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A new procedure for the evaluation of definite and infinite integrals which is
connected mainly with the Laplace transformation, but also with the Mellin and
Stieltjes integral transforms. is discussed. The advantage of the proposed tech-
nique is illustrated by considering a number of different types of integrals. < 1994

Academic Press, Inc.

]. INTRODUCTION

A number of formulas for the evaluation of finite and infinite integrals
using the Laplace transform technique are presented in this paper. The
application of these formulas is illustrated by the consideration of a vari-
ety of integrals. Some of the integrals treated here are related to the
polylogarithms [1-6] which are of importance in certain physical applica-
tions, in particular in quantum electrodynamics [7-10]. However, the
proposed procedure, which is characterized by a simplicity of mathemati-
cal operations, is of more general character than the explicit evaluation of
integrals involving powers of logarithms and algebraic functions.

It is worthwhile to mention that the Laplace transformation is a stan-
dard technique used to evaluate infinite integrals by applying the opera-
tion of integration, differentiation, and integration under the integral sign
with respect to the transform variable s, frequently in combination with
the rules and theorems of the operational calculus [11-14]. Repeated use
of different integral transforms and the Laplace transforms expressed in
terms of the logarithmic functions which are connected with the evalua-
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tion of several classes of integrals were discussed by us previously [15,
16].

2. EVALUATION OF INTEGRALS USING THE LAPLACE TRANSFORMATION

Let us assume that function f(¢) possess the Laplace transform

L) = || e spwrdr = Fs). ()

Then by changing the integration variable, x = ¢, Eq. (1) becomes

(- % In x) dx = sF(). )

This is a starting point for the evaluation of many logarithmic integrals
because extensive tables of the function—transform pairs are available in
the literature [17-22]. For example, taking into consideration that [22, p.
38, (5.10)]

._ti_ — (— Y n— 1L (n) i
L{l —e“"}—( a"y (a)’
Rea>0,Res>0,n=1,2,3,... (3)

and denoting o = a/s, we have from (2)

1 (In x)" 1 1
( dx= _ w(n) (;)’ a>0,n= 1,2, 3, (4)

o1 — x* ant!

where '"”(z) are derivatives of the psi (digamma)-function [23].
A well-known result is derived by introducing n = 1 and « = 1 into (4)
[24, p. 577, (4.23.2)]

2

1 Inx ™
fissae=-% O

because Y (1) = 72/6.
The second example considered does not include logarithmic integrals.
From the function-transform pair {22, p. 81, (7.152)]

_ cos[aVe' — 1]

1 —e!

S@) (6a)
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_ 2 Vaa 1
F(s) = m K (a), Re s > — 5, (6b)
and using (2) we have
1 cos[aV(1/x)" — 1] 2-V7r sa
) NV R (s 17) - K.da) O

By changing the integration variable, r = x'*, u = s, Eq. (7) takes the
form

- + 1/2) 1
Ky(a) = Vo o J \/—cos[ V7~ 1] dr, Reu>—%,
(8

which can be treated as a new integral representation of the modified
Bessel function of the second kind K,(z) [23].

Now, we will apply systematically the rules and theorems of the opera-
tional calculus (in the context of Eq. (2)) assuming the existence of the
Laplace transform of function f(¢) and the permissibility of performed
mathematical operations in the cases under consideration. From

et + ) di = e [F(s) = [! emsuft) du], a=0 (9
it follows that
folf(a - % In x) dx = se*’ [F(s) - f: e “f(u) du]. (10)

This formula is illustrated by two examples. From [22, p. 16, (2.27)]

L=} - N an

we have
ke
— su , 12
f\/a—(l/s)lnx \/; je ] (12)
but [24, p. 367, (3.361)]
Jy e 2 - VE erttvas, (13)
U
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where erf z is the error function [23]; denoting « = a s, the final result is

! dx
jo Vi = V1 e* erfe(Va), a >0, (14)

where erfc z is the complementary error function [23]. Two similar inte-
grals

[ Va=Twdr = [Va+ 4T

e erfc(\/E)] (15a)
1 dx 2
j0m=-ﬁ[l - V7o e erfc(\/a)], a>0 (15b)

can be evaluated in the same way.
In the second example we will start with [22, p. 48, (6.1)):

Liln ¢} = - % (y + In ), Re s > 0, (16)
where y = 0.57721 ... is the Euler constant; taking into account that
f: e *Inudu= % |Ei(—as) — e *“Ina —Ins — vy] a7n
we have from (10)
! — — — ptlb Fi | — ﬂ ]
| na blnx]dx—[]na e El( b), (18)

where b = 1/s and Ei(z) is the exponential integral (23]. Denoting a = a/b,
Eq. (18) takes the simple form

fo' In(@—Inx)dx = [Ina — e Ei (~a)], a>0. (19)

From the series expansion of the exponential integral {23]

Co - (=2)"
Ei ( z)—7+lnz+’; — (20)

it follows that the integral (19), in the limit, « — 0, becomes
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[!m [m(}—lc)] dx = — y, @1

which is a well-known result [24, p. 576, (4.229.1)].
Applying the translation property of the Laplace transformation

Lieaf(1)} = F(s + a) (22)

we have
jl x““f(—llnx) dx = sF(s + a) (23)
0 s
fora > 0 and
1 1
jo x‘“/‘f(— Sin x) dx = sF(s —a), Rel(s—a)>0 (24)

for a < 0. For example, applying (23) to (16) we obtain

[01 x% 1n (— % In x) dx = — [y +In(s + a)], (25)

s
s ta
which, by denoting « = | + a/s, takes the familiar form {23, p. 620,
(4.325.8)]

fo] x 'In [ln <)lc>] dx = — é [v + In al, a > 0. (26)

The multiplication of function f(r) by powers of f is expressed in the
Laplace transformation by

, d"F(s)

L{t"f()} = (—=1) o n= L2l (27)
and therefore
) . 1 g dTF(s)
[ an (- <In x) dx = s = (28)

In the simplest case (¢} = | and F(s) = 1/s, we have immediately from
(28)

dn —I)

fol (In x)"dx = s=*! a(,;v,I = (—1)"n! (29}
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A more interesting example is (22, p. 39, (5.16)]

IR B TS R
which leads to (« = 1/s)

jo] (llr:xi'; dx = (Zal)"*‘ [w(n) (azz l) — (i}],

a>0,n=1,2,3,.. 3

For a = 1, because the derivatives of psi-function can be expressed in
terms of the Riemann zeta function {(z) [23]

Y1) = (=) (n + 1) (32a)
1
e (§> = (=12 — Dal(n + 1), (32b)
we have
In x)" 1
0‘ (1"+X)x dx = (=1 (i_n ~ 1) nlg(n + 1), (33)

In particular, for n = 1((2) = ¢"(1) = 7%/6, [23]) and for n = 2 it follows
that

1 In x T
S (4a)
t(nx)* 3

The special case of (27) is the multiplication of function f(r) by noninteger
powers of ¢ [11, p. 22]

= {dF(s + u)} du,

1 —n
Lit#f(t)} = — mj s ¥ ) ul <1, (35

0

which is equivalent to

/! [m (i)]”f(— % In x) dx = - ms”_;#—) o {‘_’H} du,

lul < 1. (36)
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Evidently, if we denote g(¢) = r#f(¢) and
Lig(n)} = L{r*f(1)} = G(s) (37

then

d"G(s)

- =1,2,3, ... (38)

L{tref (0} = (="

which is the generalization of (27).
If G(s) is known, it is possible to evaluate the right-hand side integrals
of (36). For example, from

L{sin(at)} = 5 (39)

52+ a?
we have the equality of integrals (o = a/s)

fol [ln (i)]“ sin(fa In x) dx = — ————I,(lzf " f: uH -—-———-——[az i"(: i) e du,

a>0,|ul <1. (40

However, the Laplace transform of g(1) = ¢# sin (at) is known (21, p. 33,
(5.23)]:

. I'(w+1) ) . f{a
Lir# sin(at)} = Z?—Tﬂc—z_z)‘—!*:m sin [([.L + 1) tan™! (;)] (41)
Therefore
* (u+ 1) Nt —whp + 1) . _
e T T T = et e S e+ 0 tan (@)

a>0,|ul<1. @2

On the other hand

! IV* . Fp+1) _
fo [ln (;)] sin(wlnx)dx = — G’ZT#W sinf(w + 1) tan™ o)),

a>0,u <. (43)

In particular, foru = 0and u = 1/2 and @ = 1 (tan~! (1) = 7/4), it follows
from (43) that
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fol sin(ln x) dx = — % (44a)
4(0] \/ln (%) sin(In x) dx = ——2\/7-,7? sin (%) (44b)

The division of function f() by powers of ¢ in the Laplace transformation
is related by

L{t =+ Vf(1)} = -,% f:u"F(s + u) du, n=0,1,2,3.. (45

and therefore

(_l)n+l
nlst

fl (In x)“"*”f(— 1 In r) dx = ‘(x u"F(s + u) du
0 s - 0 ’
n=20,1,2,3 .. (46)

which takes the simplest form for n = 0 and s = 1

1] x
Lﬁ;ﬂ—mgdx:—ﬁimnm. 47)

For example using (39) and (46), « = a/s, we obtain

fl sin(a In x)

* du
. I x dx = « f —— (48)

0 [@2+ (« + DY

but the indefinite integral

du 1 _l(u+l
= —tan

al+ 1 +2u+u « ) * const. (49)

J

is known, and therefore

1 sinfa In x) _[1_ S(hy] ]

If both integrals in (45) converge for n = 0 and s — 0 then

f%mﬂm=ﬂnmw (51)



LAPLACE TRANSFORMATION 245

and

| 1 x
fo ——f(~In ) dx = - |7 Fan du. (52)

Combining (47) with (52) we have

f' (1 _ l)f(—]n x) dy = — L] F(u) du. (53)

0 \x In x

From the operational relation

1 x
Liflate™ = DI} = 25T [0 wiewF <§) du.  a>0 (54)

it follows that

folf{a [(}—]c)m - l” dx = f(Ta\J—iT) f: use “F(u) du. (55)

If the parameter s is chosen to be a positive integer, then, applying (27),
Eq. (55) can be written in the form

Jy r{a [(i)” 1]} as - (rg——a)ln)! T m=L23 66

where G(a) is the Stieltjes transform of function f(¢) (i.e., the iterated
Laplace transform) [19, Vol. 2, Ch. 14]

Gla) = fo e “F(u) du = 01 ;fg)_r dt. (57)

Let us consider the following example where both the Laplace and
Stieltjes transforms are tabulated [22, p. 65, (7.74) and 19, p. 219,
(14.2.36)]:

1) = sin(V1) (58a)
F(s) = E-\g/—j% e Vs (58b)

Ga) = me V4,  a>0. (58¢)
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From (56) and (58c) we immediately have

(Ve Q) - 1]} ar - Qe e s

which is for n = 1

f(: sin {\/”—“‘a(l x_ X)} dx = ﬂz/a e Ve, (60)

However, it also follows from (55) and (58b) that

! sin {\/ﬁ(i)” - 1]} dx = 2—(\:—&_“—])7 | wrera v g, (1)

The right-hand side integral is known [24, p. 391, (3.471.9)]:

* 2 ,—ate—1/4u 1
Jrum ey = e Ky 2 (V. (62)
Therefore
1 I\ Vo a1
J S‘"{ “ [<;) - ‘”dx Gy Knie Vo). (63)

For n = 1 and taking into account that [23}]

Ki» (Va) = \[ = Va (64)

the previous result (60) is derived. By comparing (59) with (63), the modi-
fied Bessel function of half odd integer order can be expressed by the
relation

Kooin (Va) = (—1)mn=12 \/p gm2-1a £26 ) d™(e” \/’_’)

T dan

By putting s = 1/n, n = 2, 3, 4, ... in Eq. (55) we have

/! f{a [(i) - 1]} dx = W";;n—) " e (u) du, (66)
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but if G(a), the Stieltjes transform of function f(¢) in (57) is available, then
it is possible to use (35) with u = 1/n

i fa G - ol e = e e (R0

n=2,34 .. (67)

where I'(1/n)I'(1 — 1/n) = #/sin(w/n) [23].
Let us return to the previous example (58); then by applying (67) we
have

P " ]} _asin(z/n) (= wm
jo sin { a [(x) |t dx = ) L\/m e tudy,
n=2,3,4,.. (68

The infinite integral in (68) can be evaluated because [24, p. 393, (3.479.1)]

. L’_B\/;: 2/ 12-u
fox Y iy (g) Kin-4(B),

ReB>0,Rep>0. (69)

Denoting a? = a, and taking into account that K_,(z) = K,(z) [23], from
(68) and (69) the final result is reached:

1o, e _2127VnP(n/n — 1) sin(w/n) a¥n*1?
f sin [ a <x> 1] dx = e Kin-imla),
a>0,n=2,3,4,.. (70)

In particular, forn = 2 and n = 3
1. 1 a?
fo sin [a \/(;3 -1 )] dx = N Ko(a) (71a)

) 1 V3 ad?
fol sin [a V(F -1 )] dx = 7,(,16— Kygla), a>0. (71b)

The Laplace transform of derivatives of f(¢) is given by

n—1
L{f™(D} = s"F(s) — 2, s" % 1fW0), n=12,3,.. (72)
k=0
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which is equivalent to

n—1
j]ﬂ"' (— L In x) dx = s"™1F(s) — >, 5" 4 W(0). (73)
0 A) k=0

For example, taking f(z) and F(s) given in (30), the first two derivatives
are

1 1
Sy = T e f0) = 5 (74a)
, e! , 1
)= dxen fo = 1 (74b)
, _ e ! Qe
fO=-0vey2 " Trer (74c)
and therefore from (2), (30), and (73) we have
ode 1 a+ 1 1
fol+x“_£[¢( 2a>_w<2_0:)]’ a>0 (75a)
1 x« | a+ 1 1 1
fo (1 + x9)? dx = {2_01—5 [dl ( 2a ) Y <—2;)] B Z} (75b)

Lt o= (St [ (45) - ()] - 25 oso

From integrals in (75), the first integral is known [24, p. 345, (3.24.1)], the
second integral can be evaluated only for @ = 2 from {24, p. 348, 3.251.7)],
and the last integral is new.

There are a number of substitution formulas of the Laplace transforma-
tion which can serve in evaluation of rather complex infinite integrals, this
time if logarithmic integrals are tabulated.

From the operational relation

o L[ L
L{f(l)}—zﬁf(]\/;

(:f[(l%{)z] dx = 2—% J: ?/_l; e S ME (4) du. a7

If the left-hand side integral is known, then it is easy to recognize function
f(1), and having F(s), it is possible to evaluate the infinite integral in (77).

e E () du (76)
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For example, let us start with the logarithmic integral [24, p. 569,
(4.213.1)]

/. w—”-‘il"n—m = % [sin(a) ci(a) — cos(a) sita)], a>0 (78)

or, in a more familiar form (a = as),

jﬂ' [;::d(xl—nTE)—,j = i [sin(as) ci(as) — cos(as) si(as)] 79

it is clear that the desired function is f(¢) = 1/(a? + ¢); its Laplace trans-
form is [22, p. 13, (2.9)]

F(s) = — *SEi(—aZs). (80)

From (77), (79), and (80) with 8 = s, we have

= 2 2 .
—= ¢*' =B EBi(—a2u) du = 2Vn
0 u o

[cos(aB) si(aB) — sin{af) ci(aB)],
a>0,8>0, (8

where si(z) and ci(z) are the sine and cosine integrals [23]. The evaluated
integral (81) is identical with that given in [24, Vol. 2, p. 29, (6.229)] if ¢ =
1/2, 8% = 4u, and the integration variable is changed to « = 1/x>.

In the same manner it is possible to evaluate infinite integrals of the
parabolic cylinder D,(z) [23] and Bessel functions

1 In l ﬂf l_r.l...’f 27 dx = shtl o uu-2e_~‘2"2/4D,L(su)F Lz du
0 x s /| \N2m o 2u
(82a)

—S3/2 |

folf[(— 1%5)1 de =30 )07 K [2 (%)m] Fu)du  (82b)

fol [ln (%)]“f [— L dx = s#? fo uJ (2N su) F(u) du,

Repu > -1 (82c)

[lrf2 [()-'c)” —x0|bde = s [ stawFw du,  a>o0. (82d)
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If w is a positive integer, the parabolic cylinder functions can be replaced
in (82a) by the Hermite polynomials [21]. However, the value of (82) is
rather limited because the known left-hand side integrals of this type are
rare.

Since in many cases both Laplace transforms L{f(1)} = F(s) and L{f(r)/
t} = H(s) are tabulated, it is possible to evaluate some complex integrals,
because for n = 0, Eq. (45) becomes

j’:f" {L(tt“)} dt = f“_x F(uw) du, (83)

which is of special interest for s = 1. For example from [22, p. 55, (7.12)
and (7.14)]

sin(at)

kg
Fioy = L) = EWeTE e e

H(s) = L {S—l%,—“'—)} =V2m VVal + 57— (84b)

we have immediately from (83)

[[WaTw —wa s wdi=2Vaii-1. 69

Evaluation of integrals via the Laplace transformation is demonstrated
here by numerous examples, but other integral transforms can also be
applied for the same purposes. Closely related to the Laplace transforma-
tions are the Mellin, Stieltjes, and generalized Stieltjes transforms [19]

MU} = [ 1710 de = M(s) (86a)
S} = 0 ai% dt = G(a) (86b)
sy = [} 72 di = G p, (860)

which after a change of integration variable are

s—1
fo' i [m (i)] f(=In x) dx = M(s) (87a)
1 1
4"0 mf(—a In x) dx = G(a), a>0 (87b)
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L
/. a0 dr = @G, a>0 @70

or in the form

[7 L n xy-17n 2 dx = M0s) (88a)
* 1
f. (0 Fmg/l@lnnde=0G6@, a>0 (88b)
£ 1 )
L mf(a In x) dx = a?"'G(a; p), a > 0. (88¢c)

The properties of these integral transforms as related to the evaluation of
integrals will be discussed elsewhere, but three simple examples are given
here.

From [19, pp. 312-313 (6.3.6) and (6.3.10)]

M{——}=Tw1 - 27906, Res>0  @®%)

1
M {r])z} =TI'$)Ls — 1) — L(s)], Re s > 2. (89b)

Using (87a) with « = 5 — 1, we have

fo' 1 lx [m (1)] dx=T(a+ D)1 -29(a+1), a>-1 (90a)

X

fol (1 —1 x)? [ln (i)]a dx = I'(a + D[{(a) = {(a + 1), a>1.  (90b)

Fora =n;n=1,2,3, ... (90a) is identical with (33).
Using the Stieltjes transform, from [19, Vol. 2, p. 216, (14.2.2)]

|

I
S{1+t}=(a__l)lna, a>0 91)

it follows that

j] dx - Ina a>0 (92)
ox(1 —Inx)1 —alnx) (@-1 ’ ’
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which becomes for a = 1

I dx
J-o x(1 = Inx)?* I 93)

The generalized Stieltjes transform of the same function is [19, Vol. 2, p.
233, (14.4.9)]

1 al-r
Sp{-l—Tt}=T2F,(I,I;p+I;I—a), Rep>0, (94)

and therefore

! dx 1
f" x(1 —alnx)(1 — lnx)n_ng'(]' Lp+ L1-a,
a>0,p>0, (95
which is identical with (92) for p = 1, because the hypergeometric func-

tion in this case is given by ,F; (1, 1;2; 2) = (1/2) In(1 — 2).
The last example is [19, Vol. 2, pp. 217 and 233, (14.4.11) and (14.4.10)]

S{e "} = —e“ Ei(—a) (96a)
Sple™} = e?I'(1 = p, a), Re p > 0, (96b)

which, from (87b) and (87¢) becomes
fl———x—:]-—d——"E‘— >0 (97
o (1 = Inx) 'x = —e“ Ei(—a), a a)
f'—ff—'—d— (1 — >0,p>0. (97b
0(1_‘nx)p X = € ( pva)v a ,P . ( )

Both results are identical for p = 1, because the incomplete gamma func-
tion then becomes I'(0, a) = —Ei(—a).
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