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Abstract

We study polytopes related to the conceptradtrix majorization for two real matrice\
andB havingm rows we say thaA majorizesB if there is a row-stochastic matrix with
AX = B. In that case we writé > B and the associated majorization polytopg&A > B)
is the set of row stochastic matricEssuch thatAX = B. We investigate some properties of
(A = B) and obtain e.g., generalizations of some results known for vector majorization.
Relations to transportation polytopes and network flow theory are discussed. A complete
description of the vertices of majorization polytopes is found for some special cases. © 1999
Elsevier Science Inc. All rights reserved.
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1. Introduction

Let.#,,, denote the set of x p row-stochastic matrices, i.&X,= [x; j1 € 4,
means that; ; > 0 for all i, j andzg.’:l x;,j = 1 for alli. We recall the notion of
matrix majorizationas defined in [5]. LetA and B be two real matrices witim
rows, sayA € R™" andB € R™”. We say thaf majorizesB, and writeA > B (or
B < A), provided that there exists a row-stochastic maXrisuch that

AX = B.
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Note that the number of columns in the two matridgeend B may be differ-
ent. Matrix majorization is a preorder on the set of real matrices mitbws. For
different properties of and characterizations éf > B, see [5].

Corresponding té\ € R™" andB € R™? we define thenajorization polytope

M(A > B) = {X € .M, ,AX = B}.

This set is nonempty ifA > B, and in that case, it is a bounded polyhedron, i.e.,
a polytope in the vector spad&-”. We lete denote a (column) vector of all ones
(properly dimensioned). Note thatAf -~ B thenAe = Be (asBe = AXe = Ae).

For other (related) majorization notions for matrices see e.g. [1,7,9] (further ref-
erences are in [5]). Majorization in connection with measure families was studied in
e.g. [10].

Matrix majorization generalizes the classical concept of majorization between
vectors. Recall that i, b € R" one says thad majorizesh, denoted bya > b,
providedthab""_, ajj) > YA abjpfork=1....n—landyl_ja; =Y"_;b;.
(Hereqy j; denotes théth largest number among the componentas pht now follows
from our definition above that the matrix majorization

1...1 . 1...1
ai ... ay by ... by

holds if and only if there is a doubly stochastic matdxe R™" such tha@aX =
b'. But this is equivalent t@ > b according to a well-known theorem of Hardy-
Littlewood and Pdlya (see [9]).

The goal of this paper is to investigate the majorization polytofpeA >~ B)
under certain assumptions on the matrices involved.

For vector majorization, sag > b, the majorization polytop@(a > b) consist-
ing of all doubly stochastic matriceS satisfyingSa= b was studied in [2] and
different combinatorial properties of this polytope were found. In particular the sup-
port matrix of the majorization was determined. A related study for majorization
polytopes in connection wittmultivariate majorizations found in [3]. In that paper
(see also [9]) one says that anx n matrix A multivariate majorizes another x n
matrix B, and writeA >q B, provided that there is@oublystochastic matriX such
thatAX = B. Matrix majorization generalizes this notion as we have that

T T
e e
[A:|> |:B:| < A >¢4B.
WhenA andB are (0, 1)-matrices with exactly one 1 in each row (or exactly two
ones in each row) a complete description of all vertices/ @A > B) was given in
[3].

Some of our notation is explained ne®™" is the vector space of real x n
matrices. LetA € R™". Then thejth column vector ofA is denoted by’ and the
ith row vector is denoted bg;. A matrix or vector with all components being zero is
denoted byo. If S € R” the convex hull ofSis denoted by coni).
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2. Relation to transportation polytopes

Leta' =[a1,...,a,] andb” = [b1, ..., b,] be vectors with nonnegative com-
ponents and satisfyinﬁj;f=l aj = Zle b;. Define

T@b)={YeR":Ye=a, €'Y=b", Y >0

The polytope7 (a, b) is the well-knowrntransportation polytop&vhich arises in the

transportation problem in linear programming. It is widely studied, see e.g. [11], and

the 1-skeleton of this polytope is known, and its vertices correspond to spanning

trees in the complete bipartite gragh, ,. .7 (a, b) is nonempty agj aj = Zj b;.
Whenz e R" we letD(z) € R"" denote the diagonal matrix wiy; ; = z; for

j =1,...,n. Majorization polytopes are related to transportation polytopes as given

in the following proposition. Apositivematrix is a matrix with only positive entries.

Proposition 2.1. LetA € R™" be positive and® € R™? nonnegative. Then

MA>B)=(D@) " 7 (@.b).
i=1

(D(a)~1- 7 (a;, b;) consists of the matricé®(a;) 1Y whereY € 7 (a;, b;)).

Proof. Assume thaK € .#(A = B) soX >0, Xe = eanda] X = b/ fori < m.
Consider a fixed < m and definef = D(a;)X. Note that the diagonal matri(a;)
is positive and nonsingular, by assumption. Therefate= 0, Ye = D(g)X
e=D()e=4a and bl =a'X =alD(a)~1Y =€eTY. This means thaty e
7 (a,b) and thereforeX € D(a;)~1- 7 (a, b). Since this holds for every < m
we conclude that#(A > B) € (i, D(a)~1- 7 (a,b;). The converse inclusion
is shown similarly. O

Thus the majorization polytop# (A > B) is the intersection af“scaled” trans-
portation polytopes. A similar correspondence exists in the general case Aviere
nonnegative and may contain zeros, see [5].

In generalZ (A = B) may be very complex, but wheh has a certain property
the relation to transportation polytopes becomes very useful. Le{sugenote the
support of a vectox € R", i.e., suppx) = {j < n:x; # 0}. AmatrixA € .4y, , is
a disjoint-row-support matrixf the supports of its rows are pairwise disjoint. By
suitable line permutations such a mati>xcan be brought to the form

a o 0 O
o &% &)

0 a0
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where fori = 1,...,m, & is a vector inR"™ with only positive components and
ng=n—y i qn;.

Proposition 2.2. LetA € .#,,, be a disjoint-row-support matrix as given (i),
and letB € .4, ,. ThenA > B and.# (A > B) consists of the matrice$ given by

X1
x=1| " 2)
Xo
whereX; = D(&)~Y; andY; € 7 (&, b;) fori =1,...,m andXo € My, .

Proof. Comparing théth row in the matrix equatioAX = B we geta'X; = b]
fori =1,..., m. Thus, arguments as in the proof of Proposition 2.1 give the desired
result. O

In the situation given in Proposition 2.2 we also see that the vertices of
(A > B) are the matriceX in (2) whereY; is a vertex of7 (&, b;) andXg €
M g, p 18 integral. As remarked above, such verti¥esorrespond to spanning trees
in the complete bipartite grapki,; ,.

The result of Proposition 2.2 also applies to an arbitrary disjoint-row-support mat-
rx A € 4 . This is due to the fact that whéhandQ are permutations matrices
thenAX = B is equivalent taPAQ)(QTX) = PB. Here one may choode andQ
so thatPAQ has the form (1).

3. Relation to network flow theory

The purpose of this section is demonstrate a relation between majorization poly-
topes and the theory of network flows.

First we discuss some questions concerning integral matrices in majorization
polytopes. An integral row-stochastic matrix is(@ 1)-matrix with exactly one
nonzero, a one, in each row. Following [5] we define kharkotope.Z (A; k) as-
sociated withA € R™" and a positive integdcby

A k) = {AX:X € My i)

Thus, lettingB € R™? andk = p, we see thaf > B if and only if B € .Z (A; p).
The Markotope# (A; k) is a polytope ifR”* and (see [5]) each vertex o (A; k)
may be written

[Zjell al.... ZjEJk aj] ’
wherelJy, ..., Ji is a partition off1, . . ., n} (some of the sets may be empty in which
case the vector sum should be understood as the zero vector). Thus, the vertices
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are those matrices of the fordX whereX is an integral row-stochastic matrix.
From this we directly obtain the following result concerning integral matrices in the
majorization polytope.

Proposition 3.1. LetA € R"™" andB € R"™? satisfyA = B. Then#Z (A - B) con-
tains an integral matrix if and only iB is a vertex ofZ (A; p), or, equivalentlythere

is a partitionJy, ..., J, of {1,..., n} such thaBB = [Zjeha/,...,zje,p a/].

We now turn to network flows. Le& = (V, E) be a directed graph with node
setV and arc seE. Let m andn denote the number of nodes and arcs, respectively.
The set of arcs with terminal end node (head$ denoted by~ (v) and the set of
arcs with initial endnode (tail) is denoted by (v). A vectorb € RY (or R”) with
> vey by = 0'is a called alemandvectol) and a vectok e RE satisfying

() Xecs—)Xe = DeestyXe =by forallveV;
(i) x>0 forallee E

3)

is called ab-flow. One can interpret, wheree = (v, w) as a flow from node to
nodew along the ar@ and then Eq. (3)(i) says that the net flow into nadequals
b, for eachv € V. Let u € Rfbe a nonnegative vector, calleccapacity and let

bl, ..., bSbe different demands. ¥/ is ab/-flow for j = 1,...,s and
S .
Yo <u
=1
we call(x1, ..., x?) amulticommodity flowv.r.t. (b%, ..., bS; u). These constraints

say that the total flow (summed over all commodities) in eacteaaes not exceed
the capacity,.

Let A € R™" be the node-arc incidence matrix of the digr&phThus,A is the
(=1, 0, 1)-matrix with a row for eachy € V and a column for each akce E and
aye=1if e €8 (v), ay=—11if e € §7(v) anda,,. = 0 otherwise. Moreover,
letb®, ..., b”~! be demand vectors iR" and defineb” = Yj_; a/ — Zf;ll b/,
Thus,Ae = BewhereB = [bl, ..., b”] (a necessary majorization condition).

The following immediate result connects majorization and flows.

Proposition 3.2. WhenA andB are as abovghenA > B if and only if there exists a

multicommodity flow (x%,...,x?~1) wrt. (bl,...,b?~1;e). Moreover
X e /(A > B)ifandonlyifX = [x1, ..., x?]where(x!, ..., x?~1) is a multicom-
modity flow w.r.t(b®, ..., b?~1; e) andx? = e— Z;’;ll xJ.

Proof. AX = B means thafAx/ = b/ for j =1, ..., p. Here the equatioAx” =
b? may be replaced bE?;ll x/ < easAe=Be. [
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Thus, the question of whether the majorizatdn- B holds corresponds to the
existence question for multicommodity flows, and the majorization polytope is es-
sentially the set of multicommodity flows. Consider the special cage-6f2. Then
A > B holds if and only if there is &*-flow x satisfyingx < e. From network flow

theory such a flow exists if and only ¥t _,, b1 = 0 and

67($)1 =Y by forallScV,

veS

wheres~(S) is the set of all arcs with head i and tail outsideS. More gener-

ally, in the multicommodity case (arbitrap) conditions assuring the existence of a
multicommodity flow w.r.t.(b%, ..., b?~1; u) are well known in the network flow
literature (these conditions are derived from Farkas’ lemma). The computational
problem of checking if there exists a multicommodity flow may be solved efficiently
by linear programming. This is not so, however, if we ask fordegral multicom-
modity flow. Consider the special case of the situation in Proposition 3.2 where
eachb’/ for j =1,..., p — 1 contains a—1 and a 1 while all other components
are zero, say] = —1if v=r/, b} =1 if v=s/ andb] = 0 otherwise. Then,

an integral multicommodity flow simply corresponds to arc-disjoint directed paths
01, ...,0P Y where, forj =1,..., p—1, O/ goes fromv/ to s/. The computa-
tional problem of checking the existence of such paths (in a given directed graph) is
known to beNP-complete, even ip = 3 (see [6]). This means, confer Propositions
3.1 and 3.2, that even & = B and p = 3, it is NP-hard to decide if#(A > B)
contains an integral matrix.

4. The full row-rank case

Throughout this section we consider a given majorizattos B where A €
R™" B e R™P andA has full row-rank (s& > m).

Note that ifP is ann x n permutation matrix anéX = B, thenAPPTX = B.
So, permuting columns of the matixsimply corresponds to permuting rows of the
matrices in the majorization polytope. Thus, we may assumeitiigpartitioned as

A =[A1,A7], (4)
whereA1 € R™™ is nonsingular.

Proposition 4.1. Assume thaA is partitioned as in(4) with A; € R™™ nonsingu-
lar. Then

M(A = B) = {[f{l} X1=A7YB - A2Y), Y € M (A > B)} ,

where
MHA = B) ={Y € My p: ATTAY <ATTB].
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Proof. We partitionX € R™" as

<[]

(whereX1 € R™™ andY € R"™"P) and see thahX = B is equivalent toA1X1 +
A>Y = B. ButA1is nonsingular so the system becorxgs= AIl(B — AoY) where
Y is arbitrary. The additional constraints &0 i.e., thatX is row-stochastic, now
translate into bottX1 andY being row-stochastic. Clearl)§1 > 0 is equivalent
to A7*A,Y < A7'B. Moreover, wherY is row-stochastic we obtaikie = A7
(B-AzY)e=A7'(Be—AyYe) = AT (Ae — Aze) = A{'Aje=e The desired
result now follows. [

Therefore, a study of the majorization polytop®&(A > B) reduces to a study
of thereduced majorization polytop#* (A > B) which lies in a lower-dimensional
spaceR* """ The two polytopes are affinely isomorphic. Whenr m is small, this
may make it possible to obtain much more information about these polytopes. When
n = m we trivially have that# (A > B) = {A~1B}. More interestingly, we now give
a complete description of all the vertices.@f(A = B) in the caser — m = 1.

Letn =m+1 soA = [A1, a,]. Moreover, letY =y wherey € R? and we
want to find the (column) vectossin the reduced majorization polytope (viewed as
apolytope irR” now). DefineC = A7'B andd = A 'a,. We see thag € ./*(A ~
B) if and only if dy” < C, or equivalently,

(%) d; - yj < Cij foralli <m, j <p.
This system just provides lower and upper bounds on each variablg,. Ligtand/_
denote the set of indicés< p such thatj; is positive, zero or negative, respectively.
Then(x) is equivalent to

(i) ci,;j =0 foralli € In, j < p,

, . ©)

(i) [ <yj<u; forallj<p,
where [ :=maXc; j/di:i € I_, j < p} and uj :=min{c; j/di:i € I, j < p}.
From this discussion we arrive at the following result (with the notation introduced
above).

Proposition 4.2. Whenn = m + 1 and A1 is nonsingular we have that > B if
and only if(5)(i) holds I; < u; forall j < p and Zj ;<1< Zj u j. Moreover
when these conditions hqgldZ*(A > B) is the solution set of5) and the vertices
are of the formy; € {l;, u;} for all but possibly one | aan yi =1

From this, due to Proposition 4.1, one gets a complete description of both facets
and vertices of majorization polytopes for the case wheam + 1. We remark

that all the vertices of the polytoges(x = y) whenn = 3 were determined in [4]
(Q3(x > y) consists of the doubly stochasticx33-matricesS satisfyingSx =y for
givenx,y € R3).
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As a small example consider
1 1 1 1 1 1
Az[s 3 1}’ 82[4 4 2]
ThenA > B as (6,3,1) > (4,4, 2). Some calculation shows that the linear sys-
tem (%) defining the reduced majorization polytope is<Oy1 < 2/5, 0< y2 <

2/5, 1/2 < y3 < 4/5 and the vertices ar®, 2/5, 3/5), (2/5, 0, 3/5), (2/5, 1/10,
1/2),(1/10, 2/5,1/2) and(1/5, O, 4/5).

5. The case of two rows

Throughoutthis section we consider the case whea 2 soA andB are matrices

A— a1l ... ain 7 B_ bi1 ... by .
a1 ... azy b1 ... b2,
We shall assume that (i) both matrices are nonnegative(ij)> 0 for j < n and

by,; > Ofor j < p, and (i) Ae = Be. For instance, the matrices in Section 1 in con-
nection with vector majorization fit into this framework. We define:= Z?:l a;,j
= Zle b j fori = 1,2 andw = (w1, wp). Note thatws > 0.

We need some sets and functions associated with the mfa(axd similar con-
cepts and notation are used in connection BjhAs usual thgth column ofA is
al. The set

Za =) _conu{0.a’})
i1

is a zonotope (a vector sum of line segmentsikfrwhich is symmetric around the
point (1/2)w. An example is shown in Fig. 1. Note that the zonotoggsand Z g
have the same point of symmetry. The “upper boundaryZ gfmay be seen as the
graph of a functiorB4: [0, w1] — R given by

Ba(h) =maXy: (h,y) € Za}

n n
= max Zazijj : Zal,jvj <h 0<v; <1
j=1 j=1

forj=1,...,n

for 0 < h < wi. The functiong, is piecewise linear, concave, hondecreasing and
continuous (and its graph h@sandw as its endpoints). We also define

A () =azjjar; forj=1,...,n

so44(}) is the slope of the line segment caf®, a}).
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Fig. 1. The zonotop&a .

We hereafter assume that the columnsAdfiave been permuted so that (/)
is nonincreasing as a function pand we then say tha is monotone Similarly,
we assume thad is monotone. This is with no loss of generality as permutations of
columns ofA andB correspond to line permutations of matrices in the majorization
polytope. It follows from the monotonicity tht (Y5 _; a1, ;) = Y 5_; az j fork =
0.1.....n (andpa is linear on each intervab_"_; a1 ;, >\71 a1 ;).

The following result was shown in [5]. It gives a geometrical characterization of
matrix majorization.

Theorem 5.1. The following conditions are equivalent for nonnegative matrices
A € R?>" andB e R>” with Ae = Be:

(i) A > B.
(ily Za D Zp.

(i) Ba = Ba.

k k
V) Ba | D brj| =D baj fork=1....p—1
j=1 j=1
Condition (iv) has special interest, it can be seen as a generalization of the (defining)
partial sum ordering of vector majorization. Thus, when = b1 ; = 1 forallj (iv)
specializes intg_%_y agj) > Y5 b fork=1,....n— 1.

SinceA is monotone, there are integers0ip < i1 < --- < i, = n and numbers
A4 > A4 > - > A% such that” (j) = 43 for all ix_1 < j <ir and 1<k < r.
Similarly, for B, we may construct the numbet§ > - .- > 4%.

Remark. Consider the matrid’ obtained fromA by replacing the columna/ for
ix—1 < j < i by the single column vectozljk:ik_ﬁ1 a’/. Onecan show tha’ >
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A andA > A’, i.e., these matrices are equivalent with respect to the majorization
preorder. Moreover, all the numbeﬁ/ are distinct. Similarly we may construst
from B. The benefit of this approach is that the analysis/fA’ >~ B") becomes
less technical. However, this process does influence the majorization polytope, so
we prefer to treat the more general case in the following.

We need a result on the representation of points on the upper boundéyy tie
vertices on the upper boundary are the poivits= Z;f‘zl a;fork =0,...,r (where
w® = 0 andw” = w). Note that we have & w9 < w} < ... < w; = w;. Let now
0 < i < wy. Definek1(h) = maxtk : w < h}andka(h) = min{k : wX > h}. Thus,
there are two possibilities: (R1(h) = k2(h) (i.e., his the first coordinate of one of
the verticesn!, t < k), and (i) k1(h) = ka(h) — 1.

Lemmab5.2. Leth = (h1, ho) where0 < h1 < w1 andho = Ba(hy), and letk; =
ki(hy) fori = 1, 2. Consider a point € [0, 1]" with Az = h.

Thenz satisfiesz; = 1 for i < iy, andz; =0 for i > i,. In particular, when
k1 = ko the pointz is unique.

Proof. The pointh lies on the upper boundary &,. Assume first thah = w*
(avertex 0fZ,). Thenthere is a vectare R? such that'a’ is positive whery < ix

and negative otherwise (s an outward normal vector td4 ath). Thenh is the
unique optimal solution to the linear program m@kx : x € Z4}. But eachx € Z4

has the formx = Az for somez € [0, 1]" andc'x = cTAz = Z;’-zl(cTaj)zj. Thus,
this linear function is maximized precisely when wedet= 1 for j < i andz; =0
otherwise. This proves (i). Statement (ii) is proved similarly, except that the vector
is now an outward normal vector to the edgeZof betweenw*andw/+1 (soc’a/

is positive, zero or negative according to whetheg i, iy < j < ig410rj > if41,
respectively). O

We say that the majorizatioA = B has acoincidence at twhere O< & < w1
if Ba(h) = Bp(h). Otherwise, we say tha& > B has no coincidence. If there is a
coincidence al, then there must also be a coincidence at one of the p@@;sl by,
(this follows from the properties ¢f4 andgp). If 4p(1) = --- = Ap(p) we say that
B is a4-constanimatrix. Note that ifB is A4-constant, then the functigfy is linear
andZp degenerates into the line segment agavwy}).

The following result of the structure of matrices.id(A > B) may be seen as a
generalization of a result in [8].

Theorem 5.3. Assume that the majorizati@n ~ B has a coincidencediy = ', _;
by,; and letk; = k;(hy) fori =1, 2. Then eachX e .Z (A > B) satisfiesy; ; =0
fori <iyg,j>randx;; =0 fori>ig, j<r.
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Proof. Let h = (h1, hp) where h; = ,35(111) = Z;:l by ;. Thush = Z;Zl b;.
SinceX € .Z (A > B), we haveAx’/ = b’ for j < n and therefore

h =Xr:bf = Xr:ij :Aixf.
= i1 =1

The vectorz .= Z;zl x/ also satisfieg € [0, 1]" (asX is row-stochastic). From
Lemma 5.2 we obtain thgt;_ x; ; = 1fori <iy, and}’_; xi j = 0fori > iy,.
This implies the desired conclusiond

We shall need a continuity result saying that theggidepends continuously on
the matrixA. To state this more precisely, we |etU, V) denote the Hausdorff dis-
tance between two setsandv (in R?), i.e., p(U, V) = maxmaxcy Minvey ||u —
V[, maxey Minuey flu — Vv|f}.

Lemma 5.4. Assume thah, A € R?>" andAe = Ae. If ||a; — &, < e forall j <
n,thenp(Za, ZA) < ne.

Proof. Assume that|a; — &;| < e for all j. Let x € Z4 so there are numbers

21,..., 2z, in [0,1] such thatx =Y}_; z;a/. We letz=)"_;z;&4; and note
thatz e Z ;. Moreover,||lz— 2|l = || 37y z;(@ — &)l < X1 llaj — &;ll < ne.

This implies that max, minieZA |z —2|| < ne and (by symmetry)o(Za, Z;)
<ne. O

The following theorem generalizes a result of [2] about the existence of a positive
matrix in majorization polytopes.

Theorem 5.5. LetA > B. Then.Z (A > B) contains a positive matrix if and only if
A > B has no coincidence @ is a A-constant matrix.

Proof. Assume thaf > B has a coincidence and tHais not a4-constant matrix.
As A > B this implies thatA is not a4-constant matrix. Moreover, as remarked
above, we may assume that- B has a coincidence @t = Z;zl by,; for some
re{l,..., p—1}. Butthen it follows from Theorem 5.3 that eakhe .# (A > B)
has some zero entries, so there cannot be any positive matrix in the majorization
polytope.

To prove the converse, assume first tBas a A4-constant matrix so we have that
by,j = ba,; - 6 for some (positive) number. We then havevy =, b j = dwa.
DefineX € R"? by x; j = b1 j/wy for all i <n andj < p (recall thatw; > 0).
Thenx;; >0 foralli,j and}_; x;; = (1/w1) }_; b1,; = 1, thusX is a posit-
ive row-stochastic matrix. MoreoveAX); ; = >, aix;j = (b1, j/w1) Y, ai; =
by j-wi/wi=b;jforalli, j (aswz = fwi). Thus,AX = B and we have found a
positive matrix in.Z (A > B).



168 G. Dahl/ Linear Algebra and its Applications 297 (1999) 157-175

Assume next thaf > B has no coincidence. This means tifat(h) > B (h)
forall 0 < 1 < w1. Let e be a small postive number and define the maXrix) =
[xi j(e)] € R*" by x; j(€) =1 — (n — 1)e wheni = j andx; j(e) =€ wheni #
j. Fore small enoughX(¢) is a positive row-stochastic (in fact doubly stochastic)
matrix. DefineA(¢) € R%" by A(e) = AX (¢) and leta’ (¢) denote thgth column of
A(e). Then we obtain (a = ) ; a/)

ale)=(1-n-Deoa +e) a =1-nea +ew,
i#]
which gives|la’ — &’ (e)| < e(nl|a’|| + [lw]). It follows from Lemma 5.4 that we

can getZ ) arbitrarily close toZ4 by choosings small enough. This means that
we have

Ba(h) = Baw)(h) > Bp(h) forall0 <h < wi.

Therefore, by Theorem 5.A,(¢) > B and there is a row-stochastic matiwith
A(e)Y = B. Observe that¥ has no zero column (as that would imply tli&ahas a
zero column which contradicts thiat ; > O for all j). Collecting our results we now
get

B=A(e)Y = AX(e)Y.

But the matrixX(e)Y is positive (asX(¢) is positive and no column ofY is zero)
and row-stochastic and the proof is completé]

The following result holds for arbitrany, although we shall only use it fat = 2
in the following lemma.

Lemmab5.6. LetA € R™", B € R™7? and assume tha > B. Then the dimension
of the affine sefX € R™?: AX = B, Xe = e} is equal tonp — (p — Drank(A).

Proof. The matrix equation®\X = B, Xe = e may be written as the following
linear system with variables being the columnof

() Ax/=bl forj<p, xt4+---4+xP=e
We need to determine the dimension of the affine set consisting of the solutions

xL, ..., x? of (»). Note that the system is consistent/as- B. We may eliminate
xP from the last equation irf%), sox” = e — Zf_lle and thenAx? = b? be-

comest;llef =e—b”. Thus, din{.Z(A = B)) = np — rankA) whereA is
the pm x (p — Ln-dimensional block matrix

A
A:
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Now, we note that the last (block) row @ is the sum of the other rows, so we
may delete the last block row in order to compute @k The resulting mat-
rix is the direct product ofp — 1 matrices each being equal &9 so rankA) =
(p — Drank(A) and the result follows. O

By applying this lemma to our case @f = 2 we may calculate the dimension of
the majorization polytope in a certain situation.

Proposition 5.7. Consider again the case at = 2. Assume that the majoriza-
tion A > B holds and that it has no coincidence. Thdim(.Z (A > B)) = (n — 2)
p+2

Proof. WhenA > B has no coincidence we know from Theorem 5.5 thiatA >

B) contains a positive matrix. Therefore none of the nonnegatity constraints 0

can be an implicit equality for the majorization polytope. Thus, the implicit equal-
ities are simplyAX = B, Xe = e and Lemma 5.7 gives diw/(A = B)) = np —

(p — DranklA). We have that ranld) < 2. The first row ofA is positive so the
rank is nonzero. If rantd) = 1, Z, would be the line segment coff@, w}) so

ZA = Zp and there would be a coincidence. Thus, @k= 2 and the desired
result follows. O

We may now derive a result on the structure4tA - B). LetA = B so we have
Ba = Bp. Consider the sef = {h € [0, w1]: Ba(h) = Bp(h)}. Assume, for simpli-
city, thatSis finite and that each € S is the first coordinate of a vertex @f4. This
implies that there are integers, ..., r; such thatS = {0, 3711 b2, ..., 27
b2,j, 1). We here have thai (3”1 b2, ) = ko3 b2,j) := k() forv =1,....s.
Moreover, eaclX € .# (A > B) has the form

X=X1®--- & X,

whereX, is a(ixw+1) — ixw)) X (rv41 — ry)-dimensional row-stochastic matrix, for
v=0,...,5s —1 (andro = 0, ix(0) = 0). Define nowA") as the submatrix oA
consisting of the columre/ whereik(v) < J <ikw+1)- LetB™ be the submatrix of
B consisting of the columnis’ wherer, < j < ry4+1. We then have that

MA =B)=#4AY ~BDY®...® . #AY = BY)

and therefore (from Proposition 5.7)

S
dim(.# (A = B) = Zdim(%(A(”) ~ BW)
=1

S
=Y [lkw+n) = ikw) — D(rvs1 — 1) + 21,
v=1
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In general (without our simplifying assumption on the Sgtthe majorization
polytope has a “stair-case” nonzero pattern. This was discussed in [2] for the special
case of vector majorization. We omit the technicalities of such a description here.

We now proceed to show that the majorization polytope contains a matrix which
is the product of certain simple row-stochastic matrices.

Letk € {0, ..., p},0< o < 1and0< y < 1and consider the x n row stochastic
matrix
|t O
S(asysk)_l:o Ii|7
wherel is the identity matrix and the matr& has ordek + 1 and is given by
y 11—y 0 0o ... 0
S =] : : : :
y 11—y 0 0o ... 0
yoa (l—yp)x 1—a O ... O
If A e R™" andC = AS(«, y; k) then the columns o€ arec! = y (Y *_, a +
adtl), 2= 1—y)(T, @ +edth), S=A-wadtl ct=... =t =0

andc/ = a/ for j = k + 2, ..., n. Each matrix obtained fror8(e, y; k) by permut-

ing its lines (rows and columns) and possibly deleting columns with all zeros is called
anS-matrix EveryS-matrix is row-stochastic so AX = B, whereX is a product of
Smatrices, therA > B andX € .#Z (A > B). More interestingly, the converse also
holds as stated in the following theorem.

Theorem 5.8. Let A € R?>" andB € R>” and assume tha > B. Then.Z(A >
B) contains a matrix which is the product of at most p S-matrices.

Proof. LetA > B and we may assume that bathandB are monotone. The proof
is by induction ormp.

If p =1, thenB = [b'] and sinceA > B we getAe = Be = B. Here then x 1
matrix X = [€] is anS-matrix (obtained fron8(1, 1; n — 1) be deleting all columns
except the first which is) so the desired result holds fpr= 1.

Assume that the theorem holds whBrhas at mosf — 1 columns. We may
assume that both and B are monotone. Sincé > B we have that8, > 5.
Moreover, a4 (0) = B3 (0) = 0 it follows that44 (1) > 45 (1). Therefore, there is
ax > 1 such that the poirit = b lies on the graph o8 4. Then we can find (confer
zinLemma5.2) & € {0, ..., p} and 0< « < 1 such thah = X, & + aat*1.
Letting y = 1/A (so O< y < 1) we now geb! = y(Y5_, @ + aa*1). This im-
plies that the first column of the matri := AS(«, y; k) equalsb. Moreover, we
haveBs > Ba > Bp as the graph oB is linear betwee® andh (andb? lies on
this line segment) and thereafter it coincides with the gragdyofThusA’ > B and
thereforeA] > B1 where these two matrices are obtained fidfandB respectively
by deleting the first column (which & in both matrices). BuB1 hasp — 1 columns



G. Dahl/ Linear Algebra and its Applications 297 (1999) 157-175 171

so by inductiomA’} X" = By for some matrixX” which is the product of at mogt — 1
SmatricesS,. From this we see thaX = B whereX is the product oB(«, y; k)
and the matrices

B

each being ais-matrix. ThusX is the product of at mogi Smatrices which com-
pletes the induction proof.J

This theorem is along the same lines as a basic fact for vector majorization:
for row vectorsa, b € R" we have that > b if and only if aX = b for a doubly
stochastic matrix which is the product of at most matrices corresponding
transforms. (Each such matrix is a convex combination of the identity matrix and
a permutation matrix corresponding to a transposition.) We remark that the geo-
metrical idea in the proof is to gradually “move” the curgg towardspgg. This
may be done in several ways which proves the existence of related matrices in the
majorization polytope.

6. Support-majorization

In this final section we consider some combinatorial properties of matrix major-
ization and majorization polytopes.

Let Ae .4y, and B € .4, ,. Define suppA) = {(i, j): a;; > 0}. Let the
support-clasef A, denoted by”(A), consist of those: x n row-stochastic matrices
A’ satisfying suppA’) = suppA). & (B) is defined similarly. We say thét support-
majorizesB, and writeA >3 B, provided that for everA’ ¢ #(A) andB’ € ¥ (B)
it holds thatA’ > B’. This means thaA = B and that the majorization is preserved
under every change of the entries of the matrices as long as one stays in the respective
support-classes. An even stronger notion thans the following. We say tha#
strongly support-majorizeB if A =5 B and all the matrices in the majorization poly-
topes.z (A’ = B) for A’ ¢ #(A) andB’ € .#(B) belong to the same support-class
(so this class only depends éandB, notA’ or B').

Consider two distinct row indiceisandi’ (wherei, i’ < m). Recall thata; (b;)
is theith row of A (B). If supp(a;) N supga;’) # @ implies that there is g < p
such thatb; = b;; = e; (the jth coordinate vector), we say that rowsndi’ are
nonconflicting otherwise they are inonflict

Theorem 6.1. LetA € .#,,, andB € .#,, ,. ThenA >5 B if and only if no pair of
rows is in conflict.

Proof. Assume that rows andi’ are in conflict. Then there is &€ supga;) N
suppa;’) and two distinct indiceg, j/ < p with j € supgb;) andj’ € suppb;’).
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Therefore we can find a matr’X € .%(B) with b;’j, b, > 1 — e wheree is a suit-

ably small positive number (see later). Moreover, we can find a matrix & (A)
witha; , = a, , > 1 — €. We claim that

o [a)ls]

This follows from Theorem 5.1 for by choosing> 0 small enough we obtain
Ba; * By, But from (x) we conclude thaf’#B’ (for if there were a row-stochastic
matrix X with A’X = B’ then

a; B b;
H = [bzl ’

which contradicts(x)). We have therefore shown that a necessary condition for
A =% B is that no pair of rows is in conflict.

Assume that each pair of rows is nonconflicting. Construct the gtptith
node set/ = {1, ..., m} and with an edgé¢i, i"] whenever supi@;) N supp{a{/) is
nonempty. Let the connected component&die (the node setd), ..., I,» where
the trivial components (a single node) dfes, ..., I, (where 1< r < /) It fol-
lows from the nonconflicting assumption that there are column indiges ., j,
such thab; =e; foralli e I,k =1,...,r. We may find a permutation matrix
of orderm such thafPA has the rows iy before all rows inl;: whenk < k’. Next
we may find a permutation matr@@ such that

A1
A=PAQ= - :
Ar+1
whereAq, ..., A,, correspond to the rows, ..., I., respectively (the nontrivial
components) andl, . 1 is a disjoint-row-support matrix of the form (1). Further, the
matrix B = PB may be written
B1
B=| : |,

Br+l

where fori = 1, ..., r the matrixB; (with rows corresponding t¢;) has a column
of all ones and the remaining columns are zero. The mBirix may be an arbitrary
row-stochastic matrix. In order to show thfat-S B it suffices to show thah >S5 B.

So letA’ ¢ V(A) andB’ € #(B). The matricesA’ andB’ may be written in the
same form ag\ andB in terms of the submatricesy, ..., A,41 andBy, ..., B,41,
respectively. Lek < r. Thenthej;th column ofB (as mBk) is all ones and the other
columns are zero. Then there is a row-stochastic matgisuch thatA; X; = By;
just let the jxth column ofX; be all ones while all other columns are zero. (The
matrix equation holds a5y, is row-stochastic.) Furthermore, there is a row-stochastic
matrix X1 such tha#h, 11X, +1 = B,41. This follows from Proposition 2.2 because
A,41 is a disjoint-row-support matrix. We let
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X1
X=1:
Xr+1
and note thaX is row-stochastic. MoreoveAX = B so A > B. This proves that
A >S5 B and the proof is complete.[]

We see from the proof of Theorem 6.1 that wifes-S B both these matrices may
be constructed in a certain manner (see the decompositidnaoid B). Moreover,
the proof also indicates that the matrices in the majorization polytope have a certain
structure. This structure is exploited next to obtain a characterization of the notion
of strong majorization. First, we need a result on the dimension of the transportation
polytope (the proof is easy and omitted).

Lemma 6.2. Leta € R" andb € R” be nonnegative vectors with';_; a; = Zle

bj. Letn™ and p™ be the number of positive elementsiandb, respectively. Then
the transportation polytopg™ (a, b) has dimensioin™ — 1)(p™ — 1).

Let Ig consist of those row indices< m such that supf@;) N suppax) = @ for all
k < m,k # i,these are the indices of rowsAfthat have disjoint support from every
other row.

Corollary 6.3. LetA € .4, , andB € .#,, ,. ThenA strongly majorize® if and
only if the following conditions hotd

(i) no pair of rows is in confligt

(ii) if A has a zero column them = 0 and

(iii) for eachi € Iy at least one of the rowg; andb; is integral (so it is a unit
vectol).

Proof. Assume thah strongly majorize®, so by Theorem 6.1 (i) holds. Then there
are permutation matricd® andQ such thatA = PAQ andB = PB have the form
explained in the proof of Theorem 6.1. ThusXife .# (A > B), thenPAQQ™X =
PBsoAZ = B whereZ = Q"X. We partitionZ by
Z;
Z=| :

Zr+1
and thenAZ = B becomesAyZ; = By for k = 1,...,r + 1. Let firstk <r. We
recall the structure of the matrices involvegk: has a column of all ones and the
remaining columns are zero, ad. has no zero column. Moreover, since both

A; andZ; are nonnegative, we deduce that akohas a column of all ones and
the remaining columns are zero. Next, consiket r + 1. A, 11 is a disjoint-row-
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support matrix v_vhiIeB,H is arbitrary (but row-stochastic). Then the solution, 1
of Ay11Z;+1 = Br41 has the form (2) given in Proposition 2.2, say

Ziy11

Zyy1 = : .
Ziy1,p
Zk+1,0

whereZyy1,; = D(&;)~1Y; andY; € 7 (5, b;) for each andZyy1,0 € My, p. Note

that the last matrix correspondsitgcolumns ofA that are zero. Assume thag > 0
andp > 0. Then.#,, , contains two matrices in different support classes and so
does (A > B) (recall thaZ = QTX soX is obtained fronZ by some permutation

of its rows). But this contradicts that strongly majorize$, so (ii) holds. Finally, if
property (iii) were violated, the dimension of the transportation polytagg;, b;)
would be at least one (see Lemma 6.2), and then this polytope would have vertices
with distinct support. This would again give solutions in the majorization polytope
with different supports, a contradiction. Thus, property (iii) must hold. This, proves
that (i)—(iii) all hold. The converse implication is shown using arguments as in the
proof of Theorem 6.1. In fact, conditions (i)—(iii) imply that there is a uniguim

(A = B) so therA strongly majorize8. We omit the details here. O

Thus, strong majorization is indeed a very strong requirement as the majorization
polytope contains a unique element in that case. Note that this element is an integral
row-stochastic matrix, so Proposition 3.1 gives a further description of the relation
between the columns @& andB in this situation.
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