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Abstract

We study polytopes related to the concept ofmatrix majorization: for two real matricesA
andB havingm rows we say thatA majorizesB if there is a row-stochastic matrixX with
AX = B. In that case we writeA � B and the associated majorization polytopeM(A � B)
is the set of row stochastic matricesX such thatAX = B. We investigate some properties of
M(A � B) and obtain e.g., generalizations of some results known for vector majorization.
Relations to transportation polytopes and network flow theory are discussed. A complete
description of the vertices of majorization polytopes is found for some special cases. © 1999
Elsevier Science Inc. All rights reserved.
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1. Introduction

LetMn,p denote the set ofn× p row-stochastic matrices, i.e.,X = [xi,j ] ∈Mn,p

means thatxi,j > 0 for all i, j and
∑p
j=1 xi,j = 1 for all i. We recall the notion of

matrix majorizationas defined in [5]. LetA and B be two real matrices withm
rows, sayA ∈ Rm,n andB ∈ Rm,p. We say thatA majorizesB, and writeA � B (or
B ≺ A), provided that there exists a row-stochastic matrixX such that

AX = B.
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Note that the number of columns in the two matricesA and B may be differ-
ent. Matrix majorization is a preorder on the set of real matrices withm rows. For
different properties of� and characterizations ofA � B, see [5].

Corresponding toA ∈ Rm,n andB ∈ Rm,p we define themajorization polytope

M(A � B) = {X ∈Mn,p: AX = B}.
This set is nonempty iffA � B, and in that case, it is a bounded polyhedron, i.e.,
a polytope in the vector spaceRn,p . We lete denote a (column) vector of all ones
(properly dimensioned). Note that ifA � B thenAe= Be (asBe= AXe = Ae).

For other (related) majorization notions for matrices see e.g. [1,7,9] (further ref-
erences are in [5]). Majorization in connection with measure families was studied in
e.g. [10].

Matrix majorization generalizes the classical concept of majorization between
vectors. Recall that ifa,b ∈ Rn one says thata majorizesb, denoted bya� b,
provided that

∑k
j=1 a[j ] >

∑k
j=1 b[j ] for k = 1, . . . , n− 1 and

∑n
j=1 aj =

∑n
j=1 bj .

(Herea[j ] denotes thejth largest number among the components ofa.) It now follows
from our definition above that the matrix majorization[

1 . . . 1
a1 . . . an

]
�
[

1 . . . 1
b1 . . . bn

]
holds if and only if there is a doubly stochastic matrixX ∈ Rn,n such thataTX =
bT. But this is equivalent toa � b according to a well-known theorem of Hardy-
Littlewood and Pólya (see [9]).

The goal of this paper is to investigate the majorization polytopeM(A � B)
under certain assumptions on the matrices involved.

For vector majorization, saya� b, the majorization polytopeX(a � b) consist-
ing of all doubly stochastic matricesS satisfyingSa= b was studied in [2] and
different combinatorial properties of this polytope were found. In particular the sup-
port matrix of the majorization was determined. A related study for majorization
polytopes in connection withmultivariate majorizationis found in [3]. In that paper
(see also [9]) one says that anm× nmatrixA multivariate majorizes anotherm× n
matrixB, and writeA �d B, provided that there is adoublystochastic matrixX such
thatAX = B. Matrix majorization generalizes this notion as we have that[

eT

A

]
�
[
eT

B

]
⇔ A �d B.

WhenA andB are(0,1)-matrices with exactly one 1 in each row (or exactly two
ones in each row) a complete description of all vertices ofM(A � B) was given in
[5].

Some of our notation is explained next.Rm,n is the vector space of realm× n
matrices. LetA ∈ Rm,n. Then thejth column vector ofA is denoted byaj and the
ith row vector is denoted byai . A matrix or vector with all components being zero is
denoted by0. If S ⊆ Rn the convex hull ofS is denoted by conv(S).
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2. Relation to transportation polytopes

Let aT = [a1, . . . , an] andbT = [b1, . . . , bp] be vectors with nonnegative com-
ponents and satisfying

∑n
j=1 aj =

∑p

j=1 bj . Define

T(a,b) = {Y ∈ Rn,p : Ye= a, eTY = bT, Y > 0}.
The polytopeT(a,b) is the well-knowntransportation polytopewhich arises in the
transportation problem in linear programming. It is widely studied, see e.g. [11], and
the 1-skeleton of this polytope is known, and its vertices correspond to spanning
trees in the complete bipartite graphKn,p. T(a,b) is nonempty as

∑
j aj =

∑
j bj .

Whenz ∈ Rn we letD(z) ∈ Rn,n denote the diagonal matrix withdj,j = zj for
j = 1, . . . , n. Majorization polytopes are related to transportation polytopes as given
in the following proposition. Apositivematrix is a matrix with only positive entries.

Proposition 2.1. Let A ∈ Rm,n be positive andB ∈ Rm,p nonnegative. Then

M(A � B) =
m⋂
i=1

D(ai )−1 ·T(ai ,bi ).

(D(ai)−1 ·T(ai ,bi ) consists of the matricesD(ai )−1Y whereY ∈T(ai,bi )).

Proof. Assume thatX ∈M(A � B) so X > 0, Xe= e andaT
i X = bT

i for i 6 m.
Consider a fixedi 6 m and defineY = D(ai )X. Note that the diagonal matrixD(ai )
is positive and nonsingular, by assumption. ThereforeY > 0, Ye= D(ai )X
e= D(ai )e= ai and bT

i = aT
i X = aT

i D(ai )
−1Y = eTY. This means thatY ∈

T(a,b) and thereforeX ∈ D(ai )−1 ·T(a,b). Since this holds for everyi 6 m
we conclude thatM(A � B) ⊆⋂m

i=1 D(ai)−1 ·T(ai ,bi ). The converse inclusion
is shown similarly. �

Thus the majorization polytopeM(A � B) is the intersection ofm“scaled” trans-
portation polytopes. A similar correspondence exists in the general case whereA is
nonnegative and may contain zeros, see [5].

In generalM(A � B) may be very complex, but whenA has a certain property
the relation to transportation polytopes becomes very useful. Let supp(x) denote the
support of a vectorx ∈ Rn, i.e., supp(x) = {j 6 n: xj /= 0}. A matrix A ∈Mm,n is
a disjoint-row-support matrixif the supports of its rows are pairwise disjoint. By
suitable line permutations such a matrixA can be brought to the form


āT

1 0 0 0
0 āT

2
ð

0 āT
m 0

 , (1)



160 G. Dahl / Linear Algebra and its Applications 297 (1999) 157–175

where fori = 1, . . . ,m, āi is a vector inRni with only positive components and
n0 = n−∑m

i=1 ni .

Proposition 2.2. Let A ∈Mm,n be a disjoint-row-support matrix as given in(1),
and letB ∈Mm,p. ThenA � B andM(A � B) consists of the matricesX given by

X =


X1
...

Xm
X0

 , (2)

whereXi = D(āi )−1Yi andYi ∈T(āi ,bi ) for i = 1, . . . ,m andX0 ∈Mn0,p.

Proof. Comparing theith row in the matrix equationAX = B we getāT
i Xi = bT

i

for i = 1, . . . ,m. Thus, arguments as in the proof of Proposition 2.1 give the desired
result. �

In the situation given in Proposition 2.2 we also see that the vertices of
M(A � B) are the matricesX in (2) whereYi is a vertex ofT(āi ,bi ) andX0 ∈
Mn0,p is integral. As remarked above, such verticesYi correspond to spanning trees
in the complete bipartite graphKni,p.

The result of Proposition 2.2 also applies to an arbitrary disjoint-row-support mat-
rix A ∈Mm,n. This is due to the fact that whenP andQ are permutations matrices
thenAX = B is equivalent to(PAQ)(QTX) = PB. Here one may chooseP andQ
so thatPAQ has the form (1).

3. Relation to network flow theory

The purpose of this section is demonstrate a relation between majorization poly-
topes and the theory of network flows.

First we discuss some questions concerning integral matrices in majorization
polytopes. An integral row-stochastic matrix is a(0,1)-matrix with exactly one
nonzero, a one, in each row. Following [5] we define theMarkotopeM(A; k) as-
sociated withA ∈ Rm,n and a positive integerk by

M(A; k) = {AX : X ∈Mn,k}.
Thus, lettingB ∈ Rm,p andk = p, we see thatA � B if and only if B ∈M(A;p).
The MarkotopeM(A; k) is a polytope inRm,k and (see [5]) each vertex ofM(A; k)
may be written[∑

j∈J1
aj , . . . ,

∑
j∈Jk aj

]
,

whereJ1, . . . , Jk is a partition of{1, . . . , n} (some of the sets may be empty in which
case the vector sum should be understood as the zero vector). Thus, the vertices
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are those matrices of the formAX whereX is an integral row-stochastic matrix.
From this we directly obtain the following result concerning integral matrices in the
majorization polytope.

Proposition 3.1. LetA ∈ Rm,n andB ∈ Rm,p satisfyA � B. ThenM(A � B) con-
tains an integral matrix if and only ifB is a vertex ofM(A;p), or, equivalently, there

is a partitionJ1, . . . , Jp of {1, . . . , n} such thatB =
[∑

j∈J1
aj , . . . ,

∑
j∈Jp aj

]
.

We now turn to network flows. LetG = (V ,E) be a directed graph with node
setV and arc setE. Let m andn denote the number of nodes and arcs, respectively.
The set of arcs with terminal end node (head)v is denoted byδ−(v) and the set of
arcs with initial endnode (tail)v is denoted byδ+(v). A vectorb ∈ RV (or Rm) with∑
v∈V bv = 0 is a called ademand(vector) and a vectorx ∈ RE satisfying

(i)
∑
e∈δ−(v) xe −

∑
e∈δ+(v) xe = bv for all v ∈ V ;

(ii) xe > 0 for all e ∈ E (3)

is called ab-flow. One can interpretxe wheree = (v,w) as a flow from nodev to
nodew along the arce and then Eq. (3)(i) says that the net flow into nodev equals
bv for eachv ∈ V . Let u ∈ REbe a nonnegative vector, called acapacity, and let
b1, . . . ,bs be different demands. Ifxj is abj -flow for j = 1, . . . , s and

s∑
j=1

xj 6 u

we call(x1, . . . , xp) a multicommodity floww.r.t. (b1, . . . ,bs; u). These constraints
say that the total flow (summed over all commodities) in each arce does not exceed
the capacityue.

Let A ∈ Rm,n be the node-arc incidence matrix of the digraphG. Thus,A is the
(−1,0,1)-matrix with a row for eachv ∈ V and a column for each arce ∈ E and
av,e = 1 if e ∈ δ−(v), av,e = −1 if e ∈ δ+(v) andav,e = 0 otherwise. Moreover,

let b1, . . . ,bp−1 be demand vectors inRV and definebp =∑n
j=1 aj −∑p−1

j=1 bj .

Thus,Ae= Be whereB = [b1, . . . ,bp] (a necessary majorization condition).
The following immediate result connects majorization and flows.

Proposition 3.2. WhenA andB are as above, thenA � B if and only if there exists a
multicommodity flow (x1, . . . , xp−1) w.r.t. (b1, . . . ,bp−1; e). Moreover,
X ∈M(A � B) if and only ifX = [x1, . . . , xp]where(x1, . . . , xp−1) is a multicom-
modity flow w.r.t.(b1, . . . ,bp−1; e) andxp = e−∑p−1

j=1 xj .

Proof. AX = B means thatAxj = bj for j = 1, . . . , p. Here the equationAxp =
bp may be replaced by

∑p−1
j=1 xj 6 easAe= Be. �
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Thus, the question of whether the majorizationA � B holds corresponds to the
existence question for multicommodity flows, and the majorization polytope is es-
sentially the set of multicommodity flows. Consider the special case ofp = 2. Then
A � B holds if and only if there is ab1-flow x satisfyingx 6 e. From network flow
theory such a flow exists if and only if

∑
v∈V b1

v = 0 and

|δ−(S)| >
∑
v∈S

b1
v for all S ⊂ V ,

whereδ−(S) is the set of all arcs with head inS and tail outsideS. More gener-
ally, in the multicommodity case (arbitraryp) conditions assuring the existence of a
multicommodity flow w.r.t.(b1, . . . ,bp−1; u) are well known in the network flow
literature (these conditions are derived from Farkas’ lemma). The computational
problem of checking if there exists a multicommodity flow may be solved efficiently
by linear programming. This is not so, however, if we ask for anintegralmulticom-
modity flow. Consider the special case of the situation in Proposition 3.2 where
eachbj for j = 1, . . . , p − 1 contains a−1 and a 1 while all other components
are zero, saybjv = −1 if v = rj , bjv = 1 if v = sj and bjv = 0 otherwise. Then,
an integral multicommodity flow simply corresponds to arc-disjoint directed paths
Q1, . . . ,Qp−1 where, forj = 1, . . . , p − 1,Qj goes fromrj to sj . The computa-
tional problem of checking the existence of such paths (in a given directed graph) is
known to beNP-complete, even ifp = 3 (see [6]). This means, confer Propositions
3.1 and 3.2, that even ifA � B andp = 3, it is NP-hard to decide ifM(A � B)
contains an integral matrix.

4. The full row-rank case

Throughout this section we consider a given majorizationA � B where A ∈
Rm,n, B ∈ Rm,p andA has full row-rank (son > m).

Note that ifP is ann× n permutation matrix andAX = B, thenAPPTX = B.
So, permuting columns of the matrixA simply corresponds to permuting rows of the
matrices in the majorization polytope. Thus, we may assume thatA is partitioned as

A = [A1,A2] , (4)

whereA1 ∈ Rm,m is nonsingular.

Proposition 4.1. Assume thatA is partitioned as in(4) with A1 ∈ Rm,m nonsingu-
lar. Then

M(A � B) =
{[

X1
Y

]
: X1 = A−1

1 (B− A2Y), Y ∈M∗(A � B)
}
,

where

M∗(A � B) = {Y ∈Mn−m,p: A−1
1 A2Y 6 A−1

1 B
}
.
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Proof. We partitionX ∈ Rm,n as

X =
[
X1
Y

]
(whereX1 ∈ Rm,m andY ∈ Rn−m,p) and see thatAX = B is equivalent toA1X1+
A2Y = B. ButA1 is nonsingular so the system becomesX1 = A−1

1 (B− A2Y)where
Y is arbitrary. The additional constraints onX, i.e., thatX is row-stochastic, now
translate into bothX1 and Y being row-stochastic. Clearly,X1 > 0 is equivalent
to A−1

1 A2Y 6 A−1
1 B. Moreover, whenY is row-stochastic we obtainX1e= A−1

1
(B− A2Y)e= A−1

1 (Be− A2Ye) = A−1
1 (Ae− A2e) = A−1

1 A1e= e. The desired
result now follows. �

Therefore, a study of the majorization polytopeM(A � B) reduces to a study
of thereduced majorization polytopeM∗(A � B) which lies in a lower-dimensional
spaceRn−m,m. The two polytopes are affinely isomorphic. Whenn−m is small, this
may make it possible to obtain much more information about these polytopes. When
n = mwe trivially have thatM(A � B) = {A−1B}. More interestingly, we now give
a complete description of all the vertices ofM(A � B) in the casen−m = 1.

Let n = m+ 1 so A = [A1,an]. Moreover, letY = yT wherey ∈ Rp and we
want to find the (column) vectorsy in the reduced majorization polytope (viewed as
a polytope inRp now). DefineC = A−1

1 B andd = A−1
1 an. We see thaty ∈M∗(A �

B) if and only if dyT 6 C, or equivalently,

(∗) di · yj 6 ci,j for all i 6 m, j 6 p.
This system just provides lower and upper bounds on each variable. LetI+, I0 andI−
denote the set of indicesi 6 p such thatdi is positive, zero or negative, respectively.
Then(∗) is equivalent to

(i) ci,j > 0 for all i ∈ I0, j 6 p,

(ii) lj 6 yj 6 uj for all j 6 p,
(5)

where lj := max{ci,j /di : i ∈ I−, j 6 p} and uj := min{ci,j /di : i ∈ I+, j 6 p}.
From this discussion we arrive at the following result (with the notation introduced
above).

Proposition 4.2. Whenn = m+ 1 and A1 is nonsingular we have thatA � B if
and only if(5)(i) holds, lj 6 uj for all j 6 p and

∑
j lj 6 16

∑
j uj . Moreover,

when these conditions hold, M∗(A � B) is the solution set of(5) and the vertices
are of the formyj ∈ {lj , uj } for all but possibly one j and

∑
j yj = 1.

From this, due to Proposition 4.1, one gets a complete description of both facets
and vertices of majorization polytopes for the case whenn = m+ 1. We remark
that all the vertices of the polytopeX3(x � y) whenn = 3 were determined in [4]
(X3(x � y) consists of the doubly stochastic 3× 3-matricesS satisfyingSx= y for
givenx, y ∈ R3).
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As a small example consider

A =
[
1 1 1
6 3 1

]
, B =

[
1 1 1
4 4 2

]
.

Then A � B as (6,3,1) � (4,4,2). Some calculation shows that the linear sys-
tem (∗) defining the reduced majorization polytope is 06 y1 6 2/5, 06 y2 6
2/5, 1/26 y3 6 4/5 and the vertices are(0,2/5,3/5), (2/5,0,3/5), (2/5,1/10,
1/2), (1/10, 2/5,1/2) and(1/5,0,4/5).

5. The case of two rows

Throughout this section we consider the case whenm = 2 soA andB are matrices

A =
[
a1,1 . . . a1,n
a2,1 . . . a2,n

]
, B =

[
b1,1 . . . b1,p
b2,1 . . . b2,p

]
.

We shall assume that (i) both matrices are nonnegative, (ii)a1,j > 0 for j 6 n and
b1,j > 0 for j 6 p, and (iii)Ae= Be. For instance, the matrices in Section 1 in con-
nection with vector majorization fit into this framework. We definewi :=∑n

j=1 ai,j

=∑p

j=1 bi,j for i = 1,2 andw = (w1, w2). Note thatw1 > 0.
We need some sets and functions associated with the matrixA (and similar con-

cepts and notation are used in connection withB). As usual thejth column ofA is
aj . The set

ZA :=
n∑
j=1

conv({0,aj })

is a zonotope (a vector sum of line segments) inR2 which is symmetric around the
point (1/2)w. An example is shown in Fig. 1. Note that the zonotopesZA andZB
have the same point of symmetry. The “upper boundary” ofZA may be seen as the
graph of a functionβA: [0, w1] → R given by

βA(h) = max{y: (h, y) ∈ ZA}

= max

{
n∑
j=1

a2,j vj :
n∑
j=1

a1,j vj 6 h, 06 vj 6 1

for j = 1, . . . , n

}
for 06 h 6 w1. The functionβA is piecewise linear, concave, nondecreasing and
continuous (and its graph has0 andw as its endpoints). We also define

DA(j) = a2,j /a1,j for j = 1, . . . , n

soDA(j) is the slope of the line segment conv({0,aj }).
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Fig. 1. The zonotopeZA .

We hereafter assume that the columns ofA have been permuted so thatDA(j)
is nonincreasing as a function ofj and we then say thatA is monotone. Similarly,
we assume thatB is monotone. This is with no loss of generality as permutations of
columns ofA andB correspond to line permutations of matrices in the majorization
polytope. It follows from the monotonicity thatβA(

∑k
j=1 a1,j ) =∑k

j=1 a2,j for k =
0,1, . . . , n (andβA is linear on each interval[∑k

j=1 a1,j ,
∑k+1
j=1 a1,j ]).

The following result was shown in [5]. It gives a geometrical characterization of
matrix majorization.

Theorem 5.1. The following conditions are equivalent for nonnegative matrices
A ∈ R2,n andB ∈ R2,p with Ae= Be:

(i) A � B.

(ii) ZA ⊇ ZB.

(iii ) βA > βB.

(iv) βA

 k∑
j=1

b1,j

 > k∑
j=1

b2,j for k = 1, . . . , p − 1.

Condition (iv) has special interest, it can be seen as a generalization of the (defining)
partial sum ordering of vector majorization. Thus, whena1,j = b1,j = 1 for all j (iv)
specializes into

∑k
j=1 a[j ] >

∑k
j=1 b[j ] for k = 1, . . . , n− 1.

SinceA is monotone, there are integers 0= i0 < i1 < · · · < ir = n and numbers
DA1 > DA2 > · · · > DAr such thatDA(j) = DAk for all ik−1 < j 6 ik and 16 k 6 r.
Similarly, for B, we may construct the numbersDB1 > · · · > DBs .

Remark. Consider the matrixA′ obtained fromA by replacing the columnsaj for
ik−1 < j 6 ik by the single column vector

∑ik
j=ik−1+1 aj . Onecan show thatA′ �
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A andA � A′, i.e., these matrices are equivalent with respect to the majorization
preorder. Moreover, all the numbersDA

′
j are distinct. Similarly we may constructB′

from B. The benefit of this approach is that the analysis ofM(A′ � B′) becomes
less technical. However, this process does influence the majorization polytope, so
we prefer to treat the more general case in the following.

We need a result on the representation of points on the upper boundary ofZA. The
vertices on the upper boundary are the pointswk =∑ik

j=1 aj for k = 0, . . . , r (where

w0 = 0 andwr = w). Note that we have 0= w0
1 < w1

1 < · · · < wr1 = w1. Let now
06 h 6 w1. Definek1(h) = max{k : wk1 6 h} andk2(h) = min{k : wk1 > h}. Thus,
there are two possibilities: (i)k1(h) = k2(h) (i.e., h is the first coordinate of one of
the verticeswt, t 6 k), and (ii)k1(h) = k2(h)− 1.

Lemma 5.2. Let h = (h1, h2) where06 h1 6 w1 andh2 = βA(h1), and letki =
ki(h1) for i = 1,2. Consider a pointz ∈ [0,1]n with Az = h.

Thenz satisfieszi = 1 for i 6 ik1 and zi = 0 for i > ik2. In particular, when
k1 = k2 the pointz is unique.

Proof. The pointh lies on the upper boundary ofZA. Assume first thath = wk

(a vertex ofZA). Then there is a vectorc ∈ R2 such thatcTaj is positive whenj 6 ik
and negative otherwise (c is an outward normal vector toZA at h). Thenh is the
unique optimal solution to the linear program max{cTx : x ∈ ZA}. But eachx ∈ ZA
has the formx = Az for somez ∈ [0,1]n andcTx = cTAz =∑n

j=1(c
Taj )zj . Thus,

this linear function is maximized precisely when we letzj = 1 for j 6 ik andzj = 0
otherwise. This proves (i). Statement (ii) is proved similarly, except that the vectorc
is now an outward normal vector to the edge ofZA betweenwkandwk+1 (socTaj

is positive, zero or negative according to whetherj 6 ik, ik < j 6 ik+1 or j > ik+1,
respectively). �

We say that the majorizationA � B has acoincidence at hwhere 0< h < w1
if βA(h) = βB(h). Otherwise, we say thatA � B has no coincidence. If there is a
coincidence ath, then there must also be a coincidence at one of the points

∑r
j=1 b1,j

(this follows from the properties ofβA andβB). If DB(1) = · · · = DB(p) we say that
B is aD-constantmatrix. Note that ifB is D-constant, then the functionβB is linear
andZB degenerates into the line segment conv({0,w}).

The following result of the structure of matrices inM(A � B) may be seen as a
generalization of a result in [8].

Theorem 5.3. Assume that the majorizationA � B has a coincidence ath1 =∑r
j=1

b1,j and letki = ki(h1) for i = 1,2. Then eachX ∈M(A � B) satisfiesxi,j = 0
for i 6 ik1, j > r andxi,j = 0 for i > ik2, j 6 r.
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Proof. Let h = (h1, h2) where h2 = βB(h1) =∑r
j=1 b2,j . Thus h =∑r

j=1 bj .
SinceX ∈M(A � B), we haveAxj = bj for j 6 n and therefore

h =
r∑
j=1

bj =
r∑
j=1

Axj = A
r∑
j=1

xj .

The vectorz :=∑r
j=1 xj also satisfiesz ∈ [0,1]n (asX is row-stochastic). From

Lemma 5.2 we obtain that
∑r
j=1 xi,j = 1 for i 6 ik1 and

∑r
j=1 xi,j = 0 for i > ik2.

This implies the desired conclusion.�

We shall need a continuity result saying that the setZA depends continuously on
the matrixA. To state this more precisely, we letρ(U, V ) denote the Hausdorff dis-
tance between two setsU andv (in R2), i.e.,ρ(U, V ) = max{maxu∈U minv∈V ‖u−
v‖,maxv∈V minu∈U ‖u− v‖}.

Lemma 5.4. Assume thatA, Â ∈ R2,n andAe= Âe. If ‖aj − âj‖ 6 ε for all j 6
n, thenρ(ZA,ZÂ) 6 nε.

Proof. Assume that‖aj − âj‖ 6 ε for all j. Let x ∈ ZA so there are numbers
z1, . . . , zn in [0,1] such thatx =∑n

j=1 zja
j . We let ẑ=∑n

j=1 zj âj and note

that ẑ ∈ Z
Â

. Moreover,‖z− ẑ‖ = ‖∑n
j=1 zj (a

j − âj )‖ 6∑n
j=1 ‖aj − âj‖ 6 nε.

This implies that maxz∈ZA minẑ∈Z
Â
‖z− ẑ‖ 6 nε and (by symmetry)ρ(ZA,ZÂ)

6 nε. �

The following theorem generalizes a result of [2] about the existence of a positive
matrix in majorization polytopes.

Theorem 5.5. LetA � B. ThenM(A � B) contains a positive matrix if and only if
A � B has no coincidence orB is aD-constant matrix.

Proof. Assume thatA � B has a coincidence and thatB is not aD-constant matrix.
As A � B this implies thatA is not aD-constant matrix. Moreover, as remarked
above, we may assume thatA � B has a coincidence ath1 =∑r

j=1 b1,j for some
r ∈ {1, . . . , p − 1}. But then it follows from Theorem 5.3 that eachX ∈M(A � B)
has some zero entries, so there cannot be any positive matrix in the majorization
polytope.

To prove the converse, assume first thatB is aD-constant matrix so we have that
b2,j = b1,j · θ for some (positive) numberθ . We then havew2 =∑j b2,j = θw1.
DefineX ∈ Rn,p by xi,j = b1,j /w1 for all i 6 n and j 6 p (recall thatw1 > 0).
Then xi,j > 0 for all i, j and

∑
j xi,j = (1/w1)

∑
j b1,j = 1, thusX is a posit-

ive row-stochastic matrix. Moreover(AX)i,j =∑t ai,t xt,j = (b1,j /w1)
∑
t ai,t =

b1,j · wi/w1 = bi,j for all i, j (asw2 = θw1). Thus,AX = B and we have found a
positive matrix inM(A � B).
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Assume next thatA � B has no coincidence. This means thatβA(h) > βB(h)

for all 0< h < w1. Let ε be a small postive number and define the matrixX(ε) =
[xi,j (ε)] ∈ Rn,n by xi,j (ε) = 1− (n− 1)ε when i = j andxi,j (ε) = ε when i /=
j . For ε small enoughX(ε) is a positive row-stochastic (in fact doubly stochastic)
matrix. DefineA(ε) ∈ R2,n by A(ε) = AX(ε) and letaj (ε) denote thejth column of
A(ε). Then we obtain (asw =∑j aj )

aj (ε) = (1− (n− 1)ε)aj + ε
∑
i /=j

ai = (1− nε)aj + εw,

which gives‖aj − aj (ε)‖ 6 ε(n‖aj‖ + ‖w‖). It follows from Lemma 5.4 that we
can getZA(ε) arbitrarily close toZA by choosingε small enough. This means that
we have

βA(h) > βA(ε)(h) > βB(h) for all 0< h < w1.

Therefore, by Theorem 5.1,A(ε) � B and there is a row-stochastic matrixY with
A(ε)Y = B. Observe thatY has no zero column (as that would imply thatB has a
zero column which contradicts thatb1,j > 0 for all j). Collecting our results we now
get

B = A(ε)Y = AX(ε)Y.

But the matrixX(ε)Y is positive (asX(ε) is positive and no column ofY is zero)
and row-stochastic and the proof is complete.�

The following result holds for arbitrarym, although we shall only use it form = 2
in the following lemma.

Lemma 5.6. LetA ∈ Rm,n, B ∈ Rm,p and assume thatA � B. Then the dimension
of the affine set{X ∈ Rn,p:AX = B, Xe= e} is equal tonp − (p − 1)rank(A).

Proof. The matrix equationsAX = B, Xe= e may be written as the following
linear system with variables being the columns ofX

(ø) Axj = bj for j 6 p, x1+ · · · + xp = e.

We need to determine the dimension of the affine set consisting of the solutions
x1, . . . , xp of (ø). Note that the system is consistent asA � B. We may eliminate
xp from the last equation in(ø), so xp = e−∑p−1

j=1 xj and thenAxp = bp be-

comes
∑p−1
j=1 Axj = e− bp. Thus, dim(M(A � B)) = np − rank(Â) where Â is

thepm× (p − 1)n-dimensional block matrix

Â =


A

ð
A

A · · · A

 .
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Now, we note that the last (block) row of̂A is the sum of the other rows, so we
may delete the last block row in order to compute rank(Â). The resulting mat-
rix is the direct product ofp − 1 matrices each being equal toA, so rank(Â) =
(p − 1)rank(A) and the result follows. �

By applying this lemma to our case ofm = 2 we may calculate the dimension of
the majorization polytope in a certain situation.

Proposition 5.7. Consider again the case ofm = 2. Assume that the majoriza-
tion A � B holds and that it has no coincidence. Thendim(M(A � B)) = (n− 2)
p + 2.

Proof. WhenA � B has no coincidence we know from Theorem 5.5 thatM(A �
B) contains a positive matrix. Therefore none of the nonnegatity constraintsxi,j > 0
can be an implicit equality for the majorization polytope. Thus, the implicit equal-
ities are simplyAX = B, Xe= e and Lemma 5.7 gives dim(M(A � B)) = np −
(p − 1)rank(A). We have that rank(A) 6 2. The first row ofA is positive so the
rank is nonzero. If rank(A) = 1, ZA would be the line segment conv({0,w}) so
ZA = ZB and there would be a coincidence. Thus, rank(A) = 2 and the desired
result follows. �

We may now derive a result on the structure ofM(A � B). LetA � B so we have
βA > βB . Consider the setS = {h ∈ [0, w1]: βA(h) = βB(h)}. Assume, for simpli-
city, thatS is finite and that eachh ∈ S is the first coordinate of a vertex ofZA. This
implies that there are integersr1, . . . , rs such thatS = {0,∑r1

j=1 b2,j , . . . ,
∑rs
j=1

b2,j ,1}. We here have thatk1(
∑rν
j=1 b2,j ) = k2(

∑rν
j=1 b2,j ) := k(ν) for ν = 1, . . . , s.

Moreover, eachX ∈M(A � B) has the form

X = X1⊕ · · · ⊕ Xs,

whereXν is a(ik(ν+1) − ik(ν))× (rν+1− rν)-dimensional row-stochastic matrix, for
ν = 0, . . . , s − 1 (andr0 = 0, ik(0) = 0). Define nowA(ν) as the submatrix ofA
consisting of the columnsaj whereik(ν) < j 6 ik(ν+1). Let B(ν) be the submatrix of
B consisting of the columnsbj whererν < j 6 rν+1. We then have that

M(A � B) =M(A(1) � B(1))⊕ · · · ⊕M(A(s) � B(s))

and therefore (from Proposition 5.7)

dim(M(A � B) =
s∑

ν=1

dim(M(A(ν) � B(ν))

=
s∑

ν=1

[(ik(ν+1) − ik(ν) − 2)(rν+1− rν)+ 2].
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In general (without our simplifying assumption on the setS) the majorization
polytope has a “stair-case” nonzero pattern. This was discussed in [2] for the special
case of vector majorization. We omit the technicalities of such a description here.

We now proceed to show that the majorization polytope contains a matrix which
is the product of certain simple row-stochastic matrices.

Letk ∈ {0, . . . , p}, 06 α 6 1 and 06 γ 6 1 and consider then× n row stochastic
matrix

S(α, γ ; k) =
[
S1 0
0 I

]
,

whereI is the identity matrix and the matrixS1 has orderk + 1 and is given by

S1 =


γ 1− γ 0 0 . . . 0
...

...
...

...
...

γ 1− γ 0 0 . . . 0
γα (1− γ )α 1− α 0 . . . 0

 .
If A ∈ Rm,n and C = AS(α, γ ; k) then the columns ofC are c1 = γ (∑k

i=1 ai +
αak+1), c2 = (1− γ )(∑k

i=1 ai + αak+1), c3 = (1− α)ak+1, c4 = · · · = ck+1 = 0
andcj = aj for j = k + 2, . . . , n. Each matrix obtained fromS(α, γ ; k) by permut-
ing its lines (rows and columns) and possibly deleting columns with all zeros is called
anS-matrix. EveryS-matrix is row-stochastic so ifAX = B, whereX is a product of
S-matrices, thenA � B andX ∈M(A � B). More interestingly, the converse also
holds as stated in the following theorem.

Theorem 5.8. Let A ∈ R2,n andB ∈ R2,p and assume thatA � B. ThenM(A �
B) contains a matrix which is the product of at most p S-matrices.

Proof. Let A � B and we may assume that bothA andB are monotone. The proof
is by induction onp.

If p = 1, thenB = [b1] and sinceA � B we getAe= Be= B. Here then× 1
matrixX = [e] is anS-matrix (obtained fromS(1,1; n− 1) be deleting all columns
except the first which ise) so the desired result holds forp = 1.

Assume that the theorem holds whenB has at mostp − 1 columns. We may
assume that bothA and B are monotone. SinceA � B we have thatβA > βB .
Moreover, asβA(0) = βB(0) = 0 it follows thatDA(1) > DB(1). Therefore, there is
aλ > 1 such that the pointh = λb1 lies on the graph ofβA. Then we can find (confer
z in Lemma 5.2) ak ∈ {0, . . . , p} and 06 α 6 1 such thath =∑k

i=1 ai + αak+1.
Letting γ = 1/λ (so 0< γ 6 1) we now getb1 = γ (∑k

i=1 ai + αak+1). This im-
plies that the first column of the matrixA′ := AS(α, γ ; k) equalsb1. Moreover, we
haveβA > βA′ > βB as the graph ofβA′ is linear between0 andh (andb1 lies on
this line segment) and thereafter it coincides with the graph ofβA. ThusA′ � B and
thereforeA′1 � B1 where these two matrices are obtained fromA′andB respectively
by deleting the first column (which isb1 in both matrices). ButB1 hasp − 1 columns
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so by inductionA′1X′ = B1 for some matrixX′ which is the product of at mostp − 1
S-matricesS′i . From this we see thatAX = B whereX is the product ofS(α, γ ; k)
and the matrices[

1 0
0 S′i

]
each being anS-matrix. ThusX is the product of at mostp S-matrices which com-
pletes the induction proof.�

This theorem is along the same lines as a basic fact for vector majorization:
for row vectorsa,b ∈ Rn we have thata � b if and only if aX = b for a doubly
stochastic matrixX which is the product of at mostn matrices corresponding toT-
transforms. (Each such matrix is a convex combination of the identity matrix and
a permutation matrix corresponding to a transposition.) We remark that the geo-
metrical idea in the proof is to gradually “move” the curveβA towardsβB . This
may be done in several ways which proves the existence of related matrices in the
majorization polytope.

6. Support-majorization

In this final section we consider some combinatorial properties of matrix major-
ization and majorization polytopes.

Let A ∈Mm,n and B ∈Mm,p. Define supp(A) = {(i, j): ai,j > 0}. Let the
support-classof A, denoted byS(A), consist of thosem× n row-stochastic matrices
A′ satisfying supp(A′) = supp(A).S(B) is defined similarly. We say thatA support-
majorizesB, and writeA �s B, provided that for everyA′ ∈S(A) andB′ ∈S(B)
it holds thatA′ � B′. This means thatA � B and that the majorization is preserved
under every change of the entries of the matrices as long as one stays in the respective
support-classes. An even stronger notion than�s is the following. We say thatA
strongly support-majorizesB if A �s B and all the matrices in the majorization poly-
topesM(A′ � B′) for A′ ∈S(A) andB′ ∈S(B) belong to the same support-class
(so this class only depends onAandB, notA′ or B′).

Consider two distinct row indicesi and i ′ (wherei, i ′ 6 m). Recall thatai (bi)
is the ith row of A (B). If supp(ai) ∩ supp(ai′) /= ∅ implies that there is aj 6 p
such thatbi = bi′ = ej (the jth coordinate vector), we say that rowsi and i ′ are
nonconflicting; otherwise they are inconflict.

Theorem 6.1. LetA ∈Mm,n andB ∈Mm,p. ThenA �s B if and only if no pair of
rows is in conflict.

Proof. Assume that rowsi and i ′ are in conflict. Then there is ak ∈ supp(ai ) ∩
supp(ai′) and two distinct indicesj, j ′ 6 p with j ∈ supp(bi ) andj ′ ∈ supp(bi′).
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Therefore we can find a matrixB′ ∈S(B) with b′i,j , b′i′,j ′ > 1− ε whereε is a suit-
ably small positive number (see later). Moreover, we can find a matrixA′ ∈S(A)
with a′i,k = a′i′,k > 1− ε. We claim that

(∗)
[
a′i
a′
i′

]
�
[
b′i
b′
i′

]
.

This follows from Theorem 5.1 for by choosingε > 0 small enough we obtain
βA′1 � βB ′1. But from(∗) we conclude thatA′�B′ (for if there were a row-stochastic
matrixX with A′X = B′ then[

a′i
a′
i′

]
X =

[
b′i
b′
i′

]
,

which contradicts(∗)). We have therefore shown that a necessary condition for
A �s B is that no pair of rows is in conflict.

Assume that each pair of rows is nonconflicting. Construct the graphG with
node setI = {1, . . . ,m} and with an edge[i, i ′] whenever supp(ai ) ∩ supp(ai′) is
nonempty. Let the connected components ofG be (the node sets)I1, . . . , Ir ′ where
the trivial components (a single node) areIr+1, . . . , Ir ′ (where 16 r 6 r ′). It fol-
lows from the nonconflicting assumption that there are column indicesj1, . . . , jr
such thatbi = ejk for all i ∈ Ik, k = 1, . . . , r. We may find a permutation matrixP
of orderm such thatPA has the rows inIk before all rows inIk′ whenk < k′. Next
we may find a permutation matrixQ such that

Ā = PAQ =
Ā1

ð
Ār+1

 ,
whereĀ1, . . . , Ār , correspond to the rowsI1, . . . , Ir , respectively (the nontrivial
components) and̄Ar+1 is a disjoint-row-support matrix of the form (1). Further, the
matrix B̄ = PB may be written

B̄ =
 B̄1

...

B̄r+1

 ,
where fori = 1, . . . , r the matrixB̄i (with rows corresponding toIi ) has a column
of all ones and the remaining columns are zero. The matrixB̄r+1 may be an arbitrary
row-stochastic matrix. In order to show thatA �s B it suffices to show that̄A �s B̄.
So letA′ ∈S(Ā) andB′ ∈S(B̄). The matricesA′ andB′ may be written in the
same form as̄A andB̄ in terms of the submatricesA1, . . . ,Ar+1 andB1, . . . ,Br+1,
respectively. Letk 6 r. Then thejkth column ofBk (as inB̄k) is all ones and the other
columns are zero. Then there is a row-stochastic matrixXk such thatAkXk = Bk;
just let thejkth column ofXk be all ones while all other columns are zero. (The
matrix equation holds asAk is row-stochastic.) Furthermore, there is a row-stochastic
matrixXk+1 such thatAr+1Xr+1 = Br+1. This follows from Proposition 2.2 because
Ar+1 is a disjoint-row-support matrix. We let
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X =
 X1

...

Xr+1


and note thatX is row-stochastic. Moreover,̄AX = B̄ so Ā � B̄. This proves that
A �s B and the proof is complete.�

We see from the proof of Theorem 6.1 that whenA �s B both these matrices may
be constructed in a certain manner (see the decomposition ofĀ andB̄). Moreover,
the proof also indicates that the matrices in the majorization polytope have a certain
structure. This structure is exploited next to obtain a characterization of the notion
of strong majorization. First, we need a result on the dimension of the transportation
polytope (the proof is easy and omitted).

Lemma 6.2. Leta ∈ Rn andb ∈ Rp be nonnegative vectors with
∑n
j=1 aj =

∑p

j=1
bj . Letn+ andp+ be the number of positive elements ina andb, respectively. Then
the transportation polytopeT(a,b) has dimension(n+ − 1)(p+ − 1).

Let I0 consist of those row indicesi 6 m such that supp(ai ) ∩ supp(ak) = ∅ for all
k 6 m, k /= i, these are the indices of rows ofA that have disjoint support from every
other row.

Corollary 6.3. Let A ∈Mm,n andB ∈Mm,p. ThenA strongly majorizesB if and
only if the following conditions hold:

(i) no pair of rows is in conflict,
(ii) if A has a zero column thenp = 0 and
(iii) for eachi ∈ I0 at least one of the rowsai andbi is integral (so it is a unit

vector).

Proof. Assume thatA strongly majorizesB, so by Theorem 6.1 (i) holds. Then there
are permutation matricesP andQ such thatĀ = PAQ andB̄ = PB have the form
explained in the proof of Theorem 6.1. Thus, ifX ∈M(A � B), thenPAQQTX =
PB soĀZ = B̄ whereZ = QTX. We partitionZ by

Z =
 Z1

...

Zr+1


and thenĀZ = B̄ becomesĀkZk = B̄k for k = 1, . . . , r + 1. Let first k 6 r. We
recall the structure of the matrices involved:B̄k has a column of all ones and the
remaining columns are zero, and̄Ak has no zero column. Moreover, since both
Āi andZk are nonnegative, we deduce that alsoZk has a column of all ones and
the remaining columns are zero. Next, considerk = r + 1. Ār+1 is a disjoint-row-
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support matrix whileB̄r+1 is arbitrary (but row-stochastic). Then the solutionZk+1
of Āk+1Zk+1 = B̄k+1 has the form (2) given in Proposition 2.2, say

Zk+1 =


Zk+1,1
...

Zk+1,p
Zk+1,0

 ,
whereZk+1,i = D(āi )−1Yi andYi ∈T(āi,bi ) for eachi andZk+1,0 ∈Mn0,p. Note
that the last matrix corresponds ton0 columns ofA that are zero. Assume thatn0 > 0
andp > 0. ThenMn0,p contains two matrices in different support classes and so
doesM(A � B) (recall thatZ = QTX soX is obtained fromZ by some permutation
of its rows). But this contradicts thatA strongly majorizesB, so (ii) holds. Finally, if
property (iii) were violated, the dimension of the transportation polytopeT(āi ,bi )
would be at least one (see Lemma 6.2), and then this polytope would have vertices
with distinct support. This would again give solutions in the majorization polytope
with different supports, a contradiction. Thus, property (iii) must hold. This, proves
that (i)–(iii) all hold. The converse implication is shown using arguments as in the
proof of Theorem 6.1. In fact, conditions (i)–(iii) imply that there is a uniqueX in
M(A � B) so thenA strongly majorizesB. We omit the details here. �

Thus, strong majorization is indeed a very strong requirement as the majorization
polytope contains a unique element in that case. Note that this element is an integral
row-stochastic matrix, so Proposition 3.1 gives a further description of the relation
between the columns ofA andB in this situation.
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