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Introduction

So far the most effective techniques to resolve singularities of algebraic varieties (in characteristic
zero) have been the so-called algorithmic (or canonical, or constructive) methods. The goal of an algo-
rithmic method is not simply to prove the existence of a proper, birational morphism f : X ′ → X that
resolves the singularities of the variety X [8], but to accomplish this by means of specific blowing-
ups whose centers are precisely described. Generally this is done by defining upper semicontinuous
functions with values in a totally ordered set, the i-th center being the locus of points where the i-th
function reaches a maximum.

Studies of algorithms of resolution include [1,2,5,6,12–14,16]. In [13] some results are extended to
the case of schemes over (suitable) artinian rings. Those studies do not deal with the original problem
directly; rather, they algorithmically resolve other auxiliary objects, seemingly more technical, that
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receive different names in the literature (idealistic exponents, basic objects, presentations, marked
ideals, etc.).

This paper presents a simple algorithm for resolution of marked ideals. Following [3], these ideals
are 5-tuples I = (M, W , I,b, E) where M (the ambient scheme) is a regular variety (over a field of
characteristic zero), E is a finite sequence of divisors of M with normal crossings, W is a closed
subvariety of M transversal to E , I is a sheaf of OW -ideals, and b is a positive integer. The singular
set of I is the set of points of W at which I has order at least b. There is a notion of permissible
transformation of I (involving the blowing-up of a certain regular subscheme of W ), which produces
a new marked ideal. To resolve a marked ideal means to obtain, by means of iterated permissible
transforms, a marked ideal with empty singular locus. If this is done in a reasonably “algorithmic
fashion”, it is not too difficult to obtain similar algorithmic methods to principalize ideals, resolve
embedded subvarieties, or resolve abstract varieties.

The main contribution of our method, whose main ingredients are those of the resolution algo-
rithm of O. Villamayor ([6] and [1]), is a simplification of the “inductive step”. Indeed, so far, all
the methods used to resolve algorithmically marked ideals (or its variants already mentioned) in-
volve, at a crucial step, an inductive argument. The idea is to reduce the problem for a marked ideal
(M, W , I,b, E) to a similar one for a suitable marked ideal of the form (M, Z , J , c, D), where Z is a
regular divisor in W (usually called a maximal contact hypersurface). Following ideas of H. Hironaka,
J. Giraud and other pioneers in the field, now it is not too difficult to do this locally (near a point
x ∈ W ). When the reduction is possible, it allows us to obtain locally (by induction of the dimension)
a resolution for our marked ideal. But there are some serious “glueing” problems; namely, to show
that the locally obtained resolutions are independent of the chosen hypersurface and that they match
correctly, determining a resolution for the whole initial marked ideal. The first proposed algorithmic
resolution methods solved these problems by means of rather complicated arguments, generally using
some auxiliary constructions, like the generalized basic objects of [6], or the operation of homogeniza-
tion of [16].

To justify the inductive step we try to use two naturality properties: compatibility with respect
to restrictions to open sets, and compatibility with respect to equivalence. Concerning equivalence,
following ideas of Hironaka, we say that marked ideals I and J are equivalent if they have the same
singular loci and this property is preserved after performing any finite number of operations of either
one of these types: (1) permissible transformation (using the same center for both), and (2) taking
fiber product with an affine line. (See 1.9 for a more precise definition of equivalence). We think that
the use of naturally properties simplifies substantially the presentation of the algorithm.

E. Bierstone and P. Milman were the first authors to use functoriality arguments in the construction
of a resolution algorithm, in their very interesting article [3]. A difference between their paper and
ours is that their method requires the use of a notion of equivalence stronger than the one we pro-
pose. Namely, the equivalence in the sense of [3] demands, aside from conditions (1) and (2) above,
another condition, involving blowing-ups whose centers are the intersection of certain divisors. Our
presentation, based on the t-function of [6], does not require the use of this new condition.

Moreover, we believe that the verification of the validity of the algorithmic resolution process
given in [3] is not complete. In the crucial Claim 5.1 of [3], Section 5, Step I, it is not verified that if I
and J are equivalent marked ideals (both of maximal order 3.1, with E = ∅), then the corresponding
algorithmic resolution centers defined by induction (on the dimension) are the same.

The missing point would be a consequence of the following statement: assume I = (M, W , I,b, E)

and J = (M, V , J , c, E) are equivalent marked ideals, and U is an open set in W , then the restric-
tions of I and J to U are equivalent. Since we cannot prove this statement, in our presentation
we substitute the notion of equivalence described before by a stronger one, that we call total equiva-
lence. In total equivalence, the operations of (1) and (2) above are not necessarily applied to a whole
marked ideal, but possibly to its restriction to a suitable open set of its ambient scheme (see 1.9, 1.10
and 1.11). Using compatibility with respect to total equivalence and restrictions to open sets as our
naturality conditions, it is possible to justify all the steps of the algorithm.

This paper is divided into four sections. Section 1 presents some basic concepts including those of
marked ideals, permissible and open permissible transformations, and equivalence and total equiva-
lence; the section also proves some theorems about equivalence. Section 2 introduces the notion of
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algorithmic resolution of marked ideals and discusses some numerical functions associated to those
ideals (like the ω, or w-ord, and t functions). Section 3 addresses some concepts useful in the induc-
tive step of our algorithm, such as adapted (or maximal contact) hypersurfaces and coefficient ideals;
the section also studies some constructions essential to reduce the general situation to one where an
argument, based on induction on the dimension, can be applied. Section 4 presents the algorithm and
its proof, the main result being described in Theorem 4.1.

We do not address how algorithmic resolution of marked ideals implies similar results on princi-
palization of ideals and resolution for embedded and abstract varieties, because excellent discussions
of this topic abound (e.g., [6,1–3,16,12]).

There are several programs aimed at extending some form of algorithmic resolution to the case
where one works over fields of positive characteristic (see [10,11,15,17]). It is hoped that a “naturality”
approach similar to that of the present paper could play a role in this ongoing work.

We thank the referee for the numerous comments and corrections that greatly helped to improve
this paper.

1. Basic notions

1.1. In general, we use the notation and terminology of [7] with a few exceptions. For instance, if
W is a scheme, a W -ideal means a coherent sheaf of OW -ideals. If Y is a closed subscheme of a
scheme W , the symbol I(Y ) denotes the W -ideal defining Y . If W is a reduced scheme, a never-zero
W -ideal is a W -ideal I such that the stalk Ix is not zero for all x ∈ W . An algebraic variety over a
field k is a reduced algebraic k-scheme, k a field.

The term local ring means noetherian local ring. The maximal ideal, or radical, of a local ring R
usually is denoted by r(R). Often, we write (R, M) to denote the local ring R with maximal ideal M.
The order of an ideal I in the local ring (R, M) is the largest integer s such that I ⊆ Ms . If W is a
noetherian scheme, I is a W -ideal and x ∈ W , then νx(I) denotes the order of the ideal Ix of OW ,x .

A positive divisor in an algebraic variety X is called a hypersurface of X .
We work throughout with the class V of algebraic varieties defined over fields of characteristic

zero (the base field is not fixed), but with minor changes we could work with the more general class
of schemes S introduced in [1, 8.1]. Often we consider functions f from a set S to a totally ordered
set Λ. We let max( f ) denote the maximum value of f and Max( f ) the set of points x where f (x) is
the maximum.

We denote the natural, rational, complex numbers and the integers by N, Q, C and Z respectively.

1.2. Let M be a regular variety, E = (H1, . . . , Hm) a sequence of regular hypersurfaces of M .
(a) E has normal crossings if, for all x ∈ H1 ∪ · · · ∪ Hm , the ideal (I(H1) . . . I(Hm))x ⊂ OM,x is gener-

ated by a1, . . . ,ar , where a1,a2, . . . ,an is a suitable regular system of parameters of OM,x , 1 � r � n.
(b) We say that a closed subscheme V ⊂ M has normal crossings with respect to E (resp. is transversal

to E) if, for all x ∈ V , there is a regular system of parameters a1,a2, . . . ,an of OM,x , such that I(V )x =
(a1, . . . ,ar)OM,x , 1 � r � n and, if a divisor H j contains x, then I(H j)x = (ai)OM,x , for some index i
(resp. for some index i > r). Such a subvariety V is necessarily regular.

Definition 1.3 (Marked ideals). A marked ideal is a 5-tuple I = (M, W , I,b, E) where M is a regular
variety (in V ), E = (H1, . . . , Hm) is an ordered m-tuple of distinct hypersurfaces of M with normal
crossings, W is an equidimensional subvariety of M , transversal to E (hence W is regular), I is a
never-zero ideal of W and b > 0 is an integer.

Our terminology is borrowed from [3] but the “marked ideals” of [16] are the “basic objects” of [1]
(or of 1.4).

1.4. If I = (M, W , I,b, E) is a marked ideal where E = (H1, . . . , Hm), then W is its underlying scheme
and M its ambient scheme. They are denoted by us(I) and as(I) respectively. The dimension of I is
the dimension of us(I) and the a-dimension of I is the dimension of as(I).
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If U is an open set of M , the restriction of I to U is the marked ideal I|U := (U , U ∩ W , I|U ,b, E |U ),
where E |U := (H1 ∩ U , . . . , Hm ∩ U ).

A basic object is a 4-tuple (W , I,b, E) where W is a regular equidimensional variety, E =
(H1, . . . , Hm) is an ordered m-tuple of distinct hypersurfaces of W with normal crossings, I is a
never-zero ideal of W and b > 0 is an integer (see [1, 3.1]).

The basic object associated to the marked ideal I = (M, W , I,b, E) is the 4-tuple (W , I,b, E |W ).
Here and in the sequel, if E is as above and N is a subscheme of M , then E |N := (H1 ∩ N, . . . ,

Hm ∩ N).

1.5. If I is a marked ideal, its singular set (or locus) Sing(I) is {x ∈ W : νx(I) � b} (see 1.1).
For i = 0, . . . ,b − 1, there is a W -ideal �i(I) whose stalk at a closed point x of W is the ideal of

OW ,x generated by the derivatives (say, with respect to a regular system of parameters of OW ,x) of
elements of Ix of order up to i. See [1, 13.4–13.8] or [4, 6.1] for the definition and properties of �i(I).
We have the equality Sing(I) = V (�b−1(I)). It follows that Sing(I) is a closed subset of W .

We say that I is nonsingular or resolved if Sing(I) = ∅ and singular if Sing(I) 
= ∅.

1.6. We use the notation of 1.3.
(a) Permissible centers and transformations. We say that a closed subscheme C of W is permissible

for the marked ideal I (or that it is I -permissible) if C has normal crossings with E and C ⊆ Sing(I).
A I -permissible center is necessarily a regular subscheme of W .

If C is permissible and W ← W1 is the blowing-up of W with center C , we define certain W1-
ideals, the transforms of the W -ideal I: (i) the total transform I OW1 ; (ii) the controlled transform I1 :=
E −b OW1 , where E defines the exceptional divisor of the blowing-up; and (iii) the proper transform
I1 := E −a I OW1 , where the exponent a is as large as possible (it is locally constant, if C is irreducible
then a = νy(I), where y is the generic point of C ).

If C is I -permissible, we define the transform of the marked ideal I with center C as the marked
ideal I1 = (M1, W1, I1,b, E1) where M1 is the blowing-up of M with center C , W1 is the strict
transform of W1 (identifiable to the blowing-up of W with center C ), I1 is the controlled transform
of I , and E1 = (H ′

1, . . . , H ′
m, H ′

m+1) (with H ′
i the strict transform of Hi , i = 1, . . . ,m and H ′

m+1 the
exceptional divisor).

We write I1 = T(I, C) and we denote a transformation of the marked ideal I by I ← I1.
(b) Pull-backs. If f : M ′ → M is a smooth morphism, we define the pull-back of the marked

ideal I as the marked ideal f ∗(I) := (M ′, W ′, I OW ′ ,b, E ′), where W ′ = f −1(W ) and E ′ =
( f −1(H1), . . . , f −1(Hm)). If f is an isomorphism, we talk about an isomorphism of marked ideals.
If M ′ = U is an open subscheme of M and f is the inclusion, f ∗(I) will be called the restriction of I
to U , usually denoted by I|U .

(c) Extensions. In the special case M ′ = M ×k A1 (with A1 = A1
k , where M is defined over the field k)

and f the first projection, there is another natural hypersurface in M ′ , viz. H ′ = M × {0}, where 0 is
the origin of A1. Then the marked ideal I(e) := (M ′, W ′, I1,b, E(e)), where everything is as in f ∗(I),
except that now E(e) := ( f −1(H1), . . . , f −1(Hm), H ′), is called the extension of I (terminology of [6]).
This extension will be denoted by E(I).

(d) Resolutions. A resolution of a marked ideal I is a sequence of marked ideals and permissible
transformations, I := I0 ← ·· · ← Ir , such that Sing(Ir) = ∅.

1.7. We shall need a slight generalization of concepts already introduced.
(a) Open transformations. An open permissible transformation of a marked ideal I = (M, W , I,b, E),

relative to an open set U ⊆ M , is a permissible transformation of I|U with an I|U -permissible center
C ⊂ U ∩ W . An open permissible transformation of a marked ideal I = (M, W , I,b, E) is one relative to
some open set U ⊆ M and a suitable I|U -center C . Then the marked ideal I1 = T(I|U , C) is called
an open transform of I . We shall denote this open transformation by I ��� I1 if there is no risk of
confusion. The set U will be called the open (set) of definition of the open transformation.

A sequence I0 ��� · · · ��� Ir of marked ideals is open permissible if each broken arrow stands for
an open permissible transformation.
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(b) Open extensions. An open extension of a marked ideal I = (M, W , I,b, E) is a marked ideal of
the form E(I|U ) where U is a dense open set of M (i.e., the extension of I|U , see 1.6(c)). The set U is
called the open of definition of the open extension.

1.8. A sequence W0 ← ·· · ← Wr of algebraic varieties (in the class V , 1.1) and morphisms is called
an open test sequence (of varieties) if each morphism W i ← W i+1 is either the blowing-up of an open
subvariety Ui ⊆ W i with a regular center Ci ⊂ Ui or a projection Ui+1 = Ui × A1 → Ui , where Ui is
a dense open set in W i . If always Ui = W i , we talk about a test sequence (of varieties) (terminology
borrowed from [3]).

A sequence

I = I0 ��� · · · ��� Ir (1)

of marked ideals (Ii = (Mi, W i, Ii,b, Ei)) where each arrow stands for either an open permissible
transformation or an open extension 1.6, is called an open trial sequence of the marked ideal I . It in-
duces an open test sequence of varieties W0 ← ·· · ← Wr . If all the open permissible transformations
and extensions used in the sequence (1) are defined everywhere, we call it a trial sequence.

Definition 1.9 (Equivalence and total equivalence). (a) We say that marked ideals I = (M, W , I,b, E)

and I ′ = (M, W ′, I ′,b′, E) are equivalent if they induce the same test sequences of varieties. We write
I ∼ I ′ to indicate equivalence. In [3], this notion is called weak equivalence.

In other words, I ∼ I ′ means: Sing(I) = Sing(I ′) (hence a center C is permissible for I if and
only if C is permissible for I ′); if I1 (resp. I ′

1) is either a permissible transformation of I (resp.
of I ′ , with the same center) or an extension of I (resp. of I ′), then Sing(I1) = Sing(I ′

1), etc. For any
positive integer r, if we repeat this process r − 1 times, we obtain trial sequences I ← ·· · ← Ir and
I ′ ← · · · ← I ′

r respectively. Then it must be Sing(Ir) = Sing(I ′
r).

(b) We say that marked ideals I = (M, W , I,b, E) and I ′ = (M, W ′, I ′,b′, E) (with the same am-
bient scheme and set E of hypersurfaces) are totally equivalent if they induce, as explained in (a), the

same open trial sequences of varieties. We write I T∼ I ′ to indicate total equivalence.

Hence, to write I T∼ J means that any open trial sequence

I = I0 ��� · · · ��� Is (1)

induces an open trial sequence

J = J0 ��� · · · ��� Js (2)

with the same opens and centers and vice versa. More precisely if, in (1), Ii ��� Ii+1 is the open
transformation determined by the open Ui ⊆ as(Ii) and center Ci ⊂ Ui , then, in (2), Ji ��� Ji+1 is
the open transformation determined by the same open and center. Similar considerations apply for
open extensions.

(c) It is easily seen that total equivalence implies equivalence.
Also, total equivalence is inherited by open restriction in the following sense.

Proposition 1.10. Let I and J be totally equivalent marked ideals. Suppose I = I0 ← ·· · ← Is and J =
J0 ← ·· · ← Js are permissible sequences of transformations, both obtained by using the same permissible

centers (hence Mi = as(Ii) = as(Ji), for all i). Let U be any open set in W Ms. Then, Is |U
T∼ Js |U .

Proof. Consider an open trial sequence

Is |U ��� Is+1 ��� · · · ��� Is+q. (1)
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Concatenating the first given sequence and (1), we get an open trial sequence

I = I0 ← ·· · ← Is ��� Is+1 ��� · · · ��� Is+q. (2)

Since I T∼ J , sequence (2) induces an open trial sequence (with the same opens and centers)

J = J0 ← Js ← Js ��� Js+1 ��� · · · ��� Js+q, (3)

hence an open trial sequence

Js ��� Js+1 ��� · · · ��� Js+q. (4)

Since the open set of definition of Is ��� Is+1 is contained in U , sequence (4) also determines a trial
sequence

Js |U ��� Js+1 ��� · · · ��� Js+q, (5)

with the same opens and centers as (1). So, sequence (1) induces the open trial sequence (5) with
the same opens and centers. The arguments are reversible, so that an open trial sequence (5) for Js |U
induces an open trial sequence (1) for Is |U . This means that Is |U and Js |U are totally equivalent. �
1.11. With the method of proof of Proposition 1.10 one easily obtains the following result:

If I0 and J0 are equivalent marked ideals, I = I0 ← ·· · ← Is and J = J0 ← ·· · ← Js are permis-
sible sequences of transformations, both obtained by using the same permissible centers, then Is and Js are
equivalent.

Notice that no reference to restrictions to an open set of as(Is) = as(Js) is made. But we do not
know whether the analog of Proposition 1.10, where total equivalence is replaced by equivalence (and
we consider possible restrictions to an open set), is valid or not. Were permissible centers “extend-
able” in the following sense, then we could easily prove the latter statement.

Given a regular variety M and a dense open set U ⊆ M , we say that a marked ideal I =
(U , V , I,b, E) is M-extendable if there is a marked ideal I ′ such that as(I ′) = M and I ′|U = I .

But not any marked ideal I with ambient scheme U , with U a dense open set of a regular vari-
ety M , is M-extendable, as the next example shows.

Example. We work with k = C (the complex numbers). Let M = A2 = Spec(k[x, y]), 0 = (x, y) its
origin, U = M \{0}, Y = V (y) (the x-axis), Z the parabola V (x2 − y), Y ′ = Y \{0}, Z ′ = Z \{0}. Consider
I = (U , U , (xy),2, (Y ′, Z ′)). Then I is not M-extendable. Indeed, the last entry of the extension would
be E = (Y , Z) and these hypersurfaces do not have normal crossings.

The following theorem, due to Hironaka [9], is very important. Sometimes this result (or the idea
of its proof) is called Hironaka’s trick.

Theorem 1.12. Suppose I = (M, W , I,b, E) and I ′ = (M, W ′, I ′,b′, E) are equivalent marked ideals with
dim W = dim W ′ , S := Sing(I) = Sing(I ′). Then for every point x ∈ S we have νx(I)/b = νx(I ′)/b′ .

A proof, in the context of marked ideals, is found in [3, Theorem 6.1]; another one, working with
basic objects, appears in [6, Proposition 7.3].
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2. Some numerical functions

Definition 2.1 (Algorithmic resolutions). A resolution algorithm for marked ideals is a rule that assigns
to each natural number d a totally ordered set Λ(d) and to each marked ideal I (with Sing(I) 
= ∅)
functions g0, g1, . . . , gr , with values in Λ(d) , with the following properties.

The function g0 is defined on Sing(I), is upper semicontinuous and (the closed set) C0 := Max(g0)

is a permissible center for I (as in 1.1, Max(g0) denotes the set of points where the function g0
reaches its maximum). Let I1 be the transform of I with center C0. If Sing(I1) = ∅, then r = 1 and the
asignment is complete. Otherwise, an upper semicontinuous function g1 : Sing(I1) → Λ(d) is assigned,
such that C1 := Max(g1) is a permissible center for I1. Continuing in this way, the algorithm defines
Λ(d)-valued upper semicontinuous functions g j , j = 0, . . . , such that the domain of g j is Sing(I j),
where (for each j) I j = T(I j−1, C j−1), and C j−1 = Max(g j−1) is an I j−1 permissible center. This
process terminates, that is there is an index r (depending on I ) such that Sing(Ir) = ∅.

In other words, the resulting permissible sequence I ← I1 ← ·· · ← Ir of marked ideals is a reso-
lution of I .

We are interested in algorithms which, additionally, satisfy the following compatibility conditions:
(a) Compatibility with open immersions: if I = (M, W , I,b, E) and U is an open set in M , then

the algorithmic resolution functions of I induce those of I|U (ignoring situations where there is an
induced isomorphism).

(b) Compatibility with total equivalence: if I = (M, W , I,b, E) and J = (M, V , J , c, E) are totally
equivalent marked ideals with dim(W ) = dim(V ), then the algorithmic resolutions functions for I
and J are the same.

2.2. The ω and t-functions. We present two numerical functions associated to marked ideals. These (in
the context of basic objects) are studied in [6], where proofs of the facts that we mention can be
found.

(a) Assume

I = I0 ← ·· · ← Is (1)

is a sequence of marked ideals, where each arrow stands for either a permissible transformation or
an isomorphism (we write Ii = (Mi, W i, Ii,b, Ei)). For x ∈ Sing(Ii), we define ωi(x) := νx(I i)/b (see
1.6(a)). The function ωi is denoted by w-ordi in [6] and [1], where the authors work with basic
objects.

The sequence (1) is called a ω-sequence if each center Ci used in a permissible transformation
satisfies Ci ⊆ Max(ωi). If (1) is an ω-sequence then, if x ∈ Sing(Ii+1) and x′ is the image of x in W i ,
we have ωi+1(x) � ωi(x′) (see [6, Remark 4.12]).

(b) Given an ω-sequence (1), we define functions t j : Sing(I j) → Q × Z as follows. If x j ∈ Sing(I j),
i � j, let xi ∈ Sing(Ii) be the image of x j via the natural morphism Sing(I j) → Sing(Ii) determined
by (1) (so ω(xi) � ω(x j) for all i) and q the smallest index such that ω(xq) = ω(x j) (so if j = 0
then q = 0). Let n j(x j) denote the number of hypersurfaces in E j which are strict transforms of
hypersurfaces in Eq and contain x j . We set t j(x) := (ω j(x j),n j(x j)).

2.3. The sequence 2.2(1) is called a t-sequence if, whenever an arrow Ii ← Ii+1 represents a
permissible transformation of marked ideals, its center Ci satisfies Ci ⊆ Max(ti). Then we have
max(ti+1) � max(ti) for all i [6, 4.15].

It is clear that if U is an open set in W0 = us(I) then the t-permissible sequence above induces
a permissible sequence starting from I|U (ignoring those arrows which correspond to isomorphisms).
We express this property by saying “t is compatible with open immersions or inclusions”.

2.4. Monomial objects. A marked ideal I = (M, W , I,b, E), E = (H1, . . . , Hm) is monomial if for each
z ∈ W we have: Iz = I(H1)

α1(z) . . . I(Hm)αm(z) , where each function αi : W → Z is constant on each
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irreducible component of Hi and zero outside Hi . If I is monomial, one may introduce a function
Γ = ΓI from S := Sing(I) to Z × Q × ZN , by the formula

Γ (z) = (−Γ1(z),Γ2(z),Γ3(z)
)
,

where Γi , i = 1,2,3 are defined as follows:
If z ∈ S , Γ1(z) is the smallest integer p such that there are indices i1, . . . , ip such that αi1 (z) +

· · · + αip (z) � b.
Consider, for z ∈ S , the set P ′(z) of sequences i1, . . . , ip satisfying this inequality, then Γ2(z) is the

maximum of the rational numbers (αi1 (z) + · · · + αip (z))/b, for (i1, . . . , ip) ∈ P ′(z).
If z ∈ S , let P (z) be the set of all sequences (i1, . . . , ip,0,0, . . .) such that (αi1 (z)+· · ·+αip (z))/b =

Γ2(z), lexicographically ordered; then Γ3(z) ∈ ZN is the maximum of P (z).
Next we list some important properties of the function Γ . Proofs are found in [6, Section 5],

[4, 6.4], or [3, Section 5], where the authors work with basic objects, but the arguments in the context
of marked ideals are practically the same.

(a) When the target is lexicographically ordered the function Γ is upper semicontinuous.
(b) If max (Γ3) = (i1, . . . , ip,0,0, . . .) and C = Hi1 ∩ · · · ∩ Hip , then C is a permissible center for

the marked ideal I , called the canonical monomial center. The transform I1 of I is again monomial,
satisfying max(ΓI1 ) < max(ΓI ) (see [4, 6.17]).

Note that, in fact, ΓI takes values on a well-ordered subset V I of Z × Q × ZN . Thus, {α ∈ V I : α <

max(Γ )} is finite. Hence, iterating this process, after a finite number of steps we reach a situation
where the singular locus is empty.

It is clear that ΓI is compatible with open restrictions in the sense that if U is open in M then
(ΓI )|U∩S = ΓI|U (with S = Sing(I)).

2.5. A permissible sequence I0 ← ·· · ← Ir of marked ideals is called:

(a) a γ -sequence if each Ii is monomial and each center used is a canonical monoidal center.
(b) a ρ-sequence if it is a t-sequence 2.3, or a γ -sequence, or there is an index s such that I0 ←

·· · ← Is is a t-sequence and Is+1 ← ·· · ← Ir is a γ -sequence.

2.6. Notice that, in terms of the ω-functions of 2.2, Theorem 1.12 says that if I and J are equivalent
marked ideals of the same dimension, then ω0(I) = ω0(J ). This result generalizes, as we explain
next.

Consider a permissible sequence of marked ideals: I0 ← ·· · ← Ir where, for all i, Ii =
(Mi, W i, Ii,b, Ei). In the notation of 1.6 we write Ei = (Hi,1, . . . , Hi,m, Hi,m+1, . . . , Hi,m+i), where
Hi,1, . . . , Hi,m are the strict transforms of the hypersurfaces in E0, Hi,m+ j , m < j < i are the strict
transforms of the exceptional divisors that appear when we take the appropriate permissible trans-
forms and Hi,m+i is the last exceptional divisor. Then we have an expression

Ir = Ir I(Hr,m+1)
a1 . . . I(Hr,m+r)

ar (1)

where each exponent a j is a function with non-negative integral values, constant on each irreducible
component of Hr,m+ j , and zero outside Hr,m+ j .

The functions α j := a j/b, viewed as functions from Sing(Ir) to Q, will be called the α-functions
of Ir . Of course, they depend on the chosen permissible sequence and not just on Ir .

Then we have:

Proposition 2.7. Let I0 and J0 be equivalent marked ideals of the same dimension. Suppose I0 ← ·· · ← Ir

and J0 ← ·· · ← Jr are ω-permissible sequences, obtained by using the same centers. Then both the ω- and
the α-functions of Ir and Jr coincide.
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Proof. It is by induction on the length r of the ω-sequences involved. If r = 0, the statement con-
cerning α is trivially true since there are no a-functions and that about ω is true by Theorem 1.12.
For the inductive step consider, as in (1) of 2.6, the expressions:

Ir = Ir I(Hr,m+1)
a1 . . . I(Hr,m+r)

ar , (1)

Jr = J r I
(

H ′
r,m+1

)a′
1 . . . I

(
H ′

r,m+r

)a′
r (2)

(we write Ii = (Mi, W i, Ii,b, Ei), Ji = (Mi, W ′
i , J i, c, Ei)). By induction, the only points for which

the claimed result is non-trivial are those in Hr,m+r (the exceptional divisor of the last blowing-up
pi : Wr → Wr−1, with center Cr−1). So, let z be in Hr,m+r and z′ = p(z) ∈ Wr−1. Denote by y the
generic point of the irreducible component of Cr−1 containing z′ . Then:

ar(z)/b = ωr−1(y) − 1. (3)

This equality follows from the formula a j+1(z) = ν(I j, C j) − b, an easy consequence of the defini-
tions.

Let ω′
j denotes the j-th ω function determined by J0 ← ·· · ← Jr and α′

i = a′
i/c (see (2)). Then,

similarly, working with Jr , we obtain:

a′
r(z)/c = ω′

r−1(y) − 1. (4)

By induction, ωr−1(y) = ω′
r−1(y). So, (3) and (4) imply αr(z) = α′

r(z). Also by induction, αi(z) =
α′

i(z), i = 1, . . . , r − 1.
Now, by taking order in (1) and dividing by b, we obtain:

ωr(z) = νz(Ir)/b − α1(z) − · · · − αr(z). (5)

Similarly, using (2) we get

ω′
r(z) = νz( Jr)/c − α′

1(z) − · · · − α′
r(z). (6)

But Ir and Jr are equivalent 1.11; so by 1.12 νz(Ir)/b = νz( Jr)/c. We just saw that αi(z) = α′
i(z) for

all i. Therefore, (5) and (6) imply ωr(z) = ω′
r(z), completing the inductive step. �

Theorem 2.8. If I and I ′ are equivalent marked ideals, then their t and Γ functions coincide.

Proof. The statement means: if I = I0 ← ·· · ← Ir is a ρ-sequence and J is equivalent to I then,
using the same centers, we get an induced ρ-sequence J = J0 ← ·· · ← Jr so that Ii is monomial
if and only if Ji is monomial; moreover in the non-monomial (resp. monomial) case the t-functions
(resp. Γ -functions) of Ii and Ji are equal. This result is an immediate consequence of the definitions,
of the fact that the sequence of hypersurfaces Ei is the same both for Ii and Ji and of Proposi-
tion 2.7. �
Remark 2.9. Some of the notions and results discussed above admit a generalization that will be use-
ful later. The proofs are practically the same, although the notation becomes a little more complicated.
We omit them.

First, the ω and t functions can be defined practically in the same way, when the sequence (1)
of 2.2 is substituted by an open permissible sequence I0 ��� · · · ��� Is . Again, when each center Ci
is contained in Max(ti) (resp. Max(ωi)), we say that the sequence is an open t-permissible sequence
(resp. open ω-permissible sequence), or just an open t-sequence (resp. open ω-sequence). If the se-
quence is open t-permissible (resp. open ω-permissible), and if x ∈ Sing(Ii+1) and x′ is its image in
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Sing(Ii), then ti(x′) � ti+1(x) (resp. ωi(x′) � ωi+1(x)). These notions are compatible with inclusions,
as explained in 2.3.

Also, Proposition 2.7 extends to the case of open ω-sequences, and leads to:

Theorem 2.10. If I and I ′ are totally equivalent marked ideals, then their t and Γ functions coincide.

This is shown, with minor modifications, with the method of the proof of 2.8.

3. Inductive tools

In this section we present further results about marked ideals, taken primarily from [6] (see also
[1] and [4]). In these references the authors work with basic objects, but the transition to our context
of marked ideals is straightforward. The proofs are practically the same in both settings, and in general
will be omitted. We shall use this material in Section 4, when we introduce resolutions functions
using induction on the dimension of the marked ideal.

3.1. Good marked ideals. A marked ideal I = (M, W , I,b, E) is good if max{νx(I): x ∈ Sing(I)} = b (I is
called of maximal order in [3]).

If I is good, there is a standard way to produce, locally on W , smooth hypersurfaces. Namely,
if x ∈ Sing(I) then the stalk �b−1(I)x contains elements f such that νx( f ) = 1. Hence f defines a
smooth hypersurface Z , on an open neighborhood U of x (in W ). In general, it won’t be true that Z
is transversal to E . So, we introduce the next definitions.

3.2. Following the terminology of [13], a marked ideal I = (M, W , I,b, E) is said to be nice if there
is a regular hypersurface Z of W such that Sing(I) ⊆ Z and Z is transversal to E (see 1.6(b)); that Z
will be called an adapted hypersurface for I or an I -adapted hypersurface. Then Z must be smooth
and the marked ideal I must be good.

I is locally nice if for all x ∈ W there is an open neighborhood U of x (in M) such that the
restriction I|U is nice.

For the remainder of the article, if I is a marked ideal as above and F ⊆ W is a closed subscheme,
by the codimension of F we mean the codimension of F in W .

Lemma 3.3. Let J = (U , V , J , c, E) be a nice marked ideal, C the union of the one-codimensional irreducible
components of Sing(J ) and assume C 
= ∅. Then,

(a) C is a permissible J -center.
(b) If J1 = T(J , C), then Sing(J1) has no one-codimensional irreducible component.

Proof. (a) Let Z be an adapted hypersurface for the nice marked ideal J . Then, Sing(J ) ⊆ Z . If D is
an irreducible component of Sing(J ) of codimension one, for reasons of dimension D must be also
an irreducible component of Z . Since Z is adapted, D must be transversal to E , hence it has normal
crossings with E .

(b) Since C is a divisor of V , if p : U ′ → U is the blowing-up of U with center C and V ′ is the
strict transform of V , then p induces an isomorphism from V ′ onto V . We identify V and V ′ by
means of this isomorphism. With this identification we may write J1 = (U ′, V , J1, c, E ′). Note that
by the definition of controlled transform, if x ∈ C then ( J1)x = OV ,x and thus x /∈ Sing(J1). So, the
components of Sing(J1) are those components of Sing(J ) of codimension > 1. �
3.4. Coefficient ideals, inductive objects. Given a marked ideal I = (M, W , I,b, E), its coefficient ideal is
the W -ideal

C(I) :=
b−1∑[

�i(I)
]b!/b−i

.

i=0
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Assume now that I is nice with adapted hypersurface Z , and that C(I)|Z (the restriction of C(I) to Z )
is a never-zero Z -ideal. Then, the five-tuple I|Z = (M, Z , C(I)|Z ,b!, E) is a new marked ideal, called
the inductive object (induced by I on Z ). Always dim(I|Z ) = dim(I) − 1. Note that if dim(Sing(I)) �
dim(I) − 2, then C(I)|Z is a never-zero Z -ideal. Hence the inductive marked ideal I|Z is defined.

Lemma 3.5. Let I = (M, V , I,b, E) be a nice marked ideal, Z an I -adapted hypersurface, C an I -permissible
center, I1 = T(I, C), and Z1 ⊂ W1 = us(I1) the strict transform of Z . Then, Z1 is an I1-adapted hypersur-
face.

This result is often called “Giraud’s lemma”. A proof, in the context of basic objects, but still valid
in the present one, can be seen in [6, 9.1, 9.2], and [4, 6.20, 6.21].

Proposition 3.6. Let

I0 ← ·· · ← Is

be a permissible sequence of marked ideals, where Is is nice and admits an inductive hypersurface Z . Then,

Is
T∼ (Is)Z .

Proof. First, suppose that

Is = (Is)0 ��� (Is)1 ��� · · · ��� (Is)q, (1)

(Is)Z = [
(Is)Z

]
0 ���

[
(Is)Z

]
1 ��� · · · ��� [

(Is)Z
]

q (2)

are permissible sequences of open transformations (where (1) involves open sets Ui ⊆ as((Is)i) and
centers Ci ⊂ Ui ∩ Zi , with Zi the strict transform of Z to us((Is)i); and (2) involves the same opens
Ui ∩ Zi and centers Ci ). Then we have

Sing
(
(I s)q

) = Sing
([

(Is)Z
]

q

)
. (3)

Indeed, the proof of [6, 9.4], which uses (for x ∈ Zq and x′ its image in Zq−1) calculations in the
completions of local rings at x and x′ respectively, applies without changes to our situation involving
open transformations.

Second, note that dealing with extensions we have, for a marked ideal I , an isomorphism E(I Z ) ∼=
E(I)Z×A1 .

Our lemma follows from these observations. �
As in [6], we shall discuss how a useful nice marked ideal may be associated (locally, under suit-

able hypotheses) to an arbitrary marked ideal I = (M, V , I,b, E). This process will be useful later.

3.7. The marked ideal I ′′
r . Consider a t-permissible sequence of marked ideals

I0 ← ·· · ← Ir (1)

where I j = (M j, W j, I j,b, E j), let x ∈ Max(Ir). Then, there is an open neighborhood U of x (in Mr )
and a nice marked ideal (Ir |U )′′ with ambient scheme U admitting an adapted hypersurface Z .

To construct it, introduce first a Wr -ideal Jr as follows. Write max(tr )=(br/b, n̄), Ir the proper
transform of I0 to Wr . If br � b let Jr = Ir .

If br < b, write Er = (H1, . . . , Hm, . . . , Hm+r ) (where H1, . . . , Hm are the strict transforms of the
hypersurfaces that appear in E0). Then, as in the proof of Proposition 2.7, there is an expression
Ir = Cr Ir , where Cr = I(Hm+1)

a1 . . . I(Hm+r)
ar . Define Jr = Ib−br

r + C br .
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Now suppose q be the smallest index such that max(ωq) = max(ωr) (note that (1) is an
ω-sequence), and let E−

j denote the set of hypersurfaces in E j which are strict transforms of hy-

persurfaces in Eq . Let H j(1), . . . , H j(n̄) be the hypersurfaces in E−
r containing the point x and take a

neighborhood U of x such that

Max(tr |U ) = Max(ωr |U ) ∩ I(H j(1)) ∩ · · · ∩ I(H j(n̄)).

Write b′
r = br if br � b and b′

r = br(b − br) if br < b. Define the ideal:

I ′′r := Jr + I(H j(1))
b′

r + · · · + I(H j(n))
b′

r .

Let E ′′
r be the sequence of hypersurfaces in Er which are not in E−

r .
Finally, define:

(Ir)
′′|U = (

U , U ∩ Wr, I ′′r |U ,b′
r, E ′′

r |U
)
.

We call an open set U as above an amenable open set (at x). If U = Wr , we simply write I ′′
r =

(Ir)
′′|U and say that I ′′

r is globally defined.

3.8. Assuming, to simplify the notation, that U = Wr , we list next some useful properties of this
marked ideal I ′′

r . This material, in the context of basic objects, is discussed in [6, 9.5] (specially 9.5.7)
and [4, 6.32].

(i) Sing(I ′′
r ) = Max(tr).

(ii) If C ⊂ Max(tr) is an Ir -center (hence, by (i), an I ′′
r -center), (I ′′

r )1 = T(I ′′
r , C), Ir+1 = T(Ir, C),

and max(tr) = max(tr+1), then (I ′′
r )1 = (Ir+1)

′′ .
(iii) Suppose that

I0 ← ·· · ← Is (1)

is a t permissible sequence of marked ideals. Let

I ′′
s ← [

I ′′
s

]
1 ← ·· · ← [

I ′′
s

]
q (2)

be a permissible sequence of marked ideals, with centers C0, . . . , Cq−1 Then, there is a sequence

I0 ← ·· · ← Is ← Is+1 ← ·· · ← Is+q (3)

extending (1), where the center of the transformation Is+ j ← Is+ j+1 is C j , j = 0, . . . ,q − 1.
Moreover, for j = 0, . . . ,q − 1, Sing([I ′′

s ] j) = Max(ts+ j), max(ts+ j) = max(ts), and if max(ts+q) =
max(ts), then again Max(ts+q) = Sing([I ′′

s ]q). We also have Sing([I ′′
s ]q) = ∅ if and only if either

Sing(Is+q) = ∅ or max(ts) > max(ts+q).

For the proofs of (i) and (ii) see the cited references, property (iii) is obtained by repeated application
of (ii).

Proposition 3.9. Let

I = I0 ← ·· · ← Ir (1)

be a t-permissible sequence of marked ideals, C the union of the one-codimensional irreducible components of
Max(tr), and assume C 
= ∅. Then,
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(a) C is t-permissible center for Ir (i.e., it is regular, with normal crossings with Er ).
(b) If we extend (1) to another t-permissible sequence by using Ir+1 := T(Ir, C) = (Mr+1, Wr+1, Ir+1,b,

Er+1), then Max(tr+1) has no irreducible components of codimension one.

Proof. Both (a) and (b) are consequences of the following observation. If x ∈ C , we may take an
amenable open set U such that the nice marked ideal (I|U )′′ is defined; hence Lemma 3.3, applied to
(I|U )′′ , ensures that Sing((I|U )′′) satisfies (a) and (b) of 3.3. �
Proposition 3.10. Let I and J be marked ideals, I T∼ J , I = I0 ← ·· · ← Is , J = J0 ← ·· · ← Js
t-permissible sequences, obtained by using the same t-permissible centers C0, . . . , Cs−1 . Suppose that U ⊆
W s = us(Is) = us(Js) is an open set, amenable for both Is and Js . Then (Is |U )′′ T∼ (Js |U )′′ .

Proof. We must study what happens under: (a) permissible open transformations, (b) extensions.
We examine case (a) first. Write IsU := (Is |U )′′ and JsU := (Js |U )′′ , to simplify, let τ = max(ts),

N = Max(ts) = {x: ts(x) = τ }, where ts denotes the t-function of Is . But, since Is ∼ Js , by Theo-
rem 2.8, the t-function of Js is again ts . So, Sing(IsU ) = Sing(JsU ) because, by 3.8(i), both are equal
to N ∩ U .

Now take an open set V ⊆ U and a common permissible center C for both IsU |V and JsU |V .
Assume V ∩ N 
= ∅ (the only nontrivial case). Note that IsU |V = (Is |V ) := IsV and JsU |V = (Js |V ) :=
JsV . Transform Is |V , Js |V , IsV and JsV , using C as center in all cases. We get marked ideals (Is |V )1,

(Js |V )1, (IsV )1, (JsV )1 respectively. Since I T∼ J , by 2.8, the t-functions of both (I|V )1 and (J|V )1
agree, say they are = t′

1. So, max(t′
1) = τ and Sing(IsV ) = Sing(JsV ) because both are equal to N1 =

{x: t′
1(x) = τ }. If N1 is empty, we are done because both ideals are trivial (equal to the structure

sheaf). If N1 is non-empty, we may repeat the argument. By iteration, we have the result in this case.
Case (b) is a consequence of the fact that a t-sequence I0 ← ·· · ← Is of marked ideals induces

a t-sequence E(I)0 ← ·· · ← E(I)s of extensions 1.6(c), and then there is an isomorphism E(Is
′′) ∼=

(E(I)s)
′′ . �

4. A resolution algorithm

In this section we prove the following result:

Theorem 4.1. To each marked ideal I we may attach algorithmic resolution functions gi , i = 0, . . . , r − 1
(where r depends on I ); this process satisfies conditions (a), (b) of 2.1 and, moreover, the following condition:

(c) The resolution I = I0 ← ·· · ← Ir determined by the functions gi (i.e., the i-th center is Max(gi)) is a
ρ-sequence (see 2.5).

To prove the theorem we shall introduce, for each positive integer d, a totally ordered set Λ(d)

and for each d-dimensional marked ideal I functions gi (with domains as in Definition 2.1 and with
values in Λ(d)), which will be algorithmic resolution functions as needed. We discuss separately the
cases d = 1 and d arbitrary. The details will be presented in Sections 4.2 through 4.5.

4.2. The functions gi when d = 1. If dim(I0) = 1, we set Λ(1) = S1 ∪ S2 ∪ {∞1}, where if a ∈ S2 and
b ∈ S1, then a > b and ∞1 is the largest element of the set. Next, we define for w ∈ Sing(I0), g0(w) =
t0(w). If gi is defined for i < s, determining a t-permissible sequence I0 ← B1 ← ·· · ← Is , then we
set, for w ∈ Sing(Is), gs(w) = ts(w) if ωs(w) > 0, while gs(w) = ΓBs (w) in case ωs(w) = 0. Since in
this one-dimensional situation Ci = Max(gi) is always a finite collection of closed points, it follows
that these are permissible centers.

Now we examine conditions (a), (b) and (c) in Theorem 4.1. Clearly the functions gi satisfy
condition (a) (compatibility with open immersions) and they also satisfy (b) by Theorem 2.8. Con-
cerning (c), if for certain s the marked ideal Is is monomial, then all the successive marked ideals
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will be so. Proposition 3.9 implies that, for some s, Is is either nonsingular or monomial, hence (c) is
also satisfied.

Proposition 3.9 and 2.4(b) show that these are indeed resolution functions.

4.3. The functions gi in general. Now assuming that the resolution functions are defined when the
dimension of the marked ideal is < d, we define resolution functions g j for objects of dimension d. If
d > 1, the totally ordered set of values will be: Λ(d) = (S1 × Λ(d−1)) ∪ S2 ∪ {∞d}, where S1 × Λ(d−1)

is lexicographically ordered, any element of S2 is larger than any element of S1 × Λ(d−1) , and ∞d is
the largest element of Λ(d) .

Given a marked ideal I0, we shall define the corresponding function g0.
For a point x ∈ Sing(I0), we necessarily have ω0(x) > 0. Let N1 be the union of the 1-codimensional

components of Max(t0); there are two cases: (i) N1 
= ∅; (ii) N1 = ∅. Let x ∈ Sing(I0).
In case (i),

g0(x) =
{∞d if x ∈ N1,

(t0(x),∞d−1) otherwise.

So, the 0-th center C0 is N1. By Proposition 3.9, C0 = N1 is a permissible center.
In case (ii), pick up an amenable open neighborhood U of x with adapted hypersurface Z ⊂ U , and

take the associated nice marked ideal (I0|U )′′ . Consider the inductive marked ideal I ∗
Z := ((I0|U )′′)Z .

By induction on the dimension, for I ∗
Z there are defined resolution functions g̃ Z ,i ; then set g0(x) :=

(t0(x), g̃ Z ,0(x)). We claim that if a different amenable open set and adapted hypersurface were chosen,
then the result would be the same. First of all, since t0 and, by induction, the resolution functions in
dimension d − 1 are compatible with restrictions to open sets, we may assume that the open set U
is the same in both cases. Let Z ′ be the new adapted hypersurface. Now, by Proposition 3.10 (in

the special case I = J ), I ∗
Z

T∼ I ∗
Z ′ . Since dim(Z) = dim(Z ′) < d, by induction (b) is satisfied, hence

g̃ Z ,0(x) = g̃ Z ′,0(x). So, the value g0(x) is independent of the choices, and g0 is well defined.
Suppose now that the resolutions functions gi , i = 0, . . . , j − 1 (satisfying (a), (b) and (c) of 4.1)

have been defined, determining centers Ci = Max (gi), i = 0, . . . , j − 1, and leading to a permissible
sequence I0 ← ·· · ← I j , Ii = (Mi, W i, Ii,b, Ei), i = 0, . . . , j, j � 0. We assume that if I j−1 is not
a monomial object, then this is a t-sequence. There are two possible cases: (A) max(ω j) = 0, and
(B) max(ω j) > 0.

In case (A), I j is monomial. For x ∈ Sing(I j) let Γ j be its Γ -function and set g j(x) := Γ j(x).
In case (B), letting N1( j) denote the union of the one-codimensional components of Max(t j), there

are two subcases: (B1) N1( j) 
= ∅, (B2) N1( j) = ∅.
In case (B1), set g j(x) = ∞d , if x ∈ N1( j), and set g j(x) = (t j(x),∞d), if x ∈ Sing(I j) but x /∈ M1( j).

4.4. The case (B2) (the inductive situation). In this case, if x ∈ Sing(I j) \ Max(t j), set gs(x) = (t j(x),∞d).
If x ∈ Max(ts), let s be the smallest index such that max(ts) = max(t j) and N1(s) (the union of one-
codimensional components of Max(ts)) is empty. Let xs be the image of x in W s . Proceed as in case
j = 0: pick up an amenable open neighborhood U of xs , with adapted hypersurface Zs ⊂ U , and take
the associated nice marked ideal (Is |U )′′ . Consider the inductive marked ideal I ∗

s Zs
:= ((I0|U )′′)Zs .

By induction on the dimension, for I ∗
s Z there are defined resolution functions g̃ Zs,i , i = s, . . . . Set

g j(x) := (t j(x), g̃ Zs, j(x)).
We assert that the final result is not affected by a different choice of the amenable open set

and adapted hypersurface. To see this fact, we may assume the open set U to be the same in both
cases, because t j and, by induction, the resolution functions in dimension d − 1 are compatible with

restrictions to opens. Let Z ′
s be the new adapted hypersurface. By Proposition 3.10, I ∗

s Zs

T∼ I ∗
s Z ′

s
. Since

by induction on the dimension condition (b) is satisfied, g̃ Zs, j(x) = g̃ Z ′
s, j(x). So, the value g j(x) is

independent of the choices and thus g j is well defined.
With this definition, if I j is not monomial then the center C j = Max(g j) is contained in Max(t j),

hence condition (c) is valid.
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In this situation (B2), the center C j locally coincides with one of the algorithmic resolution centers
of I ∗

s Zs
and, moreover, C j ⊆ Max(t j). It follows that C j is t-permissible.

By induction, the functions g0, . . . , g j−1 satisfy conditions (a), (b), and (c). Concerning g j , the
discussion above shows that condition (c) is valid and (a) is clear.

Let us prove that g j also satisfies condition (b). Suppose that I = (M, W , I,b, E) and J =
(M, V , J , c, E) are totally equivalent marked ideals with dim(W ) = dim(V ), and that gi (resp. g′

i),
i = 0, . . . , j, are the resolution functions of I (resp. J ), constructed as above. By induction, gi = g′

i ,
i < j; so by using centers Ci = Max(gi) = Max(g′

i) (0 � i < j), we obtain permissible ρ-sequences

I = I0 ← ·· · ← I j, (1)

J = J0 ← ·· · ← J j. (2)

We shall see that for every point x ∈ Sing(I j) = Sing(J j),

gi(x) = g′
i(x), (3)

this will show that g j also satisfies (b).
We proceed by induction on the d = dim W = dim V . If dim W = 1, the statement follows from 2.8.
Suppose now the equality (3) valid when the dimension is less than d, let dim I = d. The only case

worth considering is (B2), the other cases being a consequence of 2.8 and 3.9. Since I ∼ J , by 2.8
the t-functions t0, t1, . . . , t j of the sequences (1) and (2) are the same. For the same reason, the
index s used in (B1) is the same. Now, the functions gi and g′

i satisfy (a), and we know that gi = g′
i

for i < j. Then, from 3.10 and the fact that I and J are totally equivalent (with the notation used
in the discussion of case (B1)) we may find a common open neighborhood U of xs (the image of x

in Ms) and adapted hypersurfaces Z (for Is) and Z ′ (for Js) such that (I|U )′′|Z

T∼= (J|U )′′|Z ′ . By inductive
hypothesis, the resolution functions g̃i and g̃′

i (s � i � r′ , where j � r′) corresponding to (I|U )′′|Z and
(J|U )′′|Z ′ respectively, agree. Hence g j(x) = (t j(x), g̃ j(x)) = (t j(x), g̃′

j(x)) = g′
j(x), proving (3).

4.5. The process terminates. So far, we have obtained well-defined functions gi satisfying conditions
(a), (b), and (c). Once g0, . . . , gq−1 have been defined, by taking centers Ci = Max(gi) we obtain a
permissible sequence which, moreover, is a ρ-sequence:

I = I0 ← ·· · ← Iq, (σq)

called an algorithmic sequence. We assert that, for a suitable index q = r, the sequence (σr) is a reso-
lution, i.e., Sing(Ir) = ∅.

This is done in [6], in the context of basic objects. For completeness, we review the main steps.
We proceed by induction on the dimension d of the marked ideal. The case d = 1 has been already

established.
Note that if in an algorithmic sequence (σq), for some index j the marked ideal I j is monomial,

then all the terms Ii , i � j are also monomial, obtained as transforms with monomial canonical
centers. As remarked in 2.4, for a suitable r � j, Ir will be resolved. So, it suffices to show that for a
certain index q, Iq is monomial. This will be the case if max(ωq) = 0 (a consequence of formula (1)
in 2.6 and the definitions).

Now, if I j−1 in (σq) is not monomial, then we have a t-sequence. So, the sequence {max(ti)} is
non-increasing. Moreover, since the functions ti take values in (1/b)N0 × N0, this sequence takes on
finitely many values.

So, to show that eventually we get either a resolved or monomial marked ideal, it suffices to prove
the following assertion:

(∗) If τ = max(ts) = (a,n), a > 0, for some index s in (σq), then, for j large enough, in the sequence
σ j we have max(t j) < τ .
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We prove (∗). By 3.9 we may assume that N = Max(ts) has codimension > 1 and s is minimal
with this property.

Using compactness, cover N with amenable open sets U1, . . . , Uk , with inductive hypersurfaces
Z1, . . . , Zk respectively. Consider for each α ∈ {1, . . . ,k}, the inductive marked ideal I ∗

αZα
:= (I|Uα )′′Zα

and its algorithmic resolution

I ∗
αZα

= (
I ∗
αZα

)
0 ← (

I ∗
αZα

)
1 ← ·· · ← (

I ∗
αZα

)
r(α)

(that we have by induction on the dimension), with algorithmic centers C∗
αi . Let m = max{r(α): 1 �

α � k}. According to 3.8(iii), in the algorithmic sequence (σs+m):

I = I0 ← ·· · ← Is ← ·· · ← Is+m,

if Uαi is the pre-image of Uα in us(Is+i), then the algorithmic centers Cs, . . . , Cs+m satisfy
Cs+i ∩ Uαi = C∗

αi , provided that Uαi ∩ {x ∈ Sing (I Uαi
): ti(x) = τ } 
= ∅. By the choice of m, {x ∈

Sing(Is+m): ts+m(x) = τ } is empty, i.e., max(ts+m) < τ . This proves assertion (∗) and hence Theo-
rem 4.1.
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