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Is the slippery slope from steatosis to
steatohepatitis paved with triglyceride

or cholesterol?
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Accumulation of hepatic lipids has been thought to trigger the inflammation, apoptosis, and fibrosis that characterize pro-
gression of hepatic steatosis to steatohepatitis and cirrhosis. In this issue of Cell Metabolism, Mari et al. (2006) provide
evidence for excessive mitochondrial free cholesterol as a cause of the progession of steatosis to more severe liver disease.

Nonalcoholic fatty liver disease (NAFLD)
ranges in severity from steatosis to stea-
tohepatitis to the above plus fibrosis
leading to cirrhosis. Recent observational
studies indicate a prevalence as high as
25% in the United States (Farrell and Lar-
ter, 2006; Browning and Horton, 2004),
where NAFLD may be a leading cause
of cryptogenic cirrhosis. Although most
individuals with NAFLD seem to either re-
main stable or improve over time, little is
known about the progression of this dis-
order to steatohepatitis and cirrhosis.
Much of the increased prevalence of
NAFLD is driven by obesity. However,
high rates of NAFLD in relatively normal
weight people (by Western standards)
from the Indian subcontinent and South-
east Asia suggest that, even in the ab-
sence of obesity, insulin resistance leads
to hepatic fat accumulation. Indeed, pa-
tients with total lipodystrophy, who have
no adipose tissue, have severe insulin re-
sistance with marked hepatic steatosis.
Studies of the molecular basis of NAFLD
have largely focused on triglyceride (TG),
the major lipid stored in hepatocytes. Al-
though much is known about the regula-
tion of hepatic TG synthesis, secretion,
and storage, much less is known about
the role of TG and/or its precursorsin stim-
ulating the inflammatory changes needed
for the progression of steatosis to steato-
hepatitis. In this issue of Cell Metabolism,
Mari et al. (2006) move the spotlight to
cholesterol, and in particular mitochon-
drial free cholesterol, as a central molecule
in the pathogenesis of steatohepatitis.
Hepatic TG levels are determined by
the availability of fatty acids (FA) from
the circulation, de novo lipogenesis of
FA from glucose, oxidation of FA, and
the secretion of TG on very low-density li-
poproteins (VLDL) (Figure 1A) (Goldberg
and Ginsberg, 2006). Each of these
processes may be altered by insulin
resistance in ways that predispose to
steatosis. Thus, insulin resistance leads
to increased lipolysis of adipocyte TG

and more FA flux to the liver (Yu and Gins-
berg, 2005). Insulin resistance may be
associated with reduced lipoprotein li-
pase-mediated lipolysis of plasma chylo-
micron or VLDL TG, leading to hepatic
uptake of remnant lipoproteins carrying
more TG than normal. De novo lipogene-
sis is increased in insulin resistance; in-
sulin-mediated stimulation of SREBP-1c
is a key contributor, although glucose-
mediated stimulation of ChREBP can also
play a significant role (Browning and
Horton, 2004). Aberrant expression of
PPARYy2 in insulin resistance livers can
also stimulate de novo lipogenesis (Gavri-
lova et al. 2003). Oxidation of hepatic FA
is regulated at several points, but is likely
to be limited in the face of adequate he-
patic glycogen and increased lipogene-
sis with elevated levels of malonyl-CoA.
Finally, insulin can target apoB for post-
translational degradation; the balance
between systemic hyperinsulinemia and
hepatic insulin resistance will determine
how much apoB will be available to carry
TG out of the hepatocyte (Figure 1B).

It has been shown that increased he-
patic TG stimulates increased VLDL TG
secretion by targeting apoB away from
degradation and toward secretion and/
or by increasing the amount of TG on
each VLDL (Fisher and Ginsberg, 2002).
However, recent studies suggest greater
complexity. For example, stimulation of
hepatic lipogenesis by an LXR agonist
results in increased TG secretion but
has no effect on apoB secretion. In vivo
overexpression of mtGPAT, an enzyme
that synthesizes diglycerides, increases
both hepatic TG content and secretion
(Linden et al., 2006), but overexpression
of either DGAT1 or DGAT2, enzymes
that synthesize TG and increase hepatic
TG, has had inconsistent effects on TG
secretion (Millar et al., 2006). On the other
hand, we demonstrated that increased
delivery of FA to the liver can increase
apoB secretion without increasing TG
secretion (Zhang et al., 2004). Together,

these results indicate compartmentaliza-
tion of hepatic TG into pools with tight or
loose connections to TG secretion or dif-
ferential effects of FA and TG on apoB
and TG secretion. To further complicate
matters, levels of lipid droplet proteins
such as ADRP and perilipin, activities of
hepatic lipases such as TGH, ATGL,
and HSL, and the activity of MTP (which
transfers endoplasmic reticulum TG and
cholesterol onto apoB) may all confound
the relationship between hepatic TG ac-
cumulation and the assembly and secre-
tion of VLDL.

How steatosis progresses to steatohe-
patitis is under intense investigation. In-
flammation, together with evidence of
apoptosis and necrosis of hepatocytes,
differentiates steatohepatitis from stea-
tosis. Most investigators accept a “two-
hit” hypothesis; steatosis appears to be
the required background abnormality
upon which inflammation, cellular dys-
function, and cell death can occur. In-
creased FA oxidation and ROS formation
could lead to a state of oxidative stress,
with sequelae that include lipid peroxida-
tion, membrane damage, and mitochon-
drial dysfunction, the latter leading to
more ROS formation. However, the evi-
dence that there is increased FA oxida-
tion in steatotic livers is limited. In their
paper, Mari et al. (2006) present evidence
supporting an alternative lipid-based
mechanism for the progression of steato-
sis to steatohepatitis (Figure 1C). These
authors propose and provide experi-
mental evidence for a specific role for
accumulation of free cholesterol in mito-
chondria leading to mitochondrial gluta-
thione depletion and sensitivity to TNFa.
and FAS mediated pathways of apopto-
sis. Using two diets, one that was choline
deficient and one with 2% cholesterol
plus sodium cholate, they specifically in-
creased either hepatic TG or cholesterol,
respectively. They demonstrated that
TNFo treatment caused apoptosis, ne-
crosis, and ROS formation only in livers
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Figure 1. Hepatic lipid metabolism in steatosis and steatohepatitis

A) Hepatic TG homeostasis is maintained through a balance of the delivery of albumin bound fatty acids (FA)
or triglyceride (TG) FA in remnant lipoproteins, de novo synthesis of FA from glucose via lipogenesis, oxidation
of FA, and the assembly and secretion of TG and apolipoprotein B (apoB) as very low-density lipoproteins
(VLDL).

B) Insulin resistance and obesity can result in steatosis because of increased delivery of FA and TGFA,
increased lipogenesis driven by SREBP-1c, ChREPB, and possibly aberrant expression of PPARy, and
decreased fatty acid oxidation secondary to increased lipogenesis and levels of malonyl CoA. Plasma hyper-
insulinemia with modest hepatic insulin resistance (IR) could result in increased insulin-mediated degradation
of apoB and more steatosis. Blue arrows indicate pathways or processes that will stimulate hepatic TG
production and/or secretion; red arrows indicate inhibition of those pathways or processes.

C) The progression of hepatic steatosis to steatohepatitis requires insults in addition to steatosis: these include
oxidative stress, production of reactive oxygen species (ROS), lipid peroxidation, the actions of cytokines such
as TNFa, and according to the work of Mari et al. (2006), increased mitochondrial free cholesterol (FC) with
loss of glutathione and increased sensitivity to TNFa.

with increased cholesterol (with or with-
out increased TG) content. These inves-
tigators further showed that the free
cholesterol content of mitochondria was
increased, at least transiently, on the
high-cholesterol/cholate diet and that
this was associated with altered mem-
brane fluidity and reduced glutathione
content. Additional experiments, in which
mitochondrial glutathione was depleted
with a small molecule, reiterated the over-
all effects of increased mitochondrial
cholesterol. Finally, treatment with the
HMG-CoA reductase inhibitor, atorvasta-
tin, reduced mitochondrial free choles-
terol and increased mitochondrial gluta-
thione levels in livers from rats fed the
high-cholesterol/cholate diet. Signs of
steatohepatitis were ameliorated as well.

So, is altered hepatic cholesterol me-
tabolism, and specifically increased mito-
chondrial cholesterol concentration, the
missing lipid-link between steatosis and
steatohepatitis? The data of Mari et al.
(2006) are certainly intriguing and sug-
gestive. It would help to know more about
the effects of the diet with high choles-
terol but without cholate, as these two
dietary components have been shown
to induce different sets of genes impor-
tant for hepatic inflammation and fibrosis
(Vergness et al., 2003). It would also be
helpful if diets lower in cholesterol had
been used: a2% cholesterol diet is equiv-
alent to an intake of more than 2000
mg/day of dietary cholesterol in man, in
whom the average dietary cholesterol in-
take is 300 mg/day. Additionally, the tran-
sient nature of the rise in mitochondrial
free cholesterol, due to increased acyl-
CoA:cholesteryl acyltransferase (ACAT)
expression and activity in the high-cho-
lesterol-fed rats, points to the need to de-
termine if mitochondrial free cholesterol
levels differed between the cholesterol-
fed and the choline-deficient diet-fed
mice after 1 week. With those caveats
in mind, Mari et al. (2006) have clearly
opened the way for more careful exami-
nations of hepatic lipids; it is time to
move beyond TG and also investigate
the role of hepatic cholesterol in various
mouse models of steatosis. If the present
data are supported by further studies,
new approaches to therapy could follow.
Present therapies targeted at increas-
ing insulin sensitivity, increasing FA oxi-
dation, or reducing TG synthesis are all
logical based on a large body of data
collected over the past two decades.
Hepatic cholesterol may become an
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adjunctive or alternative target if these
new data are confirmed. Of course, pre-
vention of steatosis by proper nutrition
and exercise remains our primary goal.

Henry N. Ginsberg'

"Department of Medicine

College of Physicians and Surgeons
Columbia University

New York, New York 10032
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The SREBP pathway plays a central role in the regulation of lipid metabolism. In a recent letter, Yang et al. present a com-
prehensive series of experiments, spanning a wide range of disciplines, that identify ARC105 as a component of the ARC
complex that interacts directly with SREBP and is necessary for SREBP function (Yang et al., 2006).

As part of the effort to understand the
mechanistic basis for the cellular control
of lipid metabolism, much work has been
focused on dissecting the sterol regula-
tory element binding protein (SREBP)
pathway. In a recent paper, Yang et al.
(2006), demonstrate that a subunit of
the ARC complex, ARC105, interacts di-
rectly with SREBPs to enable transcrip-
tion from target promoters (Figure 1).
SREBPs are membrane bound tran-
scription factors that play a central role
in regulating lipid production in all meta-
zoans studied. This work has revealed
the intricate machinery responsible for
regulating the release of SREBPs from
the membrane in response to cellular
need for lipids. This machinery includes
two proteases, an escort factor and
retention factors, and is localized to intra-
cellular membranes (Brown and Gold-
stein, 1999; McPherson and Gauthier,
2004). Each of these components is nec-
essary to ensure regulated release of
SREBPs from the membrane and, thus,
access to the nucleus. Nuclear access
is not the end of the story, however.
Other work has focused on additional
proteins needed to form the final
transcriptionally active complex, once
SREBPs reach the nucleus. These cofac-
tors include CBP (the cAMP response
element binding protein [CREB] binding

protein), a related protein, p300 (Oliner
et al., 1996), Sp1, Sp3, (Athanikar et al.,
1997), NFY (Ericsson et al., 1996), and
the large, multicomponent activator-
recruited cofactor (ARC) complex (or
the metazoan Mediator complex) (Naar
et al., 1999).

Delineating events at SREBP target
promoters more fully, Yang et al. (2006)
focused on a single subunit of the large
ARC complex. They report that interac-
tion between ARC105 and SREBPs is se-
lective; they detected no interaction be-
tween ARC105 and other transcription
factors, such as the cellular myeloblast
transforming factor (c-Myb) or CREB.
Similarly, SREBPs did not bind to other
ARC subunits tested. Thus interaction
between ARC105 and SREBP is not sim-
ply a general phenomenon of the tran-
scriptional machinery.

This selectivity is perhaps surprising.
ARC105 was first identified as an essen-
tial component of the complex required
for TGFB signaling via Smad2/3-Smad4
binding (Kato et al., 2002). In the present
study, the authors show that the SREBP-
interacting domain of ARC105 (a domain
that does not bind c-Myb or CREB) is
structurally similar to the KIX domain of
CBP (a domain that does bind c-Myb
and CREB). Changing just two residues
in the third o helix of ARC105 to the cor-

responding residues in CBP (llegy— Tyr;
Aspeg— Lys) substantially improved the
ability of ARC105 to interact with both
c-Myb and CREB.

Interaction between ARC105 and
SREBPs is functionally significant; when
the authors used an siRNA strategy to re-
duce the abundance of ARC105 tran-
script in cultured cells, the transcription
of SREBP-responsive genes was greatly
reduced while transcription of several
other, non-SREBP-dependent genes re-
mained unaffected. This indicated that
the ARC complex could still function
with other transcription factors even
when levels of ARC105 were artificially
low. This is consistent with the selectivity
observed in the binding studies. Yang
et al. (2006) then used chromatin immu-
noprecipitation assays to demonstrate
joint occupancy of target promoters by
SREBP and ARC105.

Experiments conducted in the nema-
tode, C. elegans, whose genome harbors
orthologs of both SREBP (SBP-71) and
ARC105 (MDT-15), confirmed the physio-
logical relevance of the interaction be-
tween ARC105 and SREBP. Disruption
of the expression of either gene by RNAI
resulted in highly similar phenotypes, in-
cluding growth defects, infertility, short-
ened lifespan, and reduced fat storage.
A clue to the direct cause of the defects
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