DISCRETE MATHEMATICS

Note
 Minus domination in regular graphs

Jean Dunbar ${ }^{2}$, Stephen Hedetniemi ${ }^{\text {b }}$, Michael A. Henning ${ }^{\text {c }}$, Alice A. McRae ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Converse College, Spartanburg, SC, USA
${ }^{\text {b }}$ Department of Computer Science, Clemson University. Clemson, SC, USA
${ }^{\text {- Department of Mathematics, University of Natal, P.O. Box 375, Pietermaritzburg, South Africa }}$

Received 2 June 1994

Abstract

A three-valued function f defined on the vertices of a graph $G=(V, E), f: V \rightarrow\{-1,0,1\}$, is a minus dominating function if the sum of its function values over any closed neighborhood is at least one. That is, for every $v \in V, f(N[v]) \geqslant 1$, where $N[v]$ consists of v and every vertex adjacent to v. The weight of a minus dominating function is $f(V)=\sum f(v)$, over all vertices $v \in V$. The minus domination number of a graph G, denoted $\gamma^{-}(G)$, equals the minimum weight of a minus dominating function of G. In this note, we establish a sharp lower bound on $\gamma^{-}(G)$ for regular graphs G.

1. Introduction

Let $G=(V, E)$ be a graph with vertex set V and edge set E, and let v be a vertex in V. If $v \in V$, the degree of v in G is written as deg v. The graph G is r-regular if $\operatorname{deg} v=r$ for all $v \in V$. In particular, if $r=3$, then we call G a cubic graph. The open neighborhood of v is defined as the set of vertices adjacent to v, i.e., $N(v)=\{u \mid u v \in E\}$. The closed neighborhood of v is $N[v]=N(v) \bigcup\{v\}$.

For any real valued function $g: V \rightarrow R$ and $S \subseteq V$, let $g(S)=\sum g(u)$ over all $u \in S$. A minus dominating function is defined in [2] as a function $g: V \rightarrow\{-1,0,1\}$ such that $g(N[v]) \geqslant 1$ for all $v \in V$. The minus domination number for a graph G is $\gamma^{-}(G)=\min \{g(V) \mid g$ is a minus dominating function on $G\}$. The concept of minus domination in graphs is studied in [1-3].

Zelinka [4] established the following lower bound on $\gamma^{-}(G)$ for a cubic graph G.

Theorem A. For every cubic graph G of order $n, \gamma^{-}(G) \geqslant n / 4$.

In this note we generalize the result of Theorem A to r-regular graphs.
Theorem 1. For every r-regular graph $G=(V, E)$ of order n,

$$
\gamma^{-}(G) \geqslant \frac{n}{r+1}
$$

and this bound is sharp.
Proof. Let f be a minus dominating function on G satisfying $f(V)=\gamma^{-}(G)$. We consider the sum $N=\sum \sum f(u)$, where the outer sum is over all $v \in V$ and the inner sum is over all $u \in N[v]$. This sum counts the value $f(u)$ exactly $\operatorname{deg} u+1$ times for each $u \in V$, so

$$
N=\sum_{u \in V}(\operatorname{deg} u+1) f(u)=(r+1) \sum_{u \in V} f(u)=(r+1) f(V) .
$$

On the other hand,

$$
N=\sum_{v \in V} \sum_{u \in N[v]} f(u)=\sum_{v \in V} f(N[v]) \geqslant \sum_{v \in V} 1=n .
$$

Consequently, $\gamma^{-}(G)=f(V) \geqslant n /(r+1)$. That the lower bound is sharp is easily seen by considering a complete graph on $r+1$ vertices and assigning the value 1 to one vertex and the value 0 to the remaining r vertices to produce a minus dominating function of weight $n /(r+1)=1$.

References

[1] J.E. Dunbar, W. Goddard, S.T. Hedetniemi, M.A. Henning and A.A. McRae, On the algorithmic complexity of minus domination in graphs, Discrete Appl. Math., to appear.
[2] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning and A.A. McRae, Minus domination in graphs, manuscript.
[3] M.A. Henning and P.J. Slater, Inequalties relating domination parameters in cubic graphs, Discrete Math., to appear.
[4] B. Zelinka, Some remarks on domination in cubic graphs, Discrete Math., to appear.

