NOTE

ON A CLIQUE COVERING PROBLEM OF ORIIN

David A. GREGORY and Norman J. PULLMAN
'Mathematics and Statistics Department, Queen's University, Kingston, Canada

Received 19 August 1981

Abstract

Let $T_{2 n}$ be the complement of a perfect matching in the complete graph on $2 n$ vertives, and $\mathrm{cc}\left(T_{2 n}\right)$ be the minimum number of complete subgraphs necessary to cover all the edge: of $T_{2 n}$. Orlin posed the problem of determining the asymptotic behaviour of $\operatorname{cc}\left(T_{2 n}\right)$. We show that $\operatorname{cc}\left(T_{2 n}\right)=\min \{k: n \leqslant(k-1)\}$ for all $n>1$, (which implies that $\left.\lim _{n \rightarrow \infty} \operatorname{cc}\left(T_{2 n}\right) / \log _{2} n=1\right)$. This is done by applying a Sperner-type theorem on set families due to Bollobás and Schönheim.

A Clique covering of a graph G is a family of complete subgraphs such that every edge of G is in some member of the family. The minimum cardinality of all clique coverings of G is called the clique covering number of G and is denoted here by $\operatorname{cc}(G)$. For an outline of the background of this subject see, e.g., [3] or [4].
Let $T_{2 n}$ denote the graph obtained by deleting a perfect matching from the complete graph on $2 n$ vertices. In [4, p. 411] Orlin presented the following as an unsolved problem: What is the asymptotic behaviour of $\mathrm{cc}\left(T_{2 n}\right)$? He associated the determination of $\operatorname{cc}\left(T_{2 n}\right)$ with the solution of an optimization problem in the theory of Boolean funciions [4, Remark 3.7].
Let $\sigma(n)=\min \left\{k: n \leqslant\binom{ k-1}{k / 2)}\right\}$. We will show that $\operatorname{cc}\left(T_{2 n}\right)=\sigma(n)$ for all $n>1$ (which implies that $\lim _{n \rightarrow \infty} \mathrm{cc}\left(T_{2 n}\right) / \log _{2 *}=1$).
Suppose $\mathscr{F}=\left\{F_{1}, F_{2}, \ldots, F_{N}\right\}$ is an indexed family of subsets of a sei S. Repetitions in \mathscr{F} are allowed. That is, it may happen that $F_{i}=F_{i}$ even though $i ; \xi$. Let $G(\mathscr{F})$ be the graph on n distinct vertices $v_{1}, v_{2}, \ldots, v_{n}$ with v_{i} adjacent to v_{i} whenever $i \neq j$ and $F_{i} \cap F_{i} \neq \emptyset$. This is the interseciion graph of \mathscr{g}_{i}.
Suppose G is a simple graph (no loops or multiple edges) having n vertices, none of which is isolated, and \mathscr{C} is any clique covering of G. Index the vertices of $G: v_{1}, v_{2}, \ldots, v_{n}$. For $1 \leqslant i \leqslant n$, let F_{i} consist of those members of \mathscr{C} having v_{i} as a vertex. Then define $\mathscr{F}(\mathscr{C})=\left\{F_{1}, F_{2}, \ldots, F_{n}\right\}$. It follows that the intersection graph of $\mathscr{F}(\mathscr{C})$ is isomorphic to G. Therefore $\operatorname{cc}(G)$ is the least value of $|S|$ for which a representation of G as an intersection graph of a family of subsets of S exists. This correspondence between set families and graphs is the historical basis for the subject of clique coverings, (see, e.g. [3] or [4]).

A family \mathscr{F} of subsets of a set S is called a clutter if none of its members contains another. Call a family $\mathscr{F}=\left\{F_{1}, F_{2}, \ldots F_{n}\right\}$ of subsets of S. complementary, if for every $1 \leqslant i \leqslant n$, there is some $1 \leqslant j \leqslant n$ such that $F_{j}=S \backslash F_{i}$.

Theorem 1 (Boliobás, Schönheim [1]). The argest complementary clutters of subset: of a k-element set have $2\binom{k-1}{k / 21}$ members.
: ! a family \mathscr{F}, balanced if for every F in \mathscr{F}, there is precisely one F^{\prime} in \mathscr{T}^{T} disjoint from F. Notice that every balanced fannily is a clutter. By replacing each pair $\left\{F, F^{\prime}\right\}$ in a balanced family \mathscr{F} by $\{F, S \backslash F\}$, we ohtain a new balanced complementary family of the same size as \mathscr{F}. Therefore

Corollary 1. The largest balanced families of subsets of a k-element set have $2\binom{k-1}{k k / 21}$ members.

Corollary 2. For all $n>1, \operatorname{cc}\left(T_{2 n}\right)=\sigma(n)$.
Proof. Let \mathscr{C} be a clique covering of $T_{2 n}$ of minimum cardinality k and $\mathscr{F}=$ $\mathscr{F}(\mathscr{C})$. Since $G(\mathscr{F})$ is isomorphic to $T_{2 n}$ and each vertex of $T_{2 n}$ is adjacent to all but one other vertex, the family \mathscr{F} is balanced.

Therefore $|\mathscr{F}| \leqslant 2\binom{k-1}{|k| 2 \mid}$, and hence $\operatorname{cc}\left(T_{2 n}\right) \geqslant \sigma(n)$ by Corollary 1.
Lett $k=\sigma(n)$ and choose a balanced family \mathscr{F} in $S=\{1,2, \ldots, k\}$ with cardinality $2 n \leqslant 2\binom{k-1}{k / 21}$, as we may by Corollary 1 . Then $G(\mathscr{F})$ is isomorphic to $T_{2 n}$ and $\operatorname{cc}(G(\mathscr{F})) \leqslant k$. Therefore $\operatorname{cc}\left(T_{2 n}\right) \leqslant \sigma(n)$.

Let $k=\sigma(n)$, tiien the definition of $\sigma(n)$ and some elementary manipulations of binomial coefficients intoly that

$$
(1-(2 / k))\binom{k-1}{(k-1) / 2\rceil}<n \leqslant \frac{1}{2}\binom{k}{\lceil k / 2\rceil} .
$$

But Wallis' product representation of π (see, e.g., [2, p. 225]) implies that

$$
\lim _{k \rightarrow \infty}\binom{k}{[k / 2\rceil} 2^{-k} \sqrt{k}=\sqrt{2 / \pi}
$$

Therefore

$$
0.1995<n 2^{-k} \sqrt{k}<0.3184
$$

and hence

$$
1.325<\sigma(n)-1 / 2 \log _{2} \sigma(n)-\log _{2}(n)<2.326
$$

for all sufficiently large n. Dividing by $c r(n)$, we obtain

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{cc}\left(T_{2 n}\right)}{\log _{2}(n)}=1
$$

by Corollary 2.

Acknowledgement

This work was supported in part by the Naturial Science and Engineering Research Council of Canada under grants A4041 and A.5134.

References

[1] B. Bollabeis, Spernc r sys:ems consisting of pairs of complementary subsets, J. Combin. Theory (A) 15 (1973) 363-36t.
[2] R. Courani, Differential and Integral Calculus, Vol. 1, 2nd ed. (Blackie \& Son Ltd., London, 1937).
[3] P. Erdös, A.W. Goodman, and L. Pósa, The representations of a graph by set intersections, Canad. J. Math. 18 (1966) 106-112.
[4] J. Orlin, Contentment in Graph Theory, K. Nederl. Akad. V'etensch. Proc. (Ser. A) 80 (1977) 406-424.

