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SUMMARY

Leucine is recognized as a nutrient signal; how-
ever, the long-term in vivo consequences of leu-
cine signaling and the role of branched-chain
amino acid (BCAA) metabolism in this signaling
remain unclear. To investigate these questions,
we disrupted the BCATm gene, which encodes
the enzyme catalyzing the first step in periph-
eral BCAA metabolism. BCATm�/� mice ex-
hibited elevated plasma BCAAs and decreased
adiposity and body weight, despite eating more
food, along with increased energy expenditure,
remarkable improvements in glucose and insu-
lin tolerance, and protection from diet-induced
obesity. The increased energy expenditure did
not seem to be due to altered locomotor activ-
ity, uncoupling proteins, sympathetic activity,
or thyroid hormones but was strongly associ-
ated with food consumption and an active fu-
tile cycle of increased protein degradation and
synthesis. These observations suggest that
elevated BCAAs and/or loss of BCAA catabo-
lism in peripheral tissues play an important
role in regulating insulin sensitivity and energy
expenditure.

INTRODUCTION

Abundant food supplies and sedentary lifestyle contribute

to the current epidemic of obesity in Western nations.

Obesity results from a positive balance of energy intake

versus expenditure—i.e., energy intake exceeds energy

expenditure. Total energy expenditure consists of obliga-

tory energy expenditure, physical activity, and adaptive

thermogenesis (Lowell and Spiegelman, 2000). Adaptive

thermogenesis is particularly influenced by environmental

temperature and diet; the latter type is termed diet-
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induced thermogenesis (DIT). Despite extensive research,

the pathogenesis of human obesity has not been fully elu-

cidated, and the prevention and treatment of human obe-

sity have proved difficult. Yet recent studies in humans

suggest that increasing dietary protein intake may im-

prove body weight control by poorly defined mechanisms

that appear to involve both satiety and energy expenditure

(Halton and Hu, 2004; Westerterp, 2004). In both short-

term and relatively long-term studies, high-protein and

low-fat diets have been shown to increase energy expen-

diture, while short-term protein intake induces satiety

(Johnston et al., 2002; Leidy et al., 2007; Lejeune et al.,

2006). After a fast in humans, whole-body nitrogen turn-

over and the thermic response to protein diet feeding

were found to be significantly greater when compared

with a high-carbohydrate meal (Robinson et al., 1990).

This may be due to the fact that both protein synthesis

and proteolysis are energy-demanding processes (Reeds

et al., 1985). Thus, protein intake and metabolism posi-

tively affect energy expenditure.

The effects of dietary protein are thought to be mediated

at least in part by the essential amino acid leucine (Leu),

and perhaps by the other branched-chain amino acids

(BCAAs). Leu is recognized as a nutrient signal and is an

efficacious regulator of protein turnover through stimulat-

ing protein synthesis and inhibiting protein degradation

(Buse and Reid, 1975; Fulks et al., 1975). Its stimulation

of protein synthesis is linked to activation of a cell signaling

pathway involving the mammalian target of rapamycin

complex 1 (mTORC1) (Kimball and Jefferson, 2006). An

in vitro study has shown that one or more metabolites of

Leu catabolism inhibit proteolysis, while intracellular Leu,

not Leu metabolites, regulates protein synthesis (Tischler

et al., 1982). Like dietary protein, Leu has been linked to

satiety, body weight control, and whole-body energy ex-

penditure. For example, Leu has been reported to directly

stimulate mTOR signaling in the hypothalamus, leading to

decreased food intake (Cota et al., 2006). In addition, Leu

may influence satiety by stimulating leptin secretion

(Lynch et al., 2006). Dietary supplements of Leu or BCAAs

have been shown to decrease fat mass and body weight
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and to improve glucose metabolism in some cases (Bian-

chi et al., 2005; Donato et al., 2006; Gordon-Elliott and

Margolese, 2006; Layman and Walker, 2006; Mourier

et al., 1997; Zhang et al., 2007). These findings suggest

that BCAA supplements may be beneficial in controlling

obesity.

Paradoxically, other findings are not consistent with an

antiobesity role of dietary Leu and Leu signaling. For ex-

ample, hyperactivation of the TORC1 signaling pathway

resulting from overnutrition, which includes excessive

Leu intake, appears to worsen insulin resistance in obesity

(Khamzina et al., 2005; Um et al., 2004, 2006). In addition,

plasma BCAA concentrations are elevated in humans and

animal models of obesity (Felig et al., 1969; Rafecas et al.,

1991; Wijekoon et al., 2004). Thus, further research is

needed to clarify the physiological role of Leu and its

potential for protecting or worsening obesity.

In order to examine the effects of persistently elevated

plasma Leu resulting from blockage of BCAA metabolism,

we have generated and characterized mice in which the

gene encoding the mitochondrial branched-chain amino-

transferase isozyme (BCAT2) has been disrupted. This en-

zyme catalyzes the first step in BCAA metabolism, which

is transfer of the a-amino group of a BCAA to a-ketogluta-

rate to form glutamate and the three respective branched-

chain a-keto acids. BCATm is expressed in most non-

neuronal tissues except liver, while the cytosolic isozyme

(BCATc) is expressed in the central nervous system (CNS)

and in peripheral nerves (Hutson et al., 1992; Suryawan

et al., 1998; Sweatt et al., 2004). The expression pattern

of BCAA catabolic enzymes in body tissues serves to reg-

ulate Leu signaling (Lynch et al., 2003) and to promote in-

terorgan exchange of BCAA metabolites (Suryawan et al.,

1998). Because peripheral BCAA catabolism is blocked in

BCATm�/�mice, plasma BCAA concentrations are chron-

ically elevated. These animals consume more food, exhibit

increased DIT, and are lean when compared with wild-

type mice. In addition, their protein turnover rate is

elevated. We propose that increased protein synthesis

and degradation contribute directly to increased energy

expenditure in mice lacking peripheral BCAA metabolism.

RESULTS

Growth Curve, Food Intake, and Plasma
Concentrations of Hormones, Amino Acids,
and Other Metabolites
Targeting of the BCATm gene and generation of the condi-

tional and total null alleles using the Cre-loxP system (Fig-

ures S1A–S1D) are described in the Supplemental Data

available with this article online. As expected, BCATm

protein was not detectable in skeletal muscle, kidney,

heart, pancreas, brain, or adipose tissue of BCATm�/�

mice (Figure 1A). Heterozygotes had approximately half

as much BCATm protein in measured tissues (data not

shown). Liver, which does not express BCATm, showed

no detectable bands in either BCATm+/+ or BCATm�/�

mice (Figure 1A). BCATm activity was 628 ± 25, 291 ±

18, and �0.2 ± 1.5 mU/g tissue (n = 2) in gastrocnemius
182 Cell Metabolism 6, 181–194, September 2007 ª2007 Elsev
muscle of BCATm+/+, BCATm+/�, and BCATm�/� mice,

respectively. Consistent with expression of BCATc exclu-

sively in neurons (Sweatt et al., 2004), BCATc protein

amount in brain was unaltered in BCATm�/� mice

(Figure 1A), and immunohistochemistry showed no alter-

ation in the pattern of BCATc expression in brain (data

not shown).

BCATm�/� mice grew at the same rate as their litter-

mate controls until �6 weeks of age, when the growth

curves diverged and the male BCATm�/� mice began to

exhibit a 10%–15% lower body weight than control ani-

mals (Figure 1B). Because the extreme elevations in

plasma BCAAs and their a-keto acids that are observed

in maple syrup urine disease have severe neurological

consequences (Chuang and Shih, 2001), we took advan-

tage of the rodent’s ability to discriminate between diets

of differing amino acid composition (Harper and Peters,

1989) to prevent a toxic accumulation of BCAAs. Both

the BCATm�/� and wild-type mice were provided access

to normal chow (NC, Harlan 2018) diet and a purified

amino acid BCAA-free diet (�BCAA, Dyets 510081).

Male BCATm�/�mice preferred the�BCAA diet and con-

sumed 76% of this diet and 24% of the NC diet, whereas

the wild-type mice consumed 45% and 55%, respec-

tively, of the �BCAA and NC diets (Figure 1C). Total food

intake (Figure 1C) and calculated caloric intake (data not

shown) did not differ, but when adjusted for body weight,

food intake was greater in the BCATm�/�mice (Figure 1C).

Male BCATm�/� mice had 55% lower epididymal fat pad

weight (Figures 1D), and fat cell size was accordingly de-

creased compared to BCATm+/+ animals (Figure 1E).

Body composition determined by EchoMRI 3-in-1 showed

that fat mass expressed as a percent of body weight was

lower in the BCATm�/�mice (11.9% ± 0.3%) compared to

the wild-type mice (18.3% ± 2.1%; p < 0.01, n = 7),

whereas the percent of lean body mass was higher in

the BCATm�/� mice (83.5% ± 0.3%) than in the wild-

type mice (78.6% ± 2.1%; p < 0.05, n = 7 males). While

the male BCATm�/� mice had somewhat enlarged kid-

neys, other tissues were normal for their body weight

(Figure 1D). The female BCATm�/�mice were also lighter,

but to a lesser extent than observed in the males (data not

shown). Thus, the animals appeared healthy and lean.

Even though BCATm�/� mice consumed far less

BCAAs, their fed plasma Leu, Ile, and Val levels were in-

creased 14-, 21-, and 31-fold, respectively, in the male

mice (Table 1) and 25-, 33-, and 37-fold, respectively, in

the female mice (data not shown), consistent with disrup-

tion of BCATm, the predominant BCAT isozyme in tissues

outside the CNS (Suryawan et al., 1998). Asp and Ala were

decreased and Thr, Cit, and Arg were elevated in the null

mice of both genders (Table 1 and data not shown). We

also measured plasma BCAA transamination products,

the branched-chain a-keto acids KIC, KMV, and KIV, for

Leu, Ile, and Val, respectively. KIC did not differ (data not

shown); KMV and KIV concentrations were lower in the

female BCATm�/� mice (10.6 ± 0.9 mM for KMV; 6.1 ±

0.7 mM for KIV) than in the wild-type mice (17.6 ± 1.2 mM

for KMV; 11.8 ± 0.9 mM for KIV; p < 0.01, n = 7). Plasma
ier Inc.
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Figure 1. Growth Curve, Food Intake, Organ Weight, and Fat Cell Size

(A) Immunoblots of BCATm and BCATc in selected organs from wild-type and BCATm null mice. Equal amounts of protein (20 mg) were loaded in each

lane of tissue samples examined.

(B) Growth curves of BCATm wild-type, heterozygous, and homozygous null mice. Male mice were weighed weekly. **p < 0.01; n = 6–12. In this and all

other figures, error bars represent ± SEM.

(C) Food intake in BCATm�/� and wild-type mice. Mice were fed a choice of normal chow (NC) and purified amino acid BCAA-free (�BCAA) diets at

weaning. Food intake (FI) was measured for 3 weeks at�10 weeks of age and calculated as average daily values. It was also adjusted for body weight

(FI/25 g BW). *p < 0.05, ***p < 0.001; n = 8–10.

(D) Relative organ weights in BCATm null and wild-type mice. Values are expressed as a percent of BCATm+/+ mice and adjusted for body weight

(BW). EF, epididymal fat; L, liver; H, heart; K, kidney; G, gastrocnemius muscle; B, brain; BF, brown fat. *p < 0.05, **p < 0.001; n = 6 male mice at

�16 weeks of age.

(E) H&E staining of paraformaldehyde-fixed sections of epididymal fat.
KMV and KIV also tended to be lower in the male

BCATm�/� mice. The lower levels of branched-chain a-

keto acids in the BCATm�/�mice are consistent with dis-

rupted BCAA metabolism at the BCATm-catalyzed step.

Table 1 also shows plasma concentrations of relevant

hormones and metabolites. Plasma leptin, adiponectin,

and resistin were decreased 88%, 55%, and 34%, respec-
Cell Me
tively, in the male BCATm�/� mice, whereas IGF-1 and

PAI-1 were unaltered compared to the wild-type mice.

Plasma adiponectin was also decreased by half in the fe-

male mice (data not shown). The lowered adiponectin is un-

expected considering the lower adiposity of the BCATm�/�

mice. Although fed glucose was unaltered, fasting blood

glucose and plasma insulin were 31% and 65% lower,
tabolism 6, 181–194, September 2007 ª2007 Elsevier Inc. 183
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Table 1. Plasma Concentrations of Hormones, Amino Acids, and Other Metabolites

Nutritional State +/+ �/�
Hormones

Leptin (pg/ml) 6 hr fast 2309 ± 475 277 ± 62***

PAI-1 (pg/ml) 6 hr fast 805 ± 163 597 ± 150

Resistin (pg/ml) 6 hr fast 1970 ± 186 1247 ± 170*

Insulin (ng/ml) 6 hr fast 0.75 ± 0.17 0.26 ± 0.04*

Adiponectin (ng/ml) overnight fast 10050 ± 1769 4500 ± 288**

Thyroxine (mg/ml) fed 6.02 ± 0.40 6.25 ± 0.21

IGF-1 (ng/ml) fed 429 ± 32 398 ± 53

Norepinephrinea (pg/ml) fed 245 ± 52 121 ± 17*

Amino acidsb (mM)

Leu fed 115.4 ± 9.0 1621 ± 361***

Ile fed 57.1 ± 4.9 1236 ± 301***

Val fed 139.0 ± 7.7 4243 ± 700***

Asp fed 9.6 ± 1.3 5.7 ± 0.7*

Gly fed 347.5 ± 55.6 522.9 ± 53.1*

Thr fed 189.0 ± 26.0 328.4 ± 42.7**

Cit fed 44.6 ± 1.9 74.7 ± 7.1**

Arg fed 118.5 ± 12.4 244.6 ± 36.1**

b-Ala fed 6.3 ± 0.5 3.5 ± 0.5***

Ala fed 436.5 ± 44.7 245.4 ± 25.9**

Other metabolites

Triglycerides (mg/dl) 6 hr fast 50 ± 5.5 41.7 ± 2.0

Cholesterol (mg/dl) 6 hr fast 116.0 ± 10.4 95.8 ± 10.0

Free fatty acids (mM) overnight fast 1361 ± 152 814 ± 74**

b-hydroxybutyrate (mg/dl) overnight fast 13.4 ± 1.8 6.9 ± 1.2**

Albumin (g/dl) 6 hr fast 2.4 ± 0.0 2.5 ± 0.1

Blood urea nitrogen (mg/dl) fed 19.1 ± 1.1 16.8 ± 1.8

Creatinine (mM) fed 118 ± 20 138 ± 25

Lactate (mM) fed 13.9 ± 2.2 14.9 ± 1.6

Glucose (mg/dl) fed 202 ± 10.8 195 ± 12.5

Glucose (mg/dl) overnight fast 151.1 ± 17.8 104.1 ± 10.8

Male BCATm�/� and wild-type mice were fed a choice of normal chow and defined amino acid BCAA-free diets. *p < 0.05, **p <

0.01, ***p < 0.001; n = 6–10.
a Mice fed a choice of defined amino acid BCAA-containing and BCAA-free diets.
b Data for all other amino acids that were unaltered are not shown.
respectively, in the null mice. Fasting plasma concentra-

tions of free fatty acids (FFAs) and b-hydroxybutyrate

were 40% and 50% lower, respectively, in the BCATm�/�

than in the BCATm+/+ mice. Plasma concentrations of tri-

glyceride, cholesterol, albumin, creatinine, urea nitrogen,

and lactate were unaffected by the loss of BCATm.

Plasma hormones and metabolites measured in Table 1

were unaltered in BCATm+/� mice (data not shown). In

addition, body weight (Figure 1B), food intake, body com-

position, and organ weights (data not shown) as well as
184 Cell Metabolism 6, 181–194, September 2007 ª2007 Elsev
glucose tolerance and insulin sensitivity (Figure 2) did

not differ between the heterozygotes and the wild-types.

Thus, a loss of �50% of the BCATm in heterozygotes is

insufficient to cause apparent metabolic alterations.

Improved Insulin Sensitivity, Glucose Tolerance,
and Resistance to High-Fat-Diet-Induced Obesity
in BCATm Null Mice
The leanness and lower fasted plasma glucose and insulin

concentrations of the BCATm�/� mice prompted us to
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Figure 2. Glucose and Insulin Tolerance

Tests in BCATm Null and Wild-Type Mice

(A) Blood glucose (left panel) and plasma insu-

lin concentrations (right panel) during glucose

tolerance test. *p < 0.05, **p < 0.01, ***p <

0.001; n = 7–8.

(B) Blood glucose expressed as a percent of

basal level during insulin tolerance test. Left

panel: ITT in male mice fed a choice of normal

chow and �BCAA diets as described in Fig-

ure 1. ***p < 0.001; n = 7–9 for each group.

Right panel: ITT in male mice fed a 60% fat-

containing diet for 10 weeks as described in

Figure 3. *p < 0.05, ***p < 0.001; n = 7–8.
examine glucose metabolism in these animals. After an

overnight fast, blood glucose and plasma insulin were

again decreased by 33% and 67%, respectively, com-

pared to controls (Figure 2A, left and right panels). Calcu-

lated homeostasis model assessment of insulin resistance

(HOMA-IR) index was lower in the null mice (0.95 ± 0.0.12)

than in the wild-type mice (3.95 ± 0.38; p < 0.001, n = 8).

During glucose tolerance test (GTT), blood glucose con-

centrations remained significantly lower (Figure 2A, left

panel), and area under the curve was 51% less in the

BCATm�/�mice compared to wild-type mice, suggesting

markedly improved glucose tolerance. Their insulin re-

sponse to glucose was much lower (Figure 2A, right

panel), suggesting improved insulin sensitivity. Indeed,

an insulin tolerance test (ITT) showed much greater de-

creases in blood glucose in response to insulin in both

male (Figure 2B, left panel) and female BCATm�/� mice

(data not shown) compared to wild-type mice.

We examined the effects of the knockout on diet-

induced obesity (DIO) by feeding the mice a 60% fat diet

for 15 weeks starting at 6–7 weeks of age (Figure 3).

Whereas wild-type and BCATm+/� mice became obese

on the high-fat diet (HFD), the BCATm�/�mice were totally

protected from HFD-induced obesity (Figure 3A). MRI

showed that both abdominal and subcutaneous fat depo-

sition was much less in the null mice compared to the wild-

type mice (Figure 3C). Importantly, food intake in the null

mice was not decreased and was actually 30% greater

when normalized for body weight (Figure 3B). ITT showed

that null mice were protected from worsening of insulin

sensitivity caused by HFD feeding (Figure 2B, right panel).
Cell M
Enhanced Energy Expenditure Associated with
Diet-Induced Thermogenesis in BCATm Null Mice
To determine the mechanism by which BCATm�/� mice

are lean and resistant to DIO, we measured energy expen-

diture using indirect calorimetry (Figure 4). Compared to

the wild-type mice, VO2 was increased by 18.5% in the

BCATm�/� mice fed the NC/�BCAA choice of diets (data

not shown). To eliminate the possibility that the differences

in diet composition and amino acid source (protein versus

free amino acids) were influencing food choice, food in-

take, and VO2, 12-week-old mice were switched from the

NC/�BCAA choice to a choice between a BCAA-contain-

ing defined amino acid diet (+BCAA, Dyets 510090) and

the �BCAA diet for 5 weeks. Unlike the NC/�BCAA

choice, the +BCAA/�BCAA diets were isonitrogenous

and isocaloric. Differences in VO2 measured with mice

fed the +BCAA/�BCAA choice of diets were greater than

in animals fed the original NC/�BCAA choice of diets.

VO2 was 32% higher in the BCATm�/� mice compared

to controls based on body weight (Figure 4A, left panel).

Commercial calorimeters frequently normalize data to

body weight, but it is unclear whether this is valid. How-

ever, even VO2 per mouse was 20% higher in the null

mice (114.1 ± 2.1 versus 94.9 ± 1.5 ml/mouse/hr in con-

trols; n = 8, p < 0.001). Furthermore, when absolute energy

expenditure was plotted against fat-free mass, different

slopes emerged between the genotypes (Figure S2).

Taken together, these results provide strong evidence for

an effect of BCATm disruption on energy expenditure.

Respiratory quotient (RQ) during the light phase was el-

evated in the null mice, suggesting that the BCATm�/�
etabolism 6, 181–194, September 2007 ª2007 Elsevier Inc. 185



Cell Metabolism

Elevated Energy Expenditure in BCATm Knockout Mice
Figure 3. BCATm Null Mice Are Pro-

tected from High-Fat-Diet-Induced Obe-

sity

(A) Growth curve (right panel) and representa-

tive picture of BCATm+/+ and BCATm�/�

mice after high-fat-diet feeding (left panel).

**p < 0.01 for �/� versus +/+ males at each

time point; n = 7–8 for each group.

(B) Food intake (FI) measured during high-fat-

diet feeding. Food consumption was mea-

sured for 1 week, and average food intake

was calculated and also normalized to body

weight. *p < 0.05; n = 7–9.

(C) Representative MRI of mice after high-fat-

diet feeding. Transverse images set at the

same distance from the anus were taken for

both mice. Abdominal and subcutaneous fat

(shown as white) were separated by the perito-

neal membrane.
mice used more carbohydrate as a fuel (Figure 4A, middle

panel). As observed with the NC/�BCAA diet choice,

BCATm�/� mice fed the +BCAA/�BCAA diet choice still

preferred the�BCAA diet, while the wild-type mice mainly

consumed the +BCAA diet (data not shown). Total food in-

take and body-weight-adjusted food intake were 12% and

22% greater in the BCATm�/� than in the BCATm+/+ mice

(Figure 4A, right panel). The body weight difference be-

tween the two groups of mice was 9.1% after 5 weeks

on the +BCAA/�BCAA choice of diets. Epididymal fat

pad weight was 48% less in the null mice (0.32 ± 0.03 ver-

sus 0.61 ± 0.05 g in wild-type mice; p < 0.001, n = 8). Thus,

even when fed the choice of defined amino acid diets, the

BCATm null mice still consumed more food, expended

more energy, and were leaner than wild-type controls.

To further investigate the association between food

intake and VO2, we measured VO2 during fasting and

refeeding (Figure 4B, left panel). While VO2 in the

BCATm�/� mice during initial fasting (light phase) was
186 Cell Metabolism 6, 181–194, September 2007 ª2007 Else
11% greater than that in the wild-type mice, it normalized

during longer fasting (dark phase). A 3 hr refeeding led to

a 31% elevation of VO2 from the dark-phase level in the

null mice, but only a 13% elevation in the wild-type mice.

RQ during the light phase was lower in the BCATm�/�mice

(Figure 4B, right panel), suggesting that the BCATm null

can readily use fat as a fuel. These results suggest that

increased energy expenditure in the BCATm�/� mice is

strongly associated with food consumption.

No Major Alterations in Common Factors
Regulating Bioenergetics in BCATm Null Mice
We sought to determine how energy expenditure is ele-

vated in these null mice. Locomotor activities measured

with the Opto-M3 activity meter were unaltered under

most conditions in BCATm�/� mice (Figure 5A) and were

even lower during refeeding (data not shown). At 2 p.m.,

rectal core temperature was unaltered, but it was 0.7�C

higher in the BCATm�/� mice when measured at 9 p.m.
vier Inc.
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Figure 4. Elevated Energy Expenditure in BCATm Null Mice Is Associated with Food Consumption and Is Partially Blunted by

Rapamycin

(A) Oxygen consumption (VO2, left panel), respiratory quotient (RQ, middle panel), and food intake (FI, right panel). Male mice fed a choice of purified

amino acid BCAA-containing (+BCAA) and BCAA-free diets for 4 weeks were placed in indirect calorimetry chambers at �16 weeks of age. Food

intake was measured for 3 weeks and calculated as average daily values. It was also adjusted for body weight (FI/25 g BW). *p < 0.05, **p < 0.01,

***p < 0.001; n = 8.

(B) VO2 (left panel) and RQ (right panel) during fasting and refeeding. Male mice fed a mix of NC and�BCAA diets were fasted for 21 hr and refed with

a choice of NC and�BCAA diets. VO2 and RQ were measured during fasting (light and dark phases) and a 3 hr refeeding period. *p < 0.05, **p < 0.01,

***p < 0.001; n = 6.

(C) VO2 after treatment with rapamycin during fasting and refeeding. Twelve- to fifteen-week-old mice were intraperitoneally injected with 0.75 mg/kg

of rapamycin at 11 a.m., fasted for 21 hr, and injected again with the same dose of rapamycin. Food was provided 1 hr after the second injection for

3 hr. VO2 was measured during the dark phase and refeeding. One-way ANOVA was used to compare VO2 between groups under each nutritional

condition. No difference was found between groups during fasting. *p < 0.05 between groups during refeeding; n = 8–11.
postprandially (Figure 5B), consistent with increased DIT

in the null mice. Plasma thyroxin (total T4) did not differ

between BCATm�/� and BCATm+/+ mice (Table 1).
Cell Meta
We measured UCP (uncoupling protein) mRNA and

protein levels in various tissues (Figure 5C; Figure S3;

data not shown). UCP1 is mainly expressed in brown
bolism 6, 181–194, September 2007 ª2007 Elsevier Inc. 187
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Figure 5. Common Factors Associated

with Thermogenesis

(A and B) Locomotor activity measured in indi-

rect calorimetry (A) and rectal core tempera-

ture (B) in BCATm null and wild-type mice fed

a choice of NC and �BCAA diets. (A) p > 0.05,

n = 8–10; (B) **p < 0.01, n = 8.

(C) mRNA expression in arbitrary units (AU) of

selected genes in brown fat (left panel) and

gastrocnemius muscle (right panel) in mice

fed a choice of +BCAA and �BCAA diets.

*p < 0.05, n = 8.
fat, and both UCP1 mRNA and protein amounts were un-

altered in this tissue of BCATm�/� mice. UCP1 mRNA

abundance in gastrocnemius was 1.00 ± 0.73 versus

15.83 ± 8.03 arbitrary units (p > 0.05, n = 8) for BCATm

wild-type and null mice, respectively. Although UCP1

mRNA in gastrocnemius muscle of some null mice was in-

creased, it did not correlate with VO2 (data not shown).

Moreover, we could not detect UCP1 protein in gastrocne-

mius and white fat, suggesting very low levels of this pro-

tein in these tissues. UCP2 is ubiquitously expressed,

and its protein expression was unaltered in gastrocnemius,

epididymal fat, kidney, and liver of BCATm�/� mice (Fig-

ure S2). UCP3 is mainly expressed in skeletal muscle,

and its mRNA and protein levels were unaltered in this tis-

sue of the null mice. Since UCP2 and UCP3 are thought not

to promote gross thermogenesis or energetic inefficiency

(Brand and Esteves, 2005), a small increase in UCP3

mRNA in brown fat is unlikely to be the major contributor

to elevated energy expenditure in the BCATm�/�mice.

We also measured mRNA for other selective genes

involved in the regulation of thermogenesis and mitochon-

drial biogenesis in BCATm�/�mice compared to wild-type

mice (Figure 5C). PGC-1a (PPARg coactivator 1a) mRNA

was unaltered in brown fat and was actually 26% lower

in gastrocnemius muscle of BCATm�/� mice. b-AR3 (b3-

adrenergic receptor, also B3AR) mRNA was unaltered in

brown fat, and plasma norepinephrine concentrations

were 51% lower (Table 1). D2 (type 2 iodothyronine deio-

dinase) mRNA was unaltered in brown fat and was de-

creased by 32% in gastrocnemius muscle, suggesting

that the conversion of T4 to active T3 is not upregulated
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in the null mice. mRNA levels of mGPDH (mitochondrial

glycerol-3-phosphate dehydrogenase) (Lee and Lardy,

1965) and mCPT-1 (mitochondrial carnitine palmitoyl-

transferase-1) were unaltered in white fat and skeletal

muscle. ATP2a1 (also called SERCA1) (Simonides et al.,

2001) mRNA was also unaltered in skeletal muscle.

Thus, physical activity, thyroid hormone, uncoupling pro-

teins, adrenergic outflow, and futile cycling involving the

glycerol phosphate shuttle or calcium release and reup-

take do not appear to contribute to the elevated energy

expenditure in the BCATm�/� mice.

Elevated Protein Turnover and mTOR Signaling
in BCATm Null Mice
Leu is known to stimulate protein synthesis through rapa-

mycin-sensitive and -insensitive mechanisms (Anthony

et al., 2000). If protein synthesis were elevated in the

BCATm�/� mice due to chronically high levels of plasma

Leu with a concomitant increase in protein degradation

(organ weights showed little change; Figure 2C), the in-

creased energy expenditure observed in the BCATm�/�

mice might be related to the energy demand associated

with increased protein turnover (protein synthesis and

degradation). Compared to wild-type mice, in vivo pro-

tein synthesis rates measured in BCATm�/� mice fed

a choice of NC or �BCAA diets were elevated by 40%,

39%, 74%, and 40% in heart, skeletal muscle, epididy-

mal fat, and kidney, respectively, and showed a trend

of increase (22%) in liver (Figure 6A). To assess protein

degradation, we measured urinary creatinine and 3-

methylhistidine, an index of breakdown of myofibrillar
r Inc.
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Figure 6. Elevated Protein Turnover In Vivo and mTOR Signaling in BCATm Null Mice

(A) In vivo protein synthesis rates measured by flooding does of L-[3H]phenylalanine. **p < 0.01; n = 10–13. ***p < 0.001.

(B) Amount of 24 hr urinary 3-methyhistidine (left panel) and molar ratio of urine 3-methyhistidine to creatinine (right panel). Eight male mice from each

genotype were placed in individual metabolic cages (Nalgene) for 2 days. Daily urine was collected for analysis of 3-methyhistidine and creatinine.

**p < 0.01, ***p < 0.001; n = 16.

(C) Western blot analysis for 4E-BP1 and pT37/46 4E-BP1 in gastrocnemius of BCATm�/�mice fed a choice of NC and�BCAA diets. **p < 0.01; n = 8.

(D) Western blot analysis for 4E-BP1, pS235/236 S6, S6, pT389 S6K1, and S6K1 in gastrocnemius of fasted (F) and fasted-refed (R) BCATm�/�mice.

*p < 0.05, **p < 0.01, ***p < 0.001; n = 4 for fasted, n = 8 for fasted-refed.
proteins (Young and Munro, 1978). While 24 hr urine vol-

ume was increased by 33% in the null mice, total urinary

creatinine output was unaltered (Table S2). The 24 hr 3-

methyhistidine level and urinary 3-methyhistidine/creati-

nine ratio were increased by 52% and 78%, respectively,

in the BCATm�/� mice (Figure 6B), suggesting increased
Cell M
protein breakdown in muscle tissues. Unaltered skeletal

muscle and heart weights as well as plasma and urinary

creatinine excretion, indices of muscle mass, agree with

the observation that protein synthesis and degradation

are simultaneously elevated in mice lacking peripheral

BCAA catabolism.
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To investigate the mechanism by which protein synthe-

sis is elevated in BCATm�/� mice, we examined mTOR

signaling and factors involved in protein synthesis. In ran-

domly fed BCATm�/�mice, total S6K1 protein levels were

unaltered, and pT389 S6K1 was highly variable as mea-

sured in gastrocnemius and liver. Both the percent of

4E-BP1 in the g form and the pT37/46 4E-BP1 to total

4E-BP1 ratio were significantly elevated in null gastrocne-

mius compared to wild-type gastrocnemius (Figure 6C).

No significant changes were observed in the concentra-

tion of eIF2B3, eIF4G, eIf4B, or eEF2 in gastrocnemius

(data not shown).

In response to refeeding after a 21 hr fast, the ratios of

pT389 S6K1 to total S6K1 and pS235/236 S6 to total S6

(a target of S6K1) as well as 4E-BP1 in the g form were

greater in the BCATm�/� mice compared to the wild-

type mice (Figure 6D), suggesting greater mTOR activa-

tion during refeeding by BCATm disruption. However, no

differences were observed in eIF2a phosphorylation,

eIF2B3 levels and phosphorylation, or mTOR protein in

muscle, heart, and liver between the null mice and control

mice in the ad libitum fed or fasted-refed states (data not

shown). Thus, as expected, increased TORC1 activity

appears to be associated with elevated protein synthesis

observed in the BCATm�/� mice.

Finally, to evaluate the role of protein synthesis in en-

ergy expenditure, we measured VO2 in fasted-refed mice

treated with an mTOR inhibitor, rapamycin, at a dose re-

ported to largely abolish mTOR signaling (Anthony et al.,

2000; Lynch et al., 2006) (Figure 4C). While VO2 did not dif-

fer among the groups during longer fasting, it was partially

blunted by rapamycin in both wild-type and BCATm�/�

mice compared with vehicle-treated mice in response to

refeeding, suggesting that elevated protein synthesis

does contribute to thermogenesis during feeding. How-

ever, VO2 during refeeding was still higher in rapamycin-

treated BCATm�/� mice than wild-type mice, suggesting

that factors other than mTOR may also lead to elevated

energy expenditure in the BCATm�/� mice.

DISCUSSION

We have demonstrated in the present study that mice

lacking BCATm-catalyzed BCAA metabolism exhibit

high levels of plasma BCAAs without elevated branched-

chain a-keto acids, resulting in a phenotype that includes

low body fat and increased energy expenditure that is as-

sociated with increased food intake, glucose tolerance, in-

sulin sensitivity, and protein turnover. Importantly, we

found that VO2 was strongly associated with food con-

sumption in the BCATm�/� mice. During longer fasting,

VO2 differences between the null and wild-type mice dis-

appeared, but they reappeared during refeeding. We posit

that these feeding-related changes in VO2 are partially

related to elevated protein turnover in these animals. In-

deed, fasting and feeding are well known to regulate

both protein synthesis and energy utilization. Fasting in-

hibits protein synthesis and enhances protein degrada-

tion, whereas refeeding immediately stimulates protein
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synthesis due to elevated insulin and availability of amino

acids (Yoshizawa et al., 1997). Feeding has short-term

(i.e., after a meal) in addition to long-term (adaptive

changes from overeating or underfeeding) effects on met-

abolic rates (Rolfe and Brown, 1997). Theoretical stoi-

chiomteric calculation and in vitro experiments have sug-

gested that the energy cost of pathways of nutrient

metabolism greatly varies; and protein synthesis is most

sensitive to energy supply (Buttgereit and Brand, 1995).

Indeed, protein synthesis accounts for a minimum of

20% of calculated total daily heat production, while

fatty-acid synthesis accounts for only 1% of total heat pro-

duction in young growing animals (Reeds et al., 1982b).

The association between increased energy expenditure

and feeding in the BCATm�/� mice and the lack of in-

creased locomotion suggest that the elevated VO2 is as-

sociated with DIT, which includes protein turnover. Their

increased food intake no doubt fuels this increased DIT.

It is also conceivable that DIT associated with protein turn-

over may contribute to the decreased energy expenditure

in leptin-deficient ob/ob mice and Zucker fatty rats in

which protein synthesis, at least in muscle, is diminished

(Reeds et al., 1982a).

On the other hand, we did not observe significant

increases in factors frequently associated with altered

energy expenditure, such as UCPs, PGC-1a, b-AR3,

SERCA1, thyroid hormone, plasma norepinephrine, and

locomotor activity, in the BCATm�/�mice. Moreover, lep-

tin and adiponectin, two important fat-derived hormones

known to significantly enhance energy expenditure, were

greatly decreased in the BCATm�/� mice. PGC-1a is

known to be the master regulator of glucose and lipid me-

tabolism as well as mitochondrial function at the transcrip-

tional and posttranslational levels (Handschin and Spie-

gelman, 2006). Moreover, cold exposure causes marked

and rapid induction of PGC-1a expression in brown fat

and skeletal muscle, thereby upregulating UCP1 and en-

hancing thermogenesis in these tissues (Lowell and Spie-

gelman, 2000). The role of UCP1 in maintaining normal

body temperature has been demonstrated in UCP1�/�

mice; however, they do not develop obesity and are para-

doxically resistant to DIO (Enerback et al., 1997; Liu et al.,

2003). Zhang et al. (2007) have reported that Leu supple-

mentation increases energy expenditure and resistance to

DIO due to upregulation of UCP3. However, in another re-

cent study, overexpression of UCP3 did not increase en-

ergy expenditure in mice (Bezaire et al., 2005). We did

not observe an increase in muscle UCP3 in our mice and

have been unable to reproduce the Zhang et al. findings

on DIO, energy expenditure, and insulin tolerance, even

using a slightly higher concentration of Leu in the animals’

drinking water (unpublished data). While PGC-1a and un-

coupling proteins are important in regulating energy ex-

penditure and weight control, alternative thermogenic

mechanisms also exist (Lowell and Spiegelman, 2000;

Rolfe and Brown, 1997), especially because little brown

fat is present in large adult animals and humans living in

a thermoneutral environment. Thus, it is highly likely that

the elevated protein turnover directly contributes to
vier Inc.
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enhanced energy expenditure in mice lacking BCAA

metabolism.

Others have proposed that sympathetic nerve activity

through b-adrenergic receptors plays a major role in DIT,

as demonstrated by b-less mice (lacking all three b-adren-

ergic receptors), which are prone to DIO (Lowell and

Bachman, 2003). However, we found no difference in

b-AR3 mRNA expression in brown fat, and plasma norepi-

nephrine was 50% lower in BCATm�/� mice. Moreover,

we found that brain tyrosine was decreased by 87% in

male and 66% in female BCATm null mice (unpublished

data). Decreases in brain tyrosine could lead to decreased

catecholamine concentrations in the nervous system and

throughout the body. Mice lacking the ability to synthesize

epinephrine and norepinephrine also have elevated en-

ergy expenditure and food intake and decreased body

weight (Thomas and Palmiter, 1997).

The mechanisms for diet selectivity and elevated food

intake in the BCATm null mice are unknown. Seeley and

coworkers (Cota et al., 2006) have shown that direct injec-

tion of high concentrations of Leu into the feeding center

of the hypothalamus results in cessation of feeding. In

the BCATm�/� mice, chronically high levels of BCAAs

do not impair food intake. The lowered plasma leptin in

the null animals could contribute to their increased food in-

take; however, it remains to be determined whether neu-

rotransmitter pathways affect food intake and energy ex-

penditure in these mice. On the other hand, the lack of

apparent neurological consequences of pathologic levels

of plasma BCAAs in the BCATm�/�mice agree with stud-

ies suggesting that branched-chain a-keto acids, rather

than BCAAs, are the toxic metabolites in maple syrup

urine disease (Jouvet et al., 2000). Because elevations in

brain BCAA concentrations were modest (data not shown),

the results suggest that BCATc can handle the increased

BCAA supply in the CNS of these mice.

Our finding of elevated protein turnover in mice lacking

BCAA catabolism raises important questions. What are

the mechanisms for elevated protein synthesis and degra-

dation in these mice? We found that mTOR signaling (i.e.,

4E-BP1 and S6K1 activation) was elevated in vivo in ran-

domly fed BCATm�/� mice and/or during fasting and

refeeding. eIF4E dissociated from hyperphosphorylated

4E-BP1 binds to eIF4G and hence forms an eIF4F com-

plex, thereby promoting protein synthesis through a

cap-dependent translation initiation mechanism. Other

unidentified mechanisms that increase global protein syn-

thesis in these mice could also exist. The mechanisms

regulating global protein degradation as occurs in cata-

bolic diseases are not as well understood as protein syn-

thesis. Thus, BCATm�/�mice may provide a useful model

to explore such regulation. We hypothesize that lack of

BCAA catabolism elevates intracellular Leu concentra-

tions, thereby driving the increase in protein synthesis,

while a deficiency of certain metabolites of BCAA catabo-

lism leads to elevated protein degradation in mice lacking

BCATm. This is in agreement with a study showing that

KIC, but not Leu, infusions significantly lowered negative

nitrogen balance and 3-methylhistidine excretion in post-
Cell Me
operative patients (Sapir et al., 1983). Similarly, it has been

reported that KIC, but not Leu, decreases the nitrogen

wasting of starvation (Mitch et al., 1981).

While the mechanism or mechanisms underlying the

markedly improved insulin sensitivity and glucose toler-

ance remain undetermined, increased insulin sensitivity

can contribute to elevated protein synthesis in these

mice. Because enhanced protein turnover consumes

a large amount of ATP, it is conceivable that ATP produc-

tion from substrate oxidation in mitochondria could be el-

evated. Indeed, we have found that the mitochondrial

membrane potential is significantly increased in cultured

primary fibroblasts from BCATm null neonates (unpub-

lished data). This is also inconsistent with rises in UCP

levels and mitochondrial uncoupling. Furthermore, en-

hanced insulin sensitivity in these mice could lead to

increased mitochondrial oxidative capacity. It has been re-

ported that insulin stimulates mitochondrial oxidative

phosphorylation in skeletal muscle associated with syn-

thesis of mitochondrial gene transcripts and protein in

human subjects (Stump et al., 2003). While it seems coun-

terintuitive that elevated mTOR signaling would be associ-

ated with improved insulin signaling, we have found that

Leu- and KIC-stimulated, but not insulin-stimulated, phos-

phorylation of S6K1 is largely abolished in isolated fat cells,

cultured primary fibroblasts, and perfused hearts lacking

BCATm (unpublished data). While further studies are

needed to determine the mechanism of these changes,

the increased insulin sensitivity in BCATm�/�mice is con-

sistent with findings in S6K1�/�mice (Um et al., 2004).

In summary, we have clearly demonstrated that deletion

of BCATm knockout leads to activation of a futile protein

turnover cycle that is associated with elevated energy ex-

penditure and improved insulin sensitivity. Since BCAA

metabolism is blocked in BCATm�/� mice, the effects of

BCATm gene disruption may not be the same as those

of high-protein diets and dietary BCAA supplements. Nev-

ertheless, given that humans and animals can tolerate

much higher doses of BCAA supplements (Baker, 2005;

Fernstrom, 2005), our study suggests that BCATm may

be a suitable peripheral therapeutic target for obesity.

EXPERIMENTAL PROCEDURES

Animals

All animal experiments were approved by the Institutional Animal Care

and Use Committee at the Pennsylvania State University College of

Medicine. Animals were given free access to water and offered

a choice of standard rodent chow (Harlan Teklad 2018) with protein

as 18% percent of total weight and a defined amino acid BCAA-free

diet (Dyets Inc.) with amino acids as 17% percent of total weight.

Subsequently, the rodent chow was replaced with a choice of

a defined amino acid diet with 17% amino acids including BCAA and

a defined amino acid BCAA-free diet. The BCAA concentration of

the defined diet was 43%, 4%, and 14% less for Leu, Ile, and Val, re-

spectively, compared to the standard chow diet. Extra glutamate was

added to the �BCAA diet to make it isonitrogenous to the control de-

fined amino acid BCAA-containing diet. These defined amino acid di-

ets contained amounts of carbohydrate, fat, vitamins, and minerals

similar to standard mouse chow. For DIO, �5-week-old wild-type
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and BCATm knockout mice were fed a 60% high-fat diet (Research

Diets D12492) for 15 weeks.

Insulin Sensitivity and Glucose Tolerance Tests

ITT and GTT were performed in 6 hr and overnight food-deprived mice,

respectively. Mice were injected intraperitoneally with insulin (human

insulin, Eli Lilly) at 0.75 mU/g body weight or 20% glucose at 2.0 mg/g

body weight, and blood glucose was measured at 15, 30, 60, and

120 min after injection. Approximately 20 ml of blood was collected

from the tail at each time point during GTT for measuring plasma

insulin.

Energy Expenditure, Activity, and Core Temperature

Energy expenditure was assessed using indirect calorimetry (Oxymax,

Columbus Instruments). Constant airflow (0.6 l/min) was drawn

through the chamber and monitored by a mass-sensitive flow meter.

The concentrations of oxygen and carbon dioxide were monitored at

the inlet and outlet of the sealed chambers to calculate oxygen con-

sumption and RQ. Each chamber was measured for 1 min at 15 min

intervals. Physical activity was measured using infrared technology

(OPT-M3, Columbus Instruments). The counts of three-dimensional

beam breaking (X total, X ambulatory, and Z) were measured. Rectal

core temperature was measured using a Fluke 51II thermometer with

a mouse thermocouple probe (Harvard Apparatus).

Body Composition

MRI scans were taken starting at the lungs and ending at the hips of mice

using a 7T (300 MHz) MRI magnet with a 20 cm bore (BioSpec 70/20as,

Bruker Instruments). The pulse sequence used had a TR/TE = 500/12, 2

averages, 1 echo, 256 3 256 matrix, 4.3 cm2 FOV, 1 mm slice thick-

ness, and 1 mm slice distance, with a total scan time of 4 min for

each mouse. Body fat and lean body mass were also measured using

a qNMR system (Echo Medical Systems).

Protein Synthesis and Degradation

Rates of protein synthesis in ad libitum-fed mice were measured using

the flooding-dose method to measure the incorporation of radioactive

phenylalanine into protein as previously described (Lynch et al., 2002).

Briefly, mice were injected intraperitoneally with L-[3H]phenylalanine

(150 mM, 30 mCi/ml, 1 ml/100 g body weight). Fifteen minutes after in-

jection of the radioisotope, mice were decapitated, and blood and tis-

sue samples were collected. Plasma phenylalanine concentrations

were determined by HPLC analysis of supernatants from TCA extracts

of plasma. The radioactivity in the phenylalanine peak was measured

to calculate plasma specific activity of [3H]phenylalanine. Frozen pow-

dered tissue was homogenized in ice-cold 3.6% PCA and centrifuged.

The supernatant was decanted, and the pellets were dissolved in

0.1 M NaOH after washing with 3.6% PCA, acetone, a mixture of chlo-

roform-methanol, and water. Aliquots were used for assays of protein

and radioactivity. Urine 3-methylhistidine was measured by Scientific

Research Consortium, Inc. (St. Paul, MN, USA) using the method

of Moore et al. (1958), which employs postcolumn derivatization by

ninhydrin.

Real-Time Quantitative RT-PCR

Tissue total RNA was isolated using combined reagents of TRIzol

(Invitrogen) and an RNeasy kit (QIAGEN). First-strand cDNA was syn-

thesized from 1.0 mg of total RNA using the SuperScript III reverse tran-

scription kit (Invitrogen). Quantitative RT-PCR was performed on an

ABI 7900HT Sequence Detection System using the appropriate

primers and probes and TaqMan Universal PCR Master Mix (Applied

Biosystems). The primers for individual genes were ordered from

Applied Biosystems. ABI SDS 2.2.2 software and the 2DDCt analysis

method were used to quantify relative amounts of product using

b-actin as an endogenous control.
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Western Blot Analysis

Standard procedures were used as described previously (Lynch et al.,

2002). Briefly, aliquots of frozen powdered tissues were homogenized

on ice in 7 or 3 (adipose tissue) volumes of a phosphopreserving ho-

mogenization buffer. Equal amounts of protein were loaded for electro-

phoresis and transferred to PVDF membranes. The membranes were

then probed with antibodies against S6K1, 4E-BP1 (Bethyl Laborato-

ries, Inc.), pT389 S6K1, S6, pS235/236 S6, or pT37/46 4E-BP1 (Cell

Signaling). For detection of BCATm, affinity-purified BCATm anti-

bodies were used as described (Suryawan et al., 1998).

Analytical Procedures

Plasma concentrations of glucose, triglyceride, cholesterol, urea, albu-

min, creatinine, and lactate were measured using a Vitros Chemistry

Analyzer (Ortho-Clinical Diagnosis). Plasma insulin (Linco Research,

Inc.) and thyroxine (Alpha Diagnostic International) were measured us-

ing ELISA kits. Plasma adiponectin was measured using an RIA kit

(Linco Research, Inc.). Plasma concentrations of FFA (Wako Pure

Chemical Industries) and b-hydroxybutyrate (Stanbio Laboratory)

were measured using commercial kits. Plasma leptin, PAI-1, and resis-

tin were measured using a LINCOplex panel (Linco Research, Inc.).

Plasma norepinephrine was measured by HPLC with electrochemical

detection (CoulArray system, ESA). A one-step ultrafiltration method

was used as described previously (Ueyama et al., 2003). Samples

(10 ml) were injected into a 15 cm column with a 3 mm bore and 3 mm

C-18 packing (ESA MD-150). Plasma amino acids and branched-

chain a-keto acids were measured using fluorometric HPLC methods.

Separation of the o-phthaldialdehyde amino acid derivatives was per-

formed by gradient elution from a SUPELCOSIL LC-18 column (15cm 3

4.6 mm, 3mm; Sigma) (Wu and Knabe, 1994). Plasma a-keto acids were

derivatized with o-phenylenediamine, and separation was performed

by gradient elution from a Spherisorb ODS2 column (250 mm 3 4.6

mm, 5mm; Waters) (Pailla et al., 2000). Total plasma BCAA concentra-

tions were also measured by an enzymatic method (Beckett, 2000).

BCAT activity was measured as described previously (Hutson et al.,

1988).

Statistical Analysis

A two-tailed nonpaired t test was used to assess differences between

BCATm�/� and wild-type mice. Values are presented as means ±

SEM; p < 0.05 was considered significantly different.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures,

Supplemental References, three figures, and two tables and can be

found with this article online at http://www.cellmetabolism.org/cgi/

content/full/6/3/181/DC1/.
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