1966), Smith (1971), Yamada and Amoroso (1969, 1971), and others 
were interested in the capabilities of a more general class of networks. In  
particular, their models enable the investigation of different interconnection 
structures and different cells. Each of their arrays could be embedded in an 
n-dimensional space. 

* This research was supported by the National Science Foundation under Grant 
No. G J-750. 
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Wagner (1966) observed that there exist cellular networks that are intuitively 
regular but that can not be embedded in n-dimensional spaces. He charac- 
terized these as networks whose interconnection structures could be 
represented by group graphs. A class of finite networks based on this concept 
of regularity was investigated by Jump (1968). 

The  cellular network model proposed in this paper includes, as a special 
case, the interconnection structures based on n-dimensional arrays as well 
as those based on group graphs. The  philosophy of the paper and many of the 
techniques that are used are closely related to the work of Yamada and 
Amoroso. Indeed, generalizations of their concepts of structural and behavioral 
homomorphisms were found to be effective tools for comparing the capabilities 
of different subclasses of cellular networks. 

In  the next section, a class of cellular networks is defined and three sub- 
classes, representing three types of interconnection regularity, are identified. 
In  Section 3, the concepts of network simulation and network realization are 
introduced. These concepts are then used in Section 4 to compare the capa- 
bilities of the three subclasses mentioned above. 

2. A CELLULAR NETWORK MODEL 

The essential features of a cellular network can be completely specified 
in terms of its interconnection structure and its cell structure. The  goal of 
this paper is to investigate the relationships between different classes of 
cellular networks, as opposed to the properties unique to a specific class. 
Hence, the interconnection structure is interpreted as a directed graph, 
and the different classes of networks to be studied are characterized in terms of 
restrictions on this graph. The  cell structure is specified as a function with 
finite domain. Thus,  the following cellular network model will be used. 

DEFINITION. A cellular network is a quadruple N = (C, v/; S, 3), where 

(1) C is a countable set of cells, 

(2) ~ is the neighborhood function which maps C into C l~ for some 
positive integer k, 

(3) S is a finite set of signals, and 

(4) ~ is the cell function which maps S ~ into S. 

A cellular network may be viewed as a model for a collection C of cells, 
each of which has k input terminals and one output terminal. The  signals 
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present on any of these terminals are elements of the set S. The  signal present 
on the output terminal of a cell is called the state of that cell. All of the cells 
of a network are identical, and each one realizes the cell function & It  is 
assumed that the cell input terminals are ordered so that the k input signals 
of a cell can be represented by a k-tuple (xl ,  x2 ..... x~), where x i is the 
signal on the ith input terminal for i - -  1, 2,..., k. The  network operates in a 
synchronous mode, and the signal on the output terminal of a cell at time 
t + 1 is given by 3(x 1 , x s ,..., xk), where xi is the signal present on the cell's 
ith input terminal at time t. 

The interconnection structure of a cellular network is given by its neigh- 
borhood function 7. If  7(u) --  (ul ,  u s ,..., uk), then the output terminal of 
cell u i is directly connected to the ith input terminal of cell u. In  this case, 
cell u i is called the ith neighbor of cell u, and the set {u 1 , us ..... uk} is called 
the neighborhood of cell u. The integer k is said to be the neighborhood index 
of the network. 

The  global behavior of a cellular network is now characterized as follows: 

DEFINITION. The  automaton realized by a cellular network N = (C, ~/; S, 3) 
is the ordered pair A ( N )  =- ( S  c, ~), where 

(1) SC : { f  I f:  C--+ S}  is the set of configurations of N, and 

(2) $: S c --+ S c is the next configuration function, defined by 

$( f ) (u)  =- 3 o f k o  7(u) for all u in C. 1 

A configurationf of a cellular network N = (C, 7; S, 3) may be viewed as a 
specification of the state of N at some time t. Under this interpretation, f ( u )  
corresponds to the state of cell u at time t. The next state of a cell is determined 
by the current states of its k neighbors and the cell function 3. But the k 
neighbors of cell u are given by 7 ( u ) :  (ua, u s .... , uk), and f~o  7 ( u ) - -  
( f (u l )  , f(ue), . . . ,  f (uk )  ) gives their current states under configuration f. Hence 

6( f ) (u)  = ~ o f i f o  7(u) = 8 ( f  (ul), f (u2 ) ..... f (uk) ) 

represents the next state of cell u. Therefore, the next configuration function 
maps the configuration f into 3(f)  which specifies the state of the network at 
time t + 1. Note that if the set of ceils C is finite, then the set of configura- 

1 I f f  is a funct ion  f rom X to Y and k a posi t ive integer,  then  f k  denotes  the funct ion  

f rom X ~ to yk  defined b y f k ( x l ,  x2 ..... xk) = ( f ( x l ) , f ( x~) , . . . , f ( xk ) )  for all (x 1 , x2 .... , xk) 
in  X k. If, in addi t ion,  g is a funct ion from Y to Z, then  g o f  denotes  the compos i t ion  

o f f  and g defined by  g o f (x )  = g ( f ( x ) )  for all x in X. 
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tions S c is also finite so that the automaton realized by N is an autonomous 
finite state machine. 

I f  ~/is the neighborhood function and C the cell set of a network N, then 
for i = 1, 2,..., k, ~1i will denote the function from C to C defined by 
7/i = 7r i o 7, where ~i is the ith projection from C k onto C. 2 Hence 

n(u) = (nl(u), n2(~),..., n~(-)) 

for all u in C. The  interconnection structure of cellular networks is classified 
by means of the following directed edge-labeled graph which is constructed 
from the k functions 71, ~/2 ,..., ~k- 

DEFINITION. Let N = (C, ~?; S, ~) be a cellular network. Then  the 
connection graph  of N is the ordered p a i r / ' ( N )  = (C, E), where 

E = {(ndu), u, i) l i = 1, 2,..., k and u ~ C}. 

Every triple (~?i(u), u, i) in E corresponds to an edge labeled i and directed 
from node •i(u) to node u. Note that ~i(u)  is the ith neighbor of u. Hence, an 
edge labeled i represents a connection from the output terminal of the 
ith neighbor of a cell to the ith input terminal of that cell. 

I f  the connection graph of a cellular network has f components, then there 
are f mutually disjoint sets of cells such that no cell in one set is connected 
to a cell in any other set. Thus,  the network consists of d independent cellular 
networks acting in parallel. These component networks have been called 
laminat ions  [Yamada and Arnoroso (1969)]. I f  there is only one lamination in 
a network, then that network is said to be unlaminated .  It  has been shown that 
there is little loss of generality in considering only unlaminated networks 
[Yamada and Amoroso (1969)]. 

The  three classes of networks studied in this paper can now be introduced. 

DEFINITION. A cellular network N = (C, 7/; S, 3) is said to be balanced 

if it is unlaminated and ~/i is a permutation on C for i =- 1, 2 , . ,  k, where k is 
the neighborhood index of N .  

It  can be easily shown that the in-degree and the out-degree of every node 
in the connection graph of a balanced network is equal to k. Furthermore, 
there is exactly one edge labeled i directed into and one edge labeled i directed 
out of every node for i = 1, 2 , . ,  k. 

~r i is the function defined by ~i(u 1 , u2 ,..., u~) = ui for all (ul, u2 ,..., uk) ~ C k and 
1 - < i < k .  
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PROPOSITION 2.1. Let  N = ( C , v ; S ,  3) be a balanced network with 

neighborhood index k, and let u and v be two cells in C. Then there are two 

sequences e l ,  e 2 ,..., e~ and ix,  i 2 .... , i~ , where e~ ~ {1, --1} and 1 ~ i~ ~ k for  
j = 1, 2 ..... p, and such that 

= o . . .  o ¢ I ( u ) .  

Proof. Since N is unlaminated, F ( N )  has exactly one component.  Hence, 

there is a sequence Xo , x~ ,..., x~ of nodes of F ( N )  and a sequence i 1 , i2,... , i~ 

of integers such that u = x0, v = x~,  and either (xj_l ,  xs,  ij) or (xj ,  x j_ l ,  is) 
is an edge of I ' ( N )  f o r j  --- 1, 2,..., p. I f  (xj_ 1 , xs ,  ij) is an edge, then, since ,7i; 
is a permutation,  xj - -  ~1(x;_1). I f  ( x j ,  x~_~, is) is an edge, then x~- = ,7/j(xj_l). 

Hence, 

g2 El V = 7]ze2 o " '" o7)i  2 0 V i l ( U ) ,  with es~{1 , - -1 )  for j = 1 ,2 , . . . ,p .  | 

The  second class of networks is obtained by requiring that the connection 
graph be a group graph. 4 

DEFINITION. A cellular network N = (G, ~7; S, 8) is uniform if  N is 
unlaminated, G is a group with binary operation -, and 

n ( x )  = • x ,  • • 

where x ~ G, h is the identity of G, and k is the neighborhood index of AT. 
G is called the connection group of the network. 

Networks similar to this have been characterized by Wagner  (1966). He  
showed that the networks whose connection graphs are group graphs are 
exactly those that "look the same when viewed from any node".  

I t  can be easily seen that every uniform network is balanced. Hence, by 

Proposit ion 2.1, if x is an arbitrary cell in the uniform network N = (G, ~?; S, 8), 
then x can be expressed in the form 

o2 I t (  X = n i ~  o " ' "  o n i i o  • ~) ,  

where A is the identity of G. This  observation plus the definition of uniform 
networks can be used to prove the following. 

3 If e = l, then ~?¢e denotes the function ~]i, and, if e = --1, then ~7i e denotes ~771, 
the inverse of ~/i • 

4 An introduction to group graphs can be found in Grossman and Magnus (1964). 
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PROPOSITION 2.2. 

of G, and 
Let N = (G, ~; S, ~) be a uniform network, )t the identity 

x = +++#o 

an arbitrary element of G. Then 

and 

Also, i f  

then 

+ - i  = +++T_ o , + - / + o . . . o  

y = ~)+~o...o Vj~2o ~(~) ,  

x ' y = ~ ? i ~  ° ' ' "  ° ~ i l ° ~ q ° ' ' ' ° ~  A). 

A finitely generated Abelian group can be decomposed into a direct sum 
of a finite number  of cyclic groups. I f  such a group is used as the connection 
group of a uniform network, then this decomposition can be used to establish 
a coordinate system for the cell set of the network. This  motivates the final 
classification. 

DEFINITION. A cellular network is called an array if it is uniform and its 
connection group is Abelian. 

The  interconnection patterns of most of the cellular networks in the  
l i terature are derived from group graphs. Furthermore,  the most common 
groups are finitely generated and Abelian. Hence, most of these earlier 
networks can be modeled as arrays. Every array is a uniform network and  
every uniform network is balanced. On the other hand, there exist balanced 
networks that  are not uniform and uniform networks that are not arrays. 
Hence, the cellular network model  of this paper  can be used to represent a 
larger class of interconnection structures than earlier models. 

3. NETWORK REALIZATIONS 

The  possibility of one cellular network simulating the behavior of another  
is considered in this section. The  global behavior of a cellular network has 
been characterized in terms of the automaton realized by that network+ 

643]24/~-6 
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Therefore, the following generalization of sequential machine homo- 
morphisms will be used to formalize the concept of behavioral simulation. 

DEFINITION. Let N 1 = (C1, ,/; 5:1,81) and N 2 = (Cs, r; $2,52) be two 
cellular networks and A(N1)  = (C sl, ~1) and A(N2) = (CS,, 8s) the respective 
automatons realized by N 1 and N 2 . Then a behavioral homomorphism from 
N 1 to Ni  is a (partial) function fi from C s~ to C2 s2 such that, for all f in the 
domain of fl, 81(f) is also in the domain of fi and 3e o f l ( f )  : fl o 81(f).  I f  fl 
is onto C s., then N 1 is said to simulate the behavior of N 2 . 

Each element in the domain of a behavioral homomorphism fi from N l to 
N 2 is a function whose domain is the entire cell set of N 1 . Moreover, the 
condition that fi must satisfy is stated in terms of the next configuration 
functions 81 and 82 • As a result, fi is most naturally viewed as a global trans- 
formation of a subset of the state set of A(Nx) .  Furthermore, the existence of 
the behavioral homomorphism fi does not necessarily imply the existence of 
structural similarities in the networks N 1 and N 2 . In  order to investigate these 
similarities, the following two structure preserving operations are introduced. 

DEFINITION. Let N1 = (C1,7;  $1 ,31)  and N 2 = (C2, ~-; Ss ,  52) be two 
cellular networks with neighborhood index equal to k. Then:  

(1) A function ¢ from C~ to C s is neigkborkoodpreserving i f~eo ~(x) = 
-r o ¢(x) for all x in C1; 

(2) a function ~b from S 1 to S 2 is said to be a cell homomorphism if ~ is 
onto $2 and ~b o 81(ul, us ..... u~) : 3 s o ~b~(ul , u s ,..., us) for all (ul ,  us ,..., u~) 
in $1 ~. 

The  pair (4, ~b) is called a network komomorpkism from N1 to N2.  I f  ~ is onto 
C 2 , then the network homomorphism is onto N 2 ,  and N 1 is said to realize, 
or to be a realization of, N2.  

The  existence of a neighborhood preserving function from N 1 to N s implies 
certain similarities between the connection graphs of N 1 and N 2 . A cell 
homomorphism establishes a close correlation between the behavior of cells 
in N1 and cells in N s . I t  will be shown in Theorem 3.1 that network N 1 
simulates the behavior of network N s if N 1 realizes N2.  Hence, network 
homomorphisms provide a means of comparing the behavior of cellular 
networks that is explicitly based on the structure of the networks. 

As an example of the definitions in this section, consider the two cellular 
networks N 1 = ((;'1, ~/; {0, 1}, 31) and N 2 = (Cs, % {0, 1}, 32), where 31 is the 
Boolean OR function of two variables, 82 is the Boolean A N D  function of two 
variables, and C 1 , 7, C2, and r are given by the connection graphs P(N1) 
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and F(N2) in Fig. 1. N1 is a uniform network since/ ' (N1) is the graph of the 

dihedral group of 12 elements. N z is a balanced network, but  it is not uniform. 
Neither network is an array. Now, let ~ and ~b be the functions defined in 
Table 1. Then  it can be easily verified that the pair (4, ~b) is a network homo- 

morphism from N 1 onto N 2 . Hence, the uniform network N 1 is a realization 
of the nonuniform network N 2 . 

rcNJ foxy) 

FIG. 1. Interconnection structures for NI and N2 • 

TABLE I 

Network Homomorphism from N1 onto N~ 

(a) Neighborhood-preserving function ¢ 

Cell in Nx A B C D E F G H I J K L 

Image under ~ X Y Z X Y Z X Y Z X Y Z 

(b) Cell homomorphism ¢ 

Signal in N1 0 1 

Image under ~b 1 0 

The  relationship between network homomorphisms and behavioral 

homomorphisms is now considered. Given a network homomorphism (q~, ¢) 
from N 1 onto N2,  a behavioral homomorphism fl from N 1 onto N2 will be 
constructed from the two functions ~ and ¢. It  is first necessary to construct a 
subset of C sl, the state set of A(N1), which can be used as the domain of ft. 

DEFINITION. Let (4, ¢) be a network homomorphism from N 1 = 

(C1,7/; 81,81) onto N 2 = (Ce, T; 82,82), and l e t f b e  a configuration of N 1 . 
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T h e n f i s  said to be consistent with (•, 4*) if 

4. of(x) = 4. o f (y)  

for all x and y in C1 such that ¢(x) --~ 6(y). 

L1~MMA 3. I. Let (~, 4*) be a network homomorphism from N1 to N~ , and let 
F(¢, 4*) denote the set of all configurations of N 1 that are consistent with (¢, ¢). 
Then F(¢, 4*) is closed under 81, the next configuration function of A(N1). 

Proof. L e t f  be an element ofF(C, 4*). It must be shown that ~l(f) is also 
in F(¢, ¢). To this end, let x and y be two cells in C 1 such that ¢(x) = ¢(y). 
Then 

¢(81(f)(x)) = ~bo 81 ofko ~(x), by the definition of 81, 

= 83 o 4.~ ofk o ~7(x), since 4* is a cell homomorphism. 

Similarly, 4*(~I(f)(Y)) = 83° 4*k ofko ~7(Y). But 

¢~o ~(x) = 7o ¢(x) - -  , o  ¢(y)  = ¢~o ~(y), 

since ¢ is neighborhood preserving and ¢(x) = 6(y). It therefore follows 
that 

# of~ o ~(x) = # of~o  ~(y), 

since f is consistent with (~b, ¢). Hence 

4*(81(f)(x)) = 830 4*ko f~o  ~7(x) 

= 830 4.'~ of~o ~7(Y) 

= ~b(Sx(f)(y)) , 

so that 81(f) is consistent with (9~, 4*). | 

THEOREM 3.1. I f  the cellular network N 1 = (C1, ~/; $1,81) realizes the 
network N2 = (C2, r; $2,82), then N1 simulates N2 . 

Proof. Let (~, 4*) be a network homomorphism from N 1 onto N 2 . The 
function fl from F(¢, ¢) onto Cg, is defined as follows. Let f ~ F ( ¢ ,  4*). Then 
/3(f) is the function from C s to $2 defined by 

(fi(f) o ¢)(x) = 4* of(x) 
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for all x in C 1 . Thus /3( f )  o ¢ = ¢o  f.  Since ¢ is onto C2, the domain of f i ( f )  

is C z .  f i ( f )  is a well-defined function s incef  is consistent with (~b, ¢). In  order 
to show that ]3 is a behavioral homomorphism, let y be an element of C 2 . 
Then  y = ¢(x) for some x in C 1 so that 

82(/3(f))(y ) = 82(fl(f))(¢(x)) 

= 3~ o f i ( f )k  o .c o ¢(x), by the definition of 82, 

= 82 o f i ( f )~  o Ce o ~(x), since ~b is neighborhood preserving, 

= 82 o Ck ofk  o ~(x), by the definition of/3, 

= ~b o 31 ofk  o ~(x), since ~b is a cell homomorphism, 

= ~ o 81(f)(x) ,  by the definition of 81, 

= fi(81(f) ) o ¢(x), by the definition of fl, 

= fi(81(f))(y) .  

Hence, 82 o/3 = [3 o 81, so that/3 is a behavioral homomorphism. To show 
that/3 is onto CS2, l e t f '  be any configuration of N 2 . Define a configurationf of 
N 1 by sett ingf(x) equal to any u ~ S a such that ~b(u) ~- f '((~(x)). Since ¢ and~ 
are both onto, this can always be done./3(f) is clearly equal t o f '  and consistent 
with (¢, ¢). | 

Due to the following proposition, neighborhood-preserving functions are a 
particularly convenient tool for comparing the behavior of balanced networks. 

PROPOSITION 3.1. Let  ¢ be a neighborhood preserving function f rom  a 

balanced network N a = (C1, 97; S1, 31) to a balanced network N~ = (C2, % $2, 3~). 
Then ¢ is uniquely determined by its value at a single cell of  N 1 . 

Proof. Let  k be the neighborhood index of N 1 and N 2 , and assume that 
the value of ¢ is known for some x in C 1 . Let  y be an arbitrary cell in C 1 . 
Since N 1 is unlaminated, y can be expressed as 

y = ~/~ . . . .  o ~ o  ~ ( x ) ,  

where e s = =k 1 and 1 ~< ij ~< k for j = 1, 2,..., p. Then  it can be easily 
shown, by induction on p, that 

~2 el ¢ ( y )  = . . . .  o -i o o ¢ ( x ) .  

Hence, the value of ¢ at y is uniquely determined by its value at x. 



84 JUMP AND KIRTANE 

The concepts of behavioral and network homomorphisms are similar to the 
behavioral and structural homomorphisms studied by Yamada and Amoroso 
(1969). The major differences are that the behavioral homomorphism used in 
this paper may be a partial function and neighborhood-preserving functions 
are not necessarily one-to-one. Theorem 3.1 above is derived from 
Theorem 4.1 in Yamada and Amoroso (1969) by modifying the proof to 
apply to the more general interconnection structures used in cellular 
networks. 

4. AN INVESTIGATION OF REGULAR INTERCONNECTION STRUCTURES 

In Section 2, three subclasses of cellular networks were defined by placing 
increasingly restrictive constraints on network connection graphs. Thus, 
the class of all arrays was obtained as a proper subclass of the class of all 
uniform networks which was seen to be a proper subclass of the class of all 
balanced networks. In this section, these three classes are investigated to 
determine whether restricting the class of cellular networks in this way 
results in corresponding restrictions in the possible behavior that can be 
realized. The network homomorphisms introduced in Section 3 will be used 
for this purpose. In particular, one class of networks will be said to be as 
powerful as another class if every network in this second class can be realized 
by some network in the first class. 

I t  is first shown, in Theorem 4.1, that the class of uniform networks is as 
powerful as the class of balanced networks. 

THEOREM 4.1. Let N = (C, ~?; S, 3) be a balanced cellular network. Then 
there exists a uniform network which realizes N.  

Proof. Let  N be a balanced network with neighborhood index k, Then 
the functions ~?i are one-to-one and onto for i = 1, 2 , . ,  k. Hence, the set 
X = {~?i I I ~ i ~ k} is a subset of the group of all permutations on C. 
Let Gm denote the subgroup O f this group generated by X, and let/z be the 
function from G~ to Gm ~ defined by 

~(g) = (~  °g, 72 og,...,Be og) 

for all g in Gm. Since/~i(A) ~ ~i and the group operation of Gm is functional 
composition, the cellular network N m ~ (Gin,/z; S, 5) is uniform. 

To show that the uniform network Nm is a realization of the balanced 
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network N, let b be an element of C. Then  define ~ as the function from G~ 
to C, where 

~.,(~,) = ~,(b) 

for all ~ in G ~ .  In  other words, the image under q~r~ of the permutation ~ is the 
cell obtained by applying ? to the distinguished cell b. Now 

4 , . ?o  ~(~,) = ~mk(7]l ° 7, 7]2 ° 7 ..... 7]~ o 7), by the definition of/z, 

(~(711 o 7), 4,~(7]~ o r) , . . . ,  ~.,(7]~ o r))  

(711 ° '~(b) ,  7]2o r ( b ) , . . . ,  7]k o ~ ' (b)) ,  

by the definition of ~m, 

(~-1o 7]0 ~,(b), zr2o 7]0 ~,(b),..., ~vko 7]° •(b)), 
by the definition ofT] 1 , 7]2 ,.-., 7]~, 

7]0 ?(b) 

7] o ~ ( ? ) ,  by the definition of q ~ .  

Hence, ~ o/z = 7] o q ~ ,  so that ~m is a neighborhood preserving function. 
Since N is unlaminated, ~m is onto. 

Let  ~b be the identity function on S. Then  (~m, ~b) is a network homo- 
morphism from Nm onto N. Hence, there is a uniform realization of N. | 

Due to the following proposition, the network Nm,  defined in the proof 
of Theorem 4.1, will be called the minimal uniform realization of N. 

PROPOSITION 4.1. Let N '  = (G, 7; S', 3') be a uniform realization of the 
balanced network N = (C, 7]; S, 3). Then N'  is also a realization of Nm = 
(Gin,/~; S, 3), the minimal uniform realization of N. 

Proof. Let  (qV, ~b') be a network homomorphism from N '  onto N, and let 
6m be the neighborhood-preserving function from N~ onto N defined by 
q~m(7) = 7(¢'0t)) for all 7 in Gin, and let h be the identity of G. Since N '  is 
unlaminated and uniform, any element x in G can be expressed as 
x = ~-~ o .-- o r~]o ~-~I(~). Define a function ~ from G onto G m as follows. 

(1) q~(h) = A, the identity of Gin, 

(2) ,b(~-~o ... o , ~ o , ~ ( ~ ) )  = m ,  o o m ~ o  ~ ( A )  

_~e e~ e 1 
"'~'r'i- o "'" o ~i~ o ",'~il , 

by the definition of bt. 
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I t  must be shown that ¢ is well defined. To this end, assume that x is an 
element of G such that 

. o  . . .  ~ ]:( ~o%(,~ o o o ~ -  ,~) X : T~ ep o •""  o Ti~ : Tjq T q 2 . 

Let u be a cell in C. Then, since ¢ '  is onto, there is a cell y in G such that 
¢ ' (y )  = u. Now 

e I dq  d 2 d 1 N t ... e2 o r q ( y )  : rj~ o ... o r& o r h ( y ) ,  since is uniform. T~"  p o o Ti 2 

Hence 

so that 

I Te2O . . . . .  ¢ ( i O * 0  Te20  T ~ l ( y ) )  = r~t[  d.q d 2 dl," ",, -?. \ ' r j q  0 0 T j 2  0 T j l ( y ) )  , 

ep  • . .  e 2 dq  d 2 el I i 

o r  

Thus, 

for all u in C. 

e ~ a . . . .  o ~7]~ o ~.~i, 

so that ¢ is well-defined. ¢ is clearly neighborhood preserving. Therefore, 
(~, ~b') is a network homomorphism form N '  onto Nm. I 

COROLLARY 4.1. I f  N = (G, ~7; S,  8) is a uniform network, then N m ,  
the minimal uniform realization of N ,  is network isomorphic to N .  

Proof. Let I a and I s be the identity functions on G and S, respectively. 
Then  ( Ia ,  Is)  is a network isomorphism from N to N. Hence, there is a 
network homomorphism (¢, Is)  from N onto Nm, by Proposition 4.1, and 
one from N~ onto N, by Theorem 4.1. In  particular, let (¢m,  Is)  be the 
network homomorphism from Arm onto N, where ~,n(g) = g(A) for all g 
in the connection group of N~  and A is the identity of G. Then  it can be 
easily shown that (Ia , Is)  = ( ~  o ¢, I s  o Is), so that em is one-to-one. Hence, 
(¢~ ,  Is)  is a network isomorphism. | 

I t  is now shown that if only finite networks are to be realized, then a 
converse of Theorem 4.1 can be obtained. 
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PROPOSITION 4.2. I f  $ is a neighborhood preserving function from a uniform 
network N '  ~- (C', 7'; S', 8') onto a finite network N = (C, ~?; S, 3), then N 
is balanced. 

Proof. It  is first shown that ~i is onto. To  this end, let x ~ C. Since 6 is 
onto, there is a cell y in C' such that ~(y) = x. Since N'  is uniform, ~)i' 
is onto. Hence, ~i'(z) = y for some cell z in C'. But x = 6(y)  = d~(~i'(z)) := 
~i(c~(z)), since 6 is neighborhood preserving. Hence, ~i is onto. Since C is a 
finite set, ~ is also one-to-one. But this is sufficient for N to be balanced. | 

COROLLARY 4.2. Let N be a finite cellular network. Then there is a uniform 
realization of N iff N is balanced. 

To see that Proposition 4.1 may not hold if the realized network N is 
infinite, let C ' =  { .... - - 2 , - - 1 ,  0, 1, 2,...}, C = {0, 1, 2,...}, and k = 1. 
Define ~ /and  ~/as follows. 

~7'(x) = x - -  1 for all x in C', 

x - - l ,  if x > 0 ,  
~(x) = 0, if x = 0 .  

Let 6 be the function from C' onto C given by 

Ix, if x > / 0 ,  
4~(x) = 0, if x ~ 0 .  

I t  can be easily verified that ~b is a neighborhood-preserving function from 
the uniform network N '  = (C', 7'; S, 3) onto the network N = (C, 7; S, 3), 
where S and 3 are arbitrary. But N is not balanced since ~?(0) = ~/(1) = 0, 
and, therefore, (7(0), 0, 1) and (~/(1), 1, 1) are two different edges directed 
out of cell 0 and labeled 1. 

In  order to determine whether or not balanced networks and uniform 
networks can be realized by arrays, several properties of neighborhood- 
preserving functions are now developed. 

PROPOSITION 4.3. I f  there is a neighborhood-preserving function from a 
uniform network N '  ~- (G', "r; S',  8') onto a uniform network N = (G, 7; S, 3), 
then there is a group homomorphism from the connection group G' onto the 
connection group G. 

Proof. Let 6 be a neighborhood-preserving function from N'  to N, and 
let v be the function from G' to G defined by v(g) = 6(g) • 6(A') -1, where g is 
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in G' and A' is the identity of G'. Let 

x = ~ ;  o . . .  o ~ :  o ~+1(~1 ') a n d  y --- ~+o . . -o++ ~o~+ ~ ( ~ ' )  

be two arbitrary cells in G'. Then 

e I t ~(xy) = ¢ ( ~ ; o . . . o  % ( a ) . , ] ~ o - . .  +i , o ~ j l (a  ) ) .  ¢ ( a ' )  -~  

- ¢ ( + - ~ ;  . . . . .  , +,+ . . .  + 1 ,  - -  O T i l  0 7"jqO 0 T S l ( a  ) ) "  + ( a t )  - 1  

- (,0+~+0 o . . .  + i  ,++ _ + o ++1o + j ; o . . . o  + ~ + ( ¢ 0 ' ) ) ) " ¢ ( ~ ' ) - ' ;  

since ¢ is neighborhood preserving, 

= ng;Ca) . . . . .  n~Ca)  • h i ,  Ca) . . . . .  ~]~(a)  - ¢ ( a ' )  • ¢ ( a ' )  -~  

ep 
- • n+, (a)  n~Ca)  • n i l ( a ) ,  - n ~ + C a ) - " .  ~ . . . . .  

where A is the identity of G. On the other hand, 

~ l C a ) ) ¢ C a ' )  - ~ . ¢ ( ~ o . . -  ~1 , ~(x)  - ~ ( y )  = ¢ ( ~ ;  o . . . o  ol , o ~ .~(a  ) ) .  ¢ ( a )  -~  

= ¢ ; ( a )  . . . . .  ¢ : ( a )  • 4 : C a )  . . . . .  n~:(a) .  

Hence, v ( x y )  - -  v (x )  • v ( y )  so that v is a group homomorphism from G to G'. 
v is clearly onto since ¢ is onto. | 

COROLLARY 4.3. Let (~ be a neighborhood-preserving function from a 
uniform network N '  to a uniform network N. Then the equivalence relation 
induced by ¢ is a congruence relation for the connection group of N'. 

Proof. Let v be the homomorphism from the connection group of N '  to 
the connection group of N, defined in the proof of Proposition 4.3. Let x 
andy be any two elements in the connection group of N '  such that ¢(x) = ¢(y). 
Then v(x) ~- ¢(x) ~" ¢(A') -1 • ~b(y) . 6(~,)-1 = v(y). Hence, the equivalence 
relation induced by ¢ is equal to the one induced by the homomorphism v. | 

Let ¢ be a neighborhood-preserving function from a uniform network N '  
to a balanced network N. Then the kernel of ¢ is the set of cells of N '  which 
have that same image under ~ as the identity of the connection group of N' .  
In the case that N is also uniform, then the kernel of¢ is the same as the kernel 
of the congruence relation induced by ¢. 
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THEOREM 4.2. Let N ' =  (G, 7; S' ,3 ' )  be a uniform network and 
N = (C, 7; S, 3) a balanced network. Then the kernel of any neighborhood- 
preserving function from G onto C is a subgroup of G. Moreover, N is uniform iff 
this subgroup is normal. 

Proof. Let ¢ be a neighborhood-preserving function from G onto C, and 
let x and y be any two cells in the kernel of 4- Then  x, y, and xy -1 have the 
forms 

and 

~ .  o "'o o 7 X = J Ti~ 

dq do dllX'~ y : 7j~ o "'" o 7j~ o 7hl, a), 

xy -1 e~ o o et -ax ~:q( .~-- T i  ~ " ' '  7 i  I 0 7~ I 0 ' ' "  0 T ~ ) ,  

where h is the identity of G. Since x and y are in the kernel of¢,  

¢(h) = ¢(x) = ~,~,; o ' "  o ~ o  ~I(¢(~)) 

= ¢ ( y )  = ~ . o o . . .  ~ • ,,o o ~ . o  , ~ : ( ¢ ( A ) ) .  

Hence, 

so that 

¢ ( x y  ) - d l  . . . o  ~7#0(¢ (~) )  - 1  = ~.~; o . . .  o ~iel o ~;1 o 

. ~ ( ¢ ( z ) )  "qi~ o --- o 

= ¢ ( a ) .  

Therefore, xy -1 is in the kernel of¢ ,  proving that it is a subgroup of G. 
If  N is uniform, then there is a group homomorphism v from G onto C, 

and the kernel of v is the same as the kernel of ¢. Hence, the kernel of ¢ is 
normal. Conversely, assume that the kernel of ¢ is a normal subgroup of G. 
Let  H be the factor group of G with respect to this normal subgroup. Let ~ be 
the function from H to g k defined by ~([g]) = ([rl(g)], [r2(g)],..., [TJg)]), 
where g ~ G, [g] denotes the coset containing g, and k is the neighborhood 
index of N and N' .  I t  can be easily shown that the uniform network (H, ~; S, g~) 
is network isomorphic to N. Therefore, if the kernel o r e  is normal, then N is 
uniform. | 
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Finally, it is shown that no array can be used to realize a balanced network 
unless that network is also an array. 

LEMMA 4.1. Let N be a balanced cellular network and N ~  its minimal 
uniform realization. Then N is an array iff N ~  is an array. 

Proof. I f  N is uniform, then, by Corollary 4.1, there is a network isomor- 
phism between N and Arm. Hence, N is an array iff N~ is an array. If  N is not 
uniform, then due to Theorem 4.2, there is a subgroup of the connection 
group of Nm that is not normal. Hence, this connection group is not Abelian, 
and N~ is not an array. | 

THEOREM 4.3. Let N be a balanced cellular network. Then there is an array 

realization of N iff N is an array. 

Proof. Let N '  be an array realization of the balanced network N, and 
let N~ be the minimal uniform realization of N. By Proposition 4.1, N '  
realizes N ~ .  This together with Proposition 4.3 implies that there is a group 
homomorphism from the connection group of N' ,  which is Abelian, onto the 
connection group of N ~ .  Hence, the connection group of N~ must also be 
Abelian, and N~ is an array. Due to Lemma 4.1, it follows that N is also an 
array. 

Every cellular network is a realization of itself. Therefore, there is an array 
realization of N iff N is an array. | 

From Theorem 4.3, it follows that the only balanced networks that can be 
realized by arrays are arrays. Hence, the class of arrays is less powerful than 
the class of balanced networks and the class of uniform networks. 

5. SUMMARY 

The cellular network model introduced in this paper has been used to 
classify and investigate regularities in the interconnection structure of net- 
works composed of identical logic modules. Three subclasses of cellular 
networks, corresponding to three types of interconnection regularity, were 
defined. The most regular networks, called arrays, can be embedded in an 
n-dimensional coordinate space. Uniform networks are characterized by the 
fact that every cell is connected to its neighbors "in the same way". Finally, in 
a balanced array, the output of each cell is connected to k other cells, where k 
is the neighborhood index of the network. Moreover, the connections from 
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the output  of each cell can be ordered as being connected to the first input  
terminal  of some cell, the second input  terminal  of another cell, etc. Balanced 
networks may be considered to be less regular than uniform networks, which 
may be thought of as being less regular than arrays. 

The  simulation and realization of one cellular network by another were 
defined in terms of behavioral homomorphism and network homomorphism, 
respectively. Network homomorphisms are directly based on the structure of 
the network. Moreover,  it was shown that if a network N 1 realizes a network 
N~,  then N 1 also simulates N 2 . Hence, network homomorphisms,  rather than 
behavioral homomorphisms,  were used to compare the behavior of the three 
classes of networks. 

I t  was shown that any balanced network can be realized by some uniform 

network. Arrays, on the other hand, can not be used to realize balanced or 
uniform networks that  are not arrays. Moreover,  since there is a uniform 
realization of a given finite network iff that  network is balanced, arrays are the  
only finite networks that can be realized by arrays. 
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