

Discrete Mathematics 149 (1996) 311-312

DISCRETE MATHEMATICS

Note

Minus domination in regular graphs

Jean Dunbar^a, Stephen Hedetniemi^b, Michael A. Henning^c, Alice A. McRae^b

^a Department of Mathematics, Converse College, Spartanburg, SC, USA

^b Department of Computer Science, Clemson University, Clemson, SC, USA

^c Department of Mathematics, University of Natal, P.O. Box 375, Pietermaritzburg, South Africa

Received 2 June 1994

Abstract

A three-valued function f defined on the vertices of a graph G = (V, E), $f: V \to \{-1, 0, 1\}$, is a minus dominating function if the sum of its function values over any closed neighborhood is at least one. That is, for every $v \in V$, $f(N[v]) \ge 1$, where N[v] consists of v and every vertex adjacent to v. The weight of a minus dominating function is $f(V) = \sum f(v)$, over all vertices $v \in V$. The minus domination number of a graph G, denoted $\gamma^-(G)$, equals the minimum weight of a minus dominating function of G. In this note, we establish a sharp lower bound on $\gamma^-(G)$ for regular graphs G.

1. Introduction

Let G = (V, E) be a graph with vertex set V and edge set E, and let v be a vertex in V. If $v \in V$, the degree of v in G is written as deg v. The graph G is r-regular if deg v = r for all $v \in V$. In particular, if r = 3, then we call G a cubic graph. The open neighborhood of v is defined as the set of vertices adjacent to v, i.e., $N(v) = \{u \mid uv \in E\}$. The closed neighborhood of v is $N[v] = N(v) \bigcup \{v\}$.

For any real valued function $g: V \to R$ and $S \subseteq V$, let $g(S) = \sum g(u)$ over all $u \in S$. A minus dominating function is defined in [2] as a function $g: V \to \{-1, 0, 1\}$ such that $g(N[v]) \ge 1$ for all $v \in V$. The minus domination number for a graph G is $\gamma^{-}(G) = \min\{g(V) | g \text{ is a minus dominating function on } G\}$. The concept of minus domination in graphs is studied in [1-3].

Zelinka [4] established the following lower bound on $\gamma^{-}(G)$ for a cubic graph G.

Theorem A. For every cubic graph G of order n, $\gamma^-(G) \ge n/4$.

0012-365X/96/\$15.00 © 1996—Elsevier Science B.V. All rights reserved SSDI 0012-365X(94)00329-7 In this note we generalize the result of Theorem A to r-regular graphs.

Theorem 1. For every r-regular graph G = (V, E) of order n,

$$\gamma^-(G) \geqslant \frac{n}{r+1}$$

and this bound is sharp.

Proof. Let f be a minus dominating function on G satisfying $f(V) = \gamma^{-}(G)$. We consider the sum $N = \sum \sum f(u)$, where the outer sum is over all $v \in V$ and the inner sum is over all $u \in N[v]$. This sum counts the value f(u) exactly deg u + 1 times for each $u \in V$, so

$$N = \sum_{u \in V} (\deg u + 1) f(u) = (r+1) \sum_{u \in V} f(u) = (r+1) f(V).$$

On the other hand,

$$N = \sum_{v \in V} \sum_{u \in N[v]} f(u) = \sum_{v \in V} f(N[v]) \ge \sum_{v \in V} 1 = n.$$

Consequently, $\gamma^{-}(G) = f(V) \ge n/(r+1)$. That the lower bound is sharp is easily seen by considering a complete graph on r + 1 vertices and assigning the value 1 to one vertex and the value 0 to the remaining r vertices to produce a minus dominating function of weight n/(r+1) = 1. \Box

References

- [1] J.E. Dunbar, W. Goddard, S.T. Hedetniemi, M.A. Henning and A.A. McRae, On the algorithmic complexity of minus domination in graphs, Discrete Appl. Math., to appear.
- [2] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning and A.A. McRae, Minus domination in graphs, manuscript.
- [3] M.A. Henning and P.J. Slater, Inequalties relating domination parameters in cubic graphs, Discrete Math., to appear.
- [4] B. Zelinka, Some remarks on domination in cubic graphs, Discrete Math., to appear.