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Abstract

Non(anti)commutativity in an open free superstring and also one moving in a background antisymmetric tensor field is
investigated. In both cases, the non(anti)commutativity is shown to be a direct consequence of the nontrivial boundary conditions
which, contrary to several approaches, are not treated as constraints. The above non(anti)commutative structures lead to ne\
results in the algebra of superconstraints which still remain involutive, indicating the internal consistency of our analysis.
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PACS: 11.10.Nx

Keywords: Non(anti)commutativity; Superstrings

1. Introduction

In the last few years, there has been a considerable interest in the study of open strings propagating in the
presence of a background Neveu—-Schwarz two-form #glg leading to a noncommutative structyig?]. This
structure manifests in the noncommutativity in the spacetime coordinates of D-branes, where the end points of
the open strings are attached. Different approaches have been adopted to obtain this result in the case of both th
bosonic as well as the fermionic superstring. A Hamiltonian operator treatment was providédund a world
sheet approach ifp]. These studies have been done in the bosonic theory. An alternative Hamiltonian[@jirac
approach based on regarding the Boundary Conditions (BC) as constraints was ¢@&@]jinvestigations being
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carried out in both the bosonic and fermionic string theories. The interpretation of the BC as primary constraints
usually lead to an infinite tower of second class constrditit$, in contrast to the usual Dirac formulation of
constrained systeni§,12]. Besides, in this approach, where one tries to obtain noncommutativity through Dirac
brackets between coordinates, one encounters ambiguous factétQjkd-urthermore, different results are ob-
tained depending on the interpretations of these fa¢®jrs

On the other hand, it has also been shown, by one of the authors, that noncommutativity can be obtained in a
more transparent manner by modifying the canonical Poisson bracket structure, so that it is compatible with the
boundary conditiorf7]. In this approach, the boundary conditions aot treated as constraints. This is similar
in spirit to the treatment of Hanson, Regge and Teitelbfdi#], where modified PBs were obtained for the free
NG string, in the orthonormal gauge, which is the counterpart of the conformal gauge in the free Polyakov string.
Those studies were, however, restricted to the case of the bosonic string and membrane only. We extend the same
methodology to the superstring in this Letter.

Some other approaches to this problem have also been discudd&jli] As has been stressed|[d, it is
very important to understand this noncommutativity from different perspectives.

We find that the super-Virasoro constraints play a crucial role in revealing the non(anti)commutative structure.
The Letter is organized as follows. In Sectipnthe RNS superstring action in the conformal gauge is discussed.
This also helps to fix the notations. In Secti@rthe boundary conditions of the fermionic sector of the superstring
is given and the non-anticommutativity of the theory is revealed in the conventional Hamiltonian framework. The
results are also tied up with the bosonic theory. Sedtidiscusses the non(anti)commutativity in the interacting
superstring theory in the RNS formulation. The Letter ends with a conclusion in Séction

2. Freesuperstring

Let us consider the action for the free superstring, in conformal gg@jge

S= %/dzadze (DY*DY,,), @)
X

where the superfield

YH(0,0) = X"(0) + 0y"(0) + %9‘931‘(0) )

unites the bosonicX* (o)) and fermionic {* (o)) spacetime string coordinates with a new auxiliary bosonic field
B* (o).
In component form the action redds

1 -
S = _E/dzd (nuvaaxuaaxv —i(ﬁ“paaal/lu) =SB+ SF, (3)
X
where
1 2 Wadyv 1 2 _ -7 0 a
SB=_E do nuwda XH3° X", SF=§ dco iy" p oYy )
b b))

1 Our conventions aree® = 02 = (9), pX =iol = (9§). Our signature of the induced world-sheet metric and target spacetime metric
aren® ={—, +}, "V ={—, +,+,---, +}, respectively, and is defined ag = 67 p0.
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represent the decoupled bosonic and fermionic actions, respectively. The fermions are taken to be Majorana an
we refer to the component gf asy.. (compatible with our conventions)

yl
w=(V%): ©)
vl
The equal time canonical antibrackets read, in terms of the componefits of

(v, ¥i)pg ={¥E(0), ¥ ()} pg = —in""8(c — o),

(v, ¥ (")} pg =0. (6)
This, along with the brackets

{X"(0), 1" (0"} =n""5(0c — o) (7)

from the bosonic sector, defines the preliminary symplectic structure of the th&6érig the canonically conjugate
momentum taX*, defined in the usual way).
Confining our attention t§r (4), we vary the actiort4)

8Sp = i/dza [p%0avH 8 — O (VESYru— — Yiiovus)] (8)
P
to obtain the Euler-Lagrange equation for the fermionic field

ip“da " =0. 9)

The total divergence term yields the necessary BC. We shall consider its consequences in the following sec-
tions where the preliminary (anti)brackets will be modified. Using the standard Noether progeHarégrms
of the supercurrent and the energy—momentum tensor (which are constraints thei3$eheas be derived. The
expressions are:

1
Ja= _prpawﬂabxu =0, (10)
i - i - 1 i -
Tap = 8uXM8bX/L - Zwupuabl/fu. - Zwﬂpbaawu - Enab <acxﬂacxu + Ewupaaal/fu> =0. (11)
All the components of,; are, however, not independent as the energy—momentum tensor is traceless
Taa = nabTab =0, (12)

leaving us with only two independent components7pf. These components, which are the constraints of the
theory, are given by

x1(0) =2Tpo = 2T11 = P1(0) + *1(0) =0,
x2(0) =To1= P2(0) + A2(0) =0, (13)
where
®1(0) = 1%(0) + (1, X (@))%, ®2(0) =11(0)0, X (o),
21(0) = =i (0) p106 Y (0) = —i (Y (0) 06 Y (0) — Y (0) 06 Pyt (),
i

r2(0) = —%1/;“(0);00301/@(0) = E(W_‘(o)agw,k(o) + YL (0) 06 Yyt (). (14)

2 We now use the supersymmetry transformations on-shell and hence we drop the auxiliaby* fleddiceforth.
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The role of these constraints in generating those infinitesimal diffeomorphisms which do not lead out of the con-
formal gauge is well knowfi3] and we are not going to elaborate on this. Note that the constraints that we obtain
in this Letter are on-shell, i.e., we have used the equation of m¢@ipfor the fermionic fieldy,. This allows us
to write them down in terms of the phase-space varidmes hence they look quite different from the standard
results found in the literaturd] where they are written down in the light-cone coordinates which involves time
derivatives.

From the basic bracke(8), it is easy to generate a closed (involutive) algebra:

{x1(0). x1(6")} = 4(x2(0) + x2(6")) 358 (c — &),
{x2(0). x2(6")} = (x2(0) + x2(0"))358(0 — o),
{x2(0), x1(6"} = (x2(0) + x1(07))358(c — o). (15)

It is interesting to observe that the structure of the superconstraint algebra is exactly similar to the bosonic theory
[71.

Coming to the supercurrerd'tm,4 note that it is a two component spinor. Further, sidgebeys the relation
p%J, =0, the components ofps andJ14 are related to each other. Hence, we only deal with the components of
Joa or simply J; and J». These are

Ji(0) =2J1(0) =y (0) M (0) — ¥(0)95 X, =0,
J2(0) = 2J2(0) = Y (0) . (0) + P! (0) 95 X, = 0. (16)

The algebra between the above constraints read:

{1(0), J1(0")} = =i (x1(0) — 2x2(0))8(c — o),

{J2(0), J2(6")} = =i (x1(0) + 2x2(0))8 (5 — &),

{J1(0), Jo(c"} =0. (17
The algebra betweeh(o) andy (o) is also given by

{x1(0). (0"} = —(2/1(0) + J1(0")) 358 (0 — &),
{x1(0), (0"} = (212(0) + J2(6"))d,8 (0 — o),

- 1 -
[x2(0). 7ueh) = (Ja(0) + 511(0/)>805(a _ o)),

J
- - 1.
[x2(0), Jo(0")} = ( Ja(o) + 512<a’>>aga(a — o). (18)

-
=

3. Boundary conditions, super-Virasoro algebra and non(anti)commutativity

As in the case of bosonic variablpg, fermionic coordinates also require careful consideration of the surface
terms arising in the variation of the acti¢®).® Vanishing of these surface terms requires thiat{y, — v_8vy_)
should vanish at each end point of the open string. This is satisfied by mékirg++,_ at each end. Without

3 This is in the true spirit of Dirac’s classic analysis of constrained Hamiltonian dynd6jics
4 A =1, 2 being the spinor index.

5 J1, J along withx1 () andx2(c) constitutes the full set of super-Virasoro constraints.
6 A detailed treatment of the boundary conditions is give[Bin
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loss of generality we set

Y0, 7)=vy"(0, 7). (19)

The relative sign at the other end now becomes meaningful and there are two cases to be considered. In the firs
case (Ramond (R) boundary conditions)

i 0 =yl o), (20)
and in the second case (Neveu—-Schwarz (NS) boundary conditions)

Yo, Ty ==yl o). (21)
Here we will work with Ramond boundary conditions. Combin{§) and(20) we can write

(Wﬁ (Ta 6) - Ipl—L(ra O—)) |O’:O,J‘[ =0. (22)
The mode expansion of the components of Majorana fermion takes thd3prm

1 . 1 .
Yo =2 die ™0 ylo ) = 2 Y dite T, (23)
\/é neZ ﬁ neZ

The above mode expansions immediately leads to

wﬁ(—aa T) = Wﬁ(a, T)s (24)
which further yields, using20),

Yo =—m )=yl =m1) (25)

in the R-sectof.
In the bosonic sector, on the other hand, we have to enlarge the domain of definition of the bosoxi¢ fisld
XM (t,—0) = X"(1,0), (26)
so that it is an even function and satisfies Neumann[BCThis is in contrast t§24). Consistent with this, we
must have
" (r, —o) = MI"(1,0), (X" (1, —0) = —X"(1,0). (27)

Now, from (24), (26), (27), we note that the constrainig (o) = 0 andx2(c) = 0 are even and odd, respectively,
underoc — —o . This also enables us to increase the domain of definition of the length of the string from €0
m)to (—n <o < 7).

We may then write the generator of alando reparametrization as the functioriaP]

1 T
Lif1=5 / do { f1(@)x1(0) + 2f-(0)x2(0)). (28)
0

where fi (o) = %(f(o) + f(—o)) are by construction even/odd function afi¢) is an arbitrary differentiable
function defined in the extended interyalr, ]. The above expression can be simplified to

e

1
L[f]l= Zfda f(a)[{n(a)+aaX(a)}2+2i¢¢agwﬂ+]. (29)

-7

7 In the NS sector, we obtain a antiperiodic boundary condifiéi—o, 1) = —y* (0, 1) ate = .
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Coming to the generators andJ», note that/1(—o) = J2(o) (16). This enables us to write down the functional
Glgl

G[g]=/d0 (g(a)J1(0)+g(—o)Jz(o))=/dag(o)J1(0)=/dag(—o)lz(o) (30)
0 “r s

for any differentiable functiorg (o), defined again in the extended interyalr, 7]. These functional§29), (30)
generate the following super-Virasoro algebra:

{L[f@)]. L[g@)]} =L[f(0)g'(0) — f'(0)g(0)],
{G[g(0)]. G[h(0)]} = —iL[g(—0)h(—0)].

1
{L[f()]. G[g(@]} = G[f(o)g’(—o) — Ef’(o)g(—o)]. (31)
Defining
Ly=L[e""’] and G,=G[e"], (32)

one can write down an equivalent form of the super-Virasoro algebra

m
(L, Ly} =i(m —n)Lyqn, {Gm,Gn}=—iLytn, (L, Gn}=i<§ _n)Gern' (33)

Note that we do not have a central extension here, as the analysis is entirely classical.

Coming back to the preliminary symplectic structure, giveifdy we note that the boundary conditiof&2)
are not compatible with the brackets, although one could get the super-Virasoro §8Blma(33) just by using
(6) and(7). Hence, the last of the brackets(#) should be altered suitably. A simple inspection suggests that

(Vi) v’ (o)} =—in*"s(c — o). (34)

Although the bracket structur¢8) and(34) agree with8] (in the free case), they can, however, not be regarded as
the final ones. This is because the presence of the usual Dirac delta fuihetieno") implicitly implies that the

finite physical range of € [0, ] for the string has not been taken into account. Besides, it is also not compatible
with (24). In [7], the equal time commutators were given in terms of certain combinatibnés( ¢”)) of periodic

delta functio

{X"(x,0), M, (t,0")} =8/} Ay(0,0"), (35)
where
As(o,6Y=8p(c —c')x6p(c +0), (36)

rather than an ordinary delta function to ensure compatibility with Neumann BC in the bosonic sector. Basically,
there one has to identify the appropriate “delta function” for the physical ridhgg of o starting from the periodic

delta functiors p (o — o) for the extended (but finite) range r, 7] and make use of the even nature of the bosonic
variablesX* (26)in the extended interval. Furthermore, the occurrenc& 65 — o) itself was justified by the

fact that a scalar field, subjected to periodic BC in a one-dimensional box of lergtta®sp (o — o’), rather

than the usual delta function, occurring in the basic Poisson-bracket between the scalar field and its conjugate
momentum/7.

8 The form of the periodic delta function is given By (x — y) =8p(x — y + 21) = % D onez ¢"*=Y) and is related to the usual Dirac
s-function assp(x —y) = ,c 7 8(x — y + 27n) [18].
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We can essentially follow the same methodology here in the fermionic secidf @so) also satisfy periodic
BC of period 2Zr (25). The only difference with the bosonic case, apart from the Grassmanian nature of the latter, is
that, instead of their even propel6), the components of Majorana fermions sati&f). As we shall show now
that this condition is quite adequate to identify the appropriate delta-functions for the “physical infrval”

We start by noting that the usual properties of a delta function is also satisfige( by

/ dx' 8p(x' —x) f(x") = f(x) 37)

for any periodic functionf (x) = f(x + 27) defined in the interval—r, 7]. Hence, one can immediately write
down the following expressions far" andlpﬁ:

[ do' oo’ + @1t @) + b0’ o] = v ) (39)
0
/ do' [3p(6" + o)W (6") +8p(0" — )W (6)] = ¥H (). (39)
0

Combining the above equations and writing them in a matrix form, we get,

b

[ 4o’ anno. 0o =) A==, (40)

0
whereA (o, o), defined by

sp(o’ —a) dp(o’ +0)>

Sp(o'+o) dp(o'—0))’
acts like a matrix valued “delta function” for the two component Majorana spinor in the reduced physical interval
[0, ] of the string. We therefore propose the following antibrackets in the fermionic sector:

(W), ¥y} =—in"" Aap(o,0"), (42)
instead of(6) which, when written down explicitly in terms of components, reads

(Vi) vl ={v ). ¥’ (0"} =—in""sp(c — o),
vl ), ¥} =—=in""sp(c + ). (43)

We shall now investigate the consistency of this structure. Firstly, this structure of the antibracket relations is
completely consistent with the boundary condit{@R). To see this explicitly, we compute the anticommutator of
V¥4 (0”) with (22), the left-hand side of which gives

Aup(o,0') = ( (41)

= E Z sin(no’) Sin(no)’
T n#0

where the form of the periodic delta function has been used. Not only that, as a bonus, we reproduce the modified

form of (34). Observe the occurrence &# (o + ¢”) rather tharp (o — o) in the mixed bracketyr, vs_}, which

plays a crucial role in obtaining the following involutive algebra in the fermionic sector. Indeed, shgne

can show that

—i(8p(oc —0')—8p(c +0")| =—iA_(0,0") =0, (44)

o=0,7 o=0,7 o=0,7

{Al(a), Al(o’)} = 4(A2(0)8UA+(6, o)+ 22(6")3, A (o, 0’)),



B. Chakraborty et al. / Physics Letters B 625 (2005) 302-312 309

{22(0),22(0")} = 22(0")85 A4 (0, 0") + 12(0) 35 A— (0, "),
{r2(0), 11(6")} = (11(0) + 11(6")) 05 Ay (0, 07) (45)
hold for the fermionic sector.

In order to write down the complete algebra of the super-Virasoro constpaitts and x2(c), one must take
into account the algebra of constraints between the bosonic variables. Interestingly, these have exactly the same
structure as the fermionic algeb{45) with the A’s being replaced byp’s,® so that the complete algebra of the
super-Virasoro constraints also have identical structures:

{x100), x1(6")} = 4(x2(0)85 A4 (0,0") + x2(0") 35 A (0, 0)),
{x2(0). x2(0")} = %2035 A1.(0.0") + x2(0)35 A— (0, 0"),
{x2(0), x1(6")} = (x1(0) + x1(6")) 35 A1 (0, 0"). (46)

The algebra between the constraifit6) now gets modified to

{V1(0), J1(0)} = =i (x1(0) = 2x2(0))8p (0 — o),

{200), 220"} = =i (x1.(0) + 2x2(0))8p (0 — 0'),

{J1(0). 2(0")} = —i(x1(0) — 2x2(0))8p (0 + 7). (47)
The algebra betweeh(o) andy (o) can now be computed by using the modified bra¢k8) to get

{x1(0), 116"} = =(211(0) + J1(6"))353p (0 = o) + (22(0) + J1(0")) 353 p (0 +07),

{x10), J2(0")} = (272(0) + J2(6))) 058P (0 — 0") = (2]1(0) + J2(61)) 8P (0 + '),

~ ~ 1. = 1.
{x2(0), 1o} = (11(6) + 511(0/)>805P(0' —a)+ (Jz(d) + 511(5/)>305P(0' +a"),

- ~ 1. ~ 1.
{x2(0), J2(0")} = (12(0) + 5-12(0/)>305P(‘7 —o')+ <Jl(0) + 5-12(0/)>305P(‘7 +a"), (48)

which clearly displays a new structure for the super-Virasoro algebra.
As a matter of consistency, we write down the Hamiltonian of the superstring and then study the time evolution
of the L modes. This follows easily from the Virasoro functioddlf] (29) by settingf (o) = '™, which gives

e

Ly= % f do e™ " [{[T(0) + 8, X (@)} + 20905 Yy |- (49)

-7

Settingm = 0, gives the Hamiltonian

H=Lo="= [ do[{IT(c)+ 3 X ()} + 29" 05 ¥y ]

N

do [[T%(0) + 8, X (0)% + i (V1 (0) 86 Y4 (0) — ¥ (0) 06 Yru—(0))]- (50)

NI =

O — i A —y

This immediately leads to

V(o) ={¥-(0), H} = =3, 9 (0), ¥y (0) = {Y1(0), H} = 0, Y1 (0), (51)

9 Note that there were some errorg T.
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which are precisely the equations of motion for the fermionic fields. One can therefore (@gpadd(43) as the
final symplectic structure of the free superstring theory.

4. Theinteracting theory

The action for a superstring moving in the presence of a constant background Neveu-Schwarz two form field
Fuv is given by

1 _ B
S=-3 / d?0 (103 X" 0" X" + €Y Fuun8a X" 9 X — iH 0% 9a Wy + i Frun Ut ppe™8,97). (52)

X

The bosonic and fermionic sectors decouple. We consider just the fermionic sector since the bosonic sector wa:s
already discuss€d]. In component the fermionic sector reads

Sr=1 / drdo (V" 04—y + V0V — Fra V050" + Fru o yl). (53)
X

The minimum action principléS = 0 leads to a volume term that vanishes when the equations of motion hold,
and also to a surface term

(W pw — Fpn)dW” = Y (pun + F)8¥ Y )5 = 0. (54)

It is not possible to find nontrivial boundary conditions involvitd and wfﬁ that makes the above surface term
vanish. However, the addition of a boundary tdfrs,16]

i
Shound= ﬁ/df do («Fuvw.ﬁ&—l/fi) (55)

X
makes it possible to find a solution to the boundary condition. Addition of this tep feads to the total action:

—i
S= s / drdo (V" Evpdstr’ + 9" Eypd_yt). (56)
X

whereE#*Y = n*v + FHV, The corresponding boundary term coming frésn= 0 is given by

(1//l_LEv,u81/fE - WiEvual/fi)‘g =0. (57)

The above condition is satisfied by the following conditions that preserve supersynitigtigt the string
endpointss =0 ando = 7:

Ey (0, 7) = Eny? (0, 1), Ey ¥l (m, 1) = Enw ¥ (7, 1), (58)

where) = +1 with the plus sign corresponding to Ramond boundary condition and the minus corresponding to
the Neveu—Schwarz case. Here too we work with Ramond boundary conditions. Now the BCs are recast as

(Evu¥(y)(©,0) = Ep¥{_)(0,D)|,_o, =0. (59)

This nontrivial BC leads to a modification in the original (naiy&) DBs. The{w(’jr) (0,1), I/f(VH (¢/,7)}pB is the
same as that of the free stri(g). We therefore make an ansatz

{vio. ). ¥ (0. 1)} pg =C*"p(0 +0"). (60)
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Taking brackets between the BE&®) andy” (o/) we get
EyyC% = —iE,,. (61)
Solving this, we find
v = —i[(1— FA) " E,, EV. (62)
One can also take brackets between the Eﬁgasandwl;(a’), which yields

c = _i[(l - fz)_l]upEVpEW~ (63)

Although the expression($2) and(63) look different, they are actually the same as can be easily verified. Finally
we can write the matrix = {C*"} more compactly as

C=—i[1-F) A+ (64)

We therefore get the following modification:

(W0, ), 9" (0", D)) pg = —i[ (L= F?) ] Epy EV"8p (0 + '), (65)

which also reduces to those[8], upto thes p (a + o’) factor. Finally, note that in the limif,,, — 0 (65), the last
of (43)is reproduced.

5. Conclusions

In this Letter, we have derived the expressions for a non(antijcommutative algebra for an open superstring.
The interesting thing to note that, unlike the bosonic case, we get an anticommutative structure in the fermionic
sector even for the free superstring. Our results differ from tho$&] iand are mathematically consistent which
is reflected from the closure of the constraint algebras. The analysis of this Letter is a direct generaliga}ion of
where only bosonic string was considered.

The origin of any modification in the usual canonical algebra is the presence of boundary conditions. This
phenomenon is quite well known for a free scalar field subjected to periodic boundary conditions. Besides this
method was also used earlier[dy2] in the context of Nambu—Goto formulation of the bosonic string. We show that
the same also holds true in the fermionic sector of the conformal gauge fixed free superstring, where the boundary
conditions become periodic once we extend the domain of definition of the length of the stringOfreinto
[—7, 7]. This mathematical trick leads to a modification where the usual Dirac delta function gets replaced by a
periodic delta function. Eventually one constructs the appropriate “delta function” for the physical ifi@ernval
of the string to write down the basic symplectic structure. Interestingly, here we getaratrix valued “delta
function” appropriate for the two component Majorana spinor which is in contrast to the bosonic case, where one
has a single component “delta function’. (o, o’) satisfying Neumann boundary conditif)12]. This symplectic
structure, interestingly, leads to a new involutive structure for the super-Virasoro algebra at the classical level. The
corresponding quantum version and its implications are being investigated.

The same technique is adopted for the interacting case also. Here, the boundary condition is more involved
and leads to a more general type of non(anti)commutativity that has been observed before. However, our results
are once again different from the existing results since we get a periodic delta function instead of the usual delta
function, apart from the relative sign 6f o’. This change of relative sign indeed plays a crucial role in the internal
consistency of our analysis. Further, the interacting results go over smoothly to the free case once the interaction is
switched off.
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