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Let Tz, be the complement of a perfect matching in the complete ,qraph on 2n vertkes, am; 
cc(T?,I be the minimum #lumber of complete subgraphs necessary to cover all rhe edge? cf T2,,. 
Orlin posed the problem of determining the asymptotic behzviour of cc(T,,!. We show that 
cc( T,,) = min{ k : n s </&$} for all n > 1, (which implies that lim,, cc( T,,,)/icg,n = 1). This is 
done by applying a Sperner-type theorem on set families due to Bollobirs ancl Schiinhcim. 

A Clique covering of a graph G is a family of complete subgraphs such that 
every edge of G is in some member of the family. The minimum cardinality of all 
clique coverings of G is called the clique covering number of G and is denoted 
here by cc(G). For ara outline of the background of this subject see, e.g., [3] or 

I?1 
Let T2, denote the graph obtained by deleting a perfect matching from the 

complete graph on 2n vertices. In [4, p. 41 I] Orlin presented thee following as an 
unsolved problem: What is the asymptotic behaviour of cc(T,,)? 
the determination of cc(Tz,) wit the solution of an optimization 
theory of Boolean functions 14, 

Let a( II) =e min{ k: n Si &$)). that CC(T,~,,) = c(n) for all tt > 1 
(which implies that Slim,,., cc( 7’2,)/log2~,. =: 1). 

} is an indexed family s:Jbsets of a sei 5. 

Suppose G is a simple ph (no loops or multi 
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A family 9 of subsets of a set S is called a clutter if none of its members 
contains another. Call a family .!F = ,[F,, &, . . . 

fury, if for every 1 < i 61 n, there is some 1 s- i 5; n sue 

(Botkiobas, Schonheim [i]). The kwgest complemenk.uy clutters of 

subsets; of a k-eleruent set have 2(&$ n2ember:I:. 

11 9 fnmitv 9, !z!anceci if for every F in 9, there is precisely one ,F’ in % ‘L “. u ‘““““, 

disjoint from F. Notice that every balanced family is a clutter. y r-eplacing each 

pair (16, F’} in a balanced family 9 by (F, S \ F}, we obtain a new balanced 
complementary family of the same size as SF. erefore 

The largest balanced families of subsets of a k-element set have 

. For all n > 1, CC(&,) = a(n). 

Let % be a clique covering of 7&, 
g( %): Since G (9) is isomorphic to T2,, 

of minimum cardinality k and ZF = 
and each vertex of T&, is adjacent to all 

but one other vertex, the family % is balanced. 

Thlerefore I$\< 2(k-’ [k/z1 )I, and hence cc( T2,,) 2: a(n) by Corollary 1. 

La k = a(n) and choose a balanced family 3 in S = {1,2, . . . , k} with cardinal- 
ity 2n < 2(/&2& as we may by Corollary 1. Then G(9) is isomorphic to T2,, and 
cc( G(9)) c k. Therefore cc( T& s a(n).. II 

Let k =- a(n), then the definition of u(n) an’d some elementary manipulations of 
binomial coefficients in,$j rkt 

(1 - (21k))($_-l;,2,)< n + (,;2-,. 

allis’ product representation of v (see, e.g., [2, p. 225-J implies that 

( !k;2,)2-k Js; == m. 
herefore 

0.1995 ( n2-k&= 0.3184 
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ciently large n. ividing by U(H), we obt%n 

by Corollary 2. 
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