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0. Introduction

The notion of numerable covering of a space is a useful tool in order to obtain global results from local data. Among the
most successful results in this sense for homotopy theory we can mention the papers of A. Dold [3] and T. tom Dieck [9], in
which it is shown that being a homotopy equivalence or a fibration is a local property. The aim of this paper is to establish
an analogous notion of numerable covering in the category P of spaces and proper maps and to give an application. In
order to do so we begin in Section 1 by giving some preliminary definitions and results that will be used throughout the
paper. The most important tool is the category of exterior spaces [4]. An exterior space is nothing else but a topological space
together with a distinguished collection of open subsets verifying certain natural conditions that capture the behavior of a
neighborhood system (‘at infinity’). Then the category E of exterior spaces and exterior maps appears, containing P as a full
subcategory. Moreover, unlike P, the category of exterior spaces has better categorical properties, such as having all limits
and colimits. It is for all these reasons that we have chosen E as a framework for our study in P.

In Section 2 we establish the main notion of the paper, which is the one of proper (and exterior) numerable covering.
In order to do this, we consider a more manageable description of the category of exterior spaces, based on the Alexandrov
one-point compactification. Then it is shown that the notion of proper numerable (for short, p-numerable) covering is not
very restrictive. Indeed, at the end of the section we obtain the following result:

Proposition. Let X be a finite dimensional locally finite CW-complex (for instance, any open differentiable n-manifold or any open PL
n-manifold). If {Xα}α∈A is a covering of X such that the family of their interiors {int(Xα)}α∈A also covers X and there exists α ∈ A
such that the complement X \ int(Xα) is compact, then {Xα}α∈A is a p-numerable covering of X .
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Finally, using such notion of p-numerable covering, we establish in Section 3, an application. Consider f : X → Y any
proper map over a fixed space B , that is, a commutative diagram in P:

X
f

p

Y

q

B

Theorem. If {Bα}α∈A is a closed p-numerable covering of B and each restriction

p−1(Bα)
fα

pα

q−1(Bα)

qα

Bα

is a proper homotopy equivalence over Bα , then f : X → Y is a proper homotopy equivalence over B.

1. Preliminaries. Proper category and exterior spaces

Recall that a proper map is a continuous map f : X → Y such that f −1(K ) is a compact subset of X , for every closed
compact subset K of Y . We will denote by P the category of spaces and proper maps. Proper homotopy is defined in a
natural way.

As it is well known, the category P has not good categorical properties such as limits and colimits. Therefore, many
constructions cannot be considered in this setting. In order to palliate this problem in P, exterior spaces were introduced
in [4].

Definition 1. ([4]) An exterior space (X,E ⊆ τ ) consists of a topological space (X, τ ) together with a non-empty family of
open sets E , called externology which is closed by finite intersections and, whenever U ⊇ E , E ∈ E , U ∈ τ , then U ∈ E . We
call exterior open subset, or in short, e-open subset, any element E ∈ E . A map between exterior spaces f : (X,E ⊆ τ ) →
(X ′,E ′ ⊆ τ ′) is said to be exterior if it is continuous and f −1(E) ∈ E , for all E ∈ E ′ .

The category of exterior spaces will be denoted by E.

For a given topological space X we can consider its cocompact externology Ecc which is formed by the family of the com-
plements of all closed-compact subsets of X . The corresponding exterior space will be denoted by Xcc . The correspondence
X �→ Xcc gives rise to a full embedding [4, Theorem 3.2]:

(−)cc : P ↪→ E

Furthermore, the category E is complete and cocomplete [4, Theorem 3.3]. For instance, the pushout in E of f : X → Y
and g : Y → Z , is the topological pushout

X

f

g
Z

f

Y
g

Y ∪X Z

equipped with the pushout externology, given by those E ⊆ Y ∪X Z for which g−1(E) and f
−1

(E) are e-open. Another
example is the product externology in Y × Z , which consists of those open subsets which contain a product E × E ′ of
e-open subsets of Y and Z respectively. More generally, the pullback in E of f : Y → X and g : Z → X is the topological
pullback Y ×X Z endowed with the relative externology induced by Y × Z . (In general, the relative externology in A ⊆ X is
given by EA := {E ∩ A, E ∈ EX }.)

Now we introduce the following functorial construction that can be made in this setting:

Definition 2. ([4]) Let X and Y be an exterior and a topological space respectively. On the product space X × Y consider
the following externology: an open set E is exterior if for each y ∈ Y there exists an open neighborhood of y, U y , and an
exterior open E y such that E y × U y ⊂ E . Then X×̄Y will denote the resulting exterior space.

Remark 3. If Y is compact, then it is not difficult to check that E is an exterior open in X×̄Y if and only if it is an open set
and there exists G ∈ EX for which G × Y ⊂ E . In particular, if EX = E X

cc and Y is compact, then Xcc×̄Y = (X × Y )cc .
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There is a cylinder functor −×̄I : E → E with natural transformations ı0, ı1 : id → −×̄I and ρ :−×̄I → id obviously defined.
This construction provides a natural way to define exterior homotopic maps ( f �e g) in E. The notion of exterior homotopy
equivalence comes naturally.

Observe that, since Xcc×̄I = (X × I)cc (by Remark 3 above), the cylinder functor may be restricted to the proper case,
−×̄I = −×I : P → P. This functor is the one used in [1] to define an I-category structure (in the sense of Baues) on P∞
using proper cofibrations.

We can also consider the category EB of exterior spaces over a fixed object B . Its objects are exterior maps X → B , called
exterior spaces over B , and its morphisms, called exterior maps over B are commutative triangles in E:

X
f

p

Y

q

B

Remark 4. The exterior spaces and exterior maps over B are also called fibrewise exterior spaces and fibrewise exterior maps,
respectively.

Given f , g : X → Y two exterior maps over B , then f is homotopic to g over B (or fibrewise homotopic to g), denoted
f �B g , if there exists H : X × I → Y a homotopy over B between f and g . This means that H is an exterior map such
that qH(x, t) = p(x) and H(x,0) = f (x), H(x,1) = g(x), for all x ∈ X and t ∈ I . The homotopy over B is an equivalence
relation, compatible with the composition of morphisms. The notion of homotopy equivalence over B (or fibrewise homotopy
equivalence) is naturally defined. The fibrewise notions can be restricted to the category P of spaces and proper maps.

Now we give a more manageable description of the category of exterior spaces. Such description will be crucial for our
main notion, given in the next section. We shall consider what we call the category of ∞-spaces.

Definition 5. An ∞-space is a pointed space (X, x0) such that {x0} is closed in X . An ∞-map is a pointed map f : (X, x0) →
(Y , y0) verifying f −1({y0}) = {x0}. We write Top∞ for the corresponding category of ∞-spaces and ∞-maps.

Proposition 6. There is an equivalence of categories E � Top∞ .

Proof. If (X, εX ⊂ τX ) is an exterior space and ∞ is a point which does not belong to X , then we consider the pointed
space X∞ = X ∪ {∞} with base point ∞, equipped with the topology

τ∞ = τX ∪ {
E ∪ {∞}: E ∈ εX

}

Given f any exterior map, f ∞ is obviously defined. Thus we obtain a functor (−)∞ : E → Top∞ , which is an equivalence of
categories. Indeed, the quasi-inverse of (−)∞ is the functor Top∞ → E defined as follows:

Let (X, x0) be any object in Top∞; then we take the exterior space X̄ = X \ {x0} whose topology and externology are
given as

τ X̄ = {
A \ {x0}: A ∈ τX

}
, ε X̄ = {

A \ {x0}: A ∈ τX , x0 ∈ A
}

Observe that τ X̄ ⊂ τX since X \ {x0} ∈ τX . The definition on morphisms is given by the obvious restriction. �
The functor (−)∞ is closely related to the Alexandroff compactification functor. Indeed, if X is any topological space

and we consider Xcc the cocompact externology, then it is clear that (Xcc)
∞ = X+ is the Alexandroff compactification of X .

There is a commutative diagram of functors and categories

P

(−)+

(−)cc E

(−)∞�

Top∞

where (−)+ : P → Top∞ is the functor induced by the Alexandroff compactification construction. Consequently, the functor
(−)+ is a full embedding; furthermore, (−)+ induces an equivalence

PlcH � Top∞
cH

between the full subcategory PlcH of P whose objects are locally compact Hausdorff spaces and the full subcategory Top∞
cH

of Top∞ whose objects are based compact Hausdorff spaces. Here, the condition of being Hausdorff cannot be removed. For
instance, if 2S denotes the space given by the set 2 = {0,1} with the Sierpinski topology τ = {∅,2, {0}}, then 2S does not
come from the Alexandroff compactification.
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2. Proper and exterior numerable coverings

In this section we will establish the notion of proper (more generally, exterior) numerable covering of an exterior space.
In order to obtain such notion we need the functor (−)∞ : E → Top∞ . Recall that a (not necessarily open) covering U of a
space X is said to be numerable if U admits a refinement by a partition of unity (see [3] or [2] for more details). It is well
known that any open covering of a paracompact space is numerable.

Definition 7. Let X be an exterior space and U = {Ui}i∈I a covering of X . Then U is said to be an exterior numerable covering
(for short, e-numerable covering) of X if

U∞ = {
Ui ∪ {∞}}i∈I

is a numerable covering of the topological space X∞ . In particular, when X is a cocompact exterior space (i.e., X has the
cocompact externology), then we say that U is a proper numerable covering (or p-numerable covering) of X .

Although at first sight the notion of e-numerable covering might seem too restrictive we will see that it turns out to be
far from the case. Indeed, we will prove that for a wide class of exterior spaces X , namely the exterior CW-complexes, we
have that X∞ is a paracompact space. Therefore, any open covering of X is an e-numerable covering, as long as there exists
a member of the covering which is an exterior open subset.

Definition 8. ([5]) An exterior CW-complex consists of an exterior space X together with a filtration ∅ = X−1 ⊂ X0 ⊂ X1 ⊂
· · · ⊂ Xn ⊂ · · · , such that X is the colimit of this filtration and for each n � 0, Xn is obtained from Xn−1 by an exterior
pushout of the form

�γ ∈Γ S
n−1
γ

�γ ∈Γ ϕγ
Xn−1

�γ ∈Γ D
n
γ

�γ ∈Γ ψγ
Xn

Here Sk denotes either the k-dimensional sphere Sk (with its topology as externology) or the k-dimensional N-sphere
N×̄Sk . Analogously Dk denotes either the classical disc Dk or N×̄Dk , the N-disc. We point out that the inclusion Sk−1 ↪→
Dk means either Sk−1 ↪→ Dk or N×̄Sk−1 ↪→N×̄Dk .

Observe that every classical CW-complex X with its topology as externology is an exterior CW-complex. Moreover, the
class of exterior CW-complexes contains many spaces in P; for instance, if X is any finite dimensional locally finite CW-
complex, then Xcc has the structure of an exterior CW-complex. In order to see this fact one has just to take into account
the following result:

Lemma 9. ([6, Proposition 2.3]) Consider the pushout in E of f : A → Xcc and g : A → Ycc

A

f

g
Ycc

Xcc Xcc ∪A Ycc

in which X, Y are Hausdorff, locally compact spaces, and A is a Hausdorff, locally compact exterior space. Then, the pushout externology
is contained in the cocompact externology in X ∪A Y . Furthermore, if f and g are proper maps and f (or g) is injective, then Xcc ∪A

Ycc = (X ∪A Y )cc . �
In particular, suppose that M is any open differentiable n-manifold or any open PL n-manifold. As a differentiable mani-

fold M admits a triangulation and therefore a structure of a finite dimensional locally finite CW-complex. Consequently Mcc

can be seen as an exterior CW-complex.

Remark 10. If X is a strongly locally finite CW-complex (not necessarily finite dimensional), then each skeleton Xn equipped
with its cocompact externology is an exterior CW-complex. Furthermore, X together with the colimit externology (i.e., the
externology given by those open subsets E ⊂ X such that E ∩ Xn is cocompact in Xn , for all n) has the structure of an
exterior CW-complex. Note that, in the non-finite dimensional case, the colimit externology in X need not agree with the
cocompact externology and therefore X might not be considered as a space in P.
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For an exterior CW-complex X , X∞ need not be a classical CW-complex. For instance, if X = N×̄Sk we have that X∞ =
X+ is the Alexandorff compactification, which is not a CW-complex since the property of being locally contractible fails at
∞ ∈ X+ (see the figure below)

What is clear is that (Sk)∞ = (Sk)+ and (Dk)∞ = (Dk)+ are paracompact Hausdorff spaces (and therefore normal spaces).
Next we state some technical results that will help us to reach our aim. Given m any infinite cardinal number, a topological
space X is said to be m-paracompact if for any open covering with cardinal � m it admits a locally finite refinement. Then
X is paracompact if and only if X is m-paracompact for any infinite cardinal number m.

A topological space X is said to have the weak topology with respect to a closed covering {Aλ}λ∈Λ if for any Λ′ ⊂ Λ

we have that every subset C ⊂ ⋃
λ∈Λ′ Aλ which verifies that C ∩ Aλ is closed for all λ ∈ Λ′ then C is closed in X . Every

topological space has the weak topology with respect to any locally finite closed covering.

Lemma 11. ([8, Theorem 3.1]) If a topological space X has the weak topology with respect to a closed covering {Aα}α∈A where each
Aα is m-paracompact and normal, then X is also m-paracompact and normal. �
Lemma 12. ([8, Theorem 3.4]) Let X be a topological space and {An}∞n=0 a countable closed covering such that if C ⊂ X verifies that
C ∩ An is closed for all n implies that C is closed in X. If each An is m-paracompact and normal, then X is also m-paracompact and
normal. �

Now recall that given any map f : C → Y , where C is a closed subspace of a space X , the adjunction space X ∪ f Y is the
pushout

C
f

Y

X X ∪ f Y

Lemma 13. ([7, Corollary 1]) Consider X, Y m-paracompact and normal spaces, C a closed subspace of X and f : C → Y any map.
Then the adjunction space X ∪ f Y is m-paracompact and normal. �

Using the above results one can prove the following proposition.

Proposition 14. If X is an exterior CW-complex, then X∞ is a paracompact space.

Proof. Since (−)∞ : E → Top∞ is an equivalence of categories, in particular it preserves all small limits and colimits. This
fact implies that:

(i) X∞ = colim(Xn)∞; that is X∞ is the union of all (Xn)∞ with the hypothesis of Lemma 12.
(ii) (Xn−1)∞ and (Xn)∞ are related through the topological pushout

∨
γ ∈Γ (Sn−1

γ )+ (Xn−1)∞

∨
γ ∈Γ (Dn

γ )+ (Xn)∞

That is, every (Xn)∞ is an adjunction space.
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The combination of Lemmas 11, 12 and 13 together with an easy induction argument permits us to prove the result. The
details are left to the reader. �

As corollaries we obtain the following results.

Proposition 15. If U is an open covering of an exterior CW-complex X where at least one of its members is an exterior open subset,
then U is an e-numerable covering of X . �
Proposition 16. Let X be a finite dimensional locally finite CW-complex (for instance, any open differentiable n-manifold or any open
PL n-manifold). Then, its Alexandroff compactification X+ is paracompact. As a consequence, if {Xα}α∈A is a covering of X such that
the family of their interiors {int(Xα)}α∈A also covers X and there exists α ∈ A such that the complement X \ int(Xα) is compact, then
{Xα}α∈A is a p-numerable covering of X . �
3. An application: The fibrewise proper homotopy equivalences

In this section we will give an application. Namely, we will prove that the fibrewise proper homotopy equivalences satisfy
a local to global type theorem. For this aim we first translate the corresponding notions to the framework of exterior spaces,
or ∞-spaces. First of all, we note the following important fact, connecting the (fibrewise) proper homotopy equivalences
and their exterior counterpart. Its proof is routine and left to the reader.

Proposition 17. Let B is a fixed topological space and f : X → Y a proper map over B, that is a commutative diagram in P

X
f

Y

B

Then f is a proper homotopy equivalence over B if and only if fcc is an exterior homotopy equivalence over Bcc . �
We want to connect this result with the category of ∞-spaces.

3.1. Fibrewise homotopy equivalences in Top∞

Let (X, x0) be an ∞-space. Its pointed cylinder I∗(X) is just the quotient space I∗(X) = (X × I)/({x0} × I) coming from
the topological pushout

{x0} × I ∗

X × I π I∗(X)

Observe that I∗(X) is again an ∞-space since π−1(∗) = {x0} × I is closed in X × I and therefore ∗ is closed in I∗(X). This
construction gives rise to a functor

I∗ : Top∞ → Top∞

The pointed cylinder is also equipped with natural transformations i0, i1 : X → I∗(X) and p : I∗(X) → X in Top∞ . This way
a notion of homotopy comes naturally: Given f , g : X → Y ∞-maps we say that f is ∞-homotopic to g ( f �∞ g) if there
exists F : I∗(X) → Y an ∞-map such that F i0 = f and F i1 = g . However we may also use the non-pointed cylinder; it is
straightforward to check that f �∞ g if and only if there exists a continuous map F : X × I → Y such that F −1({y0}) =
{x0} × I (in particular is a classical pointed homotopy) and F (x,0) = f (x), F (x,1) = g(x), for all x ∈ X . The notion of ∞-
homotopy equivalence (respectively ∞-homotopy equivalence over B) comes naturally.

The next result explores the connection between the cylinder construction in Top∞ and E.

Lemma 18. Let X be any exterior space. Then there exists a natural isomorphism in Top∞

(X×̄I)∞ ∼= I∗
(

X∞)
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Proof. Recall that I∗(X∞) = (X∞ × I)/({∞} × I) and π : X∞ × I → I∗(X∞) denotes the canonical projection. We define the
∞-map ϕ : (X×̄I)∞ → I∗(X∞) by ϕ(x, t) = π(x, t), for (x, t) ∈ X × I , and ϕ(∞) = ∗. Then we have that ϕ is an isomorphism.
Indeed, the map h : X∞ × I → (X×̄I)∞ given by h(x, t) = (x, t) and h(∞, t) = ∞, satisfies h({∞} × I) = {∞} (moreover,
h−1({∞}) = {∞} × I) and it induces an ∞-map ψ : I∗(X∞) → (X×̄I)∞ such that ψπ = h. One can straightforwardly check
that ψϕ = id and ϕψ = id. �
Remark 19. In the proper case, the above result can be read as

(X × I)+ ∼= I∗
(

X+)

That is, given any space X , the Alexandroff compactification of the cylinder X × I is, up to isomorphism in Top∞ , the
pointed cylinder of the Alexandroff compactification of X .

As an immediate result, given f , g : X → Y exterior maps, we have that f �e g if and only if f ∞ �∞ g∞ . Moreover,

Proposition 20. Let B be a fixed exterior space and f : X → Y an exterior map over B. Then f is an exterior homotopy equivalence
over B if and only if f ∞ is an ∞-homotopy equivalence over B∞ . �

Now we establish our result. But first we need the following notions and results related to the classical topological case.
Their proofs can be found in [3,2] or [10].

Recall that given B a topological space, a halo around A ⊂ B is a subset V ⊂ B such that there a continuous map
τ : B → [0,1] with A ⊂ τ−1(1) and B \ V ⊂ τ−1(0). A continuous map p : E → B is said to have the Section Extension
Property (SEP) if for every A ⊂ B and every section s over A which admits an extension as a section to a halo V around A,
there exists a section S : B → E over B with S|A = s. (In particular, if p has the SEP then p always has a section by taking
A = ∅ = V .)

Consider the category TopB of topological spaces over a fixed space B and maintain the same notation and terminology
as the ones given for the exterior case. That is, we shall deal with spaces and maps over B (or fibrewise spaces and maps)
and fibrewise homotopies, also denoted as �B . Then it is said that p : E → B is dominated by p′ : E ′ → B if there exist
fibrewise maps f : E → E ′ and g : E ′ → E such that g f �B idE .

By a shrinkable space over B we mean any space over B which has the same fibrewise homotopy type as the identity
idB : B → B .

Proposition 21. ([3, Proposition 2.3]) Suppose that p : E → B is dominated by p′ : E ′ → B. If p′ has the SEP, then so does p. In
particular, every shrinkable space has the SEP. �
Lemma 22. ([3, Corollary 2.7]) Let p : E → B a continuous map and {Vλ}λ∈Λ a numerable covering of B. If each restriction
pλ : p−1(Vλ) → Vλ is shrinkable (over Vλ) then p is also shrinkable. �

And the last technical previous result. Let

X
f

p

Y

q

B

be a fibrewise map. We can consider the following subspace of X × Y I :

R = {
(x, γ ) ∈ X × Y I : p(x) = qγ (t), ∀t ∈ I, and γ (1) = f (x)

}

together with the map q : R → Y defined as q(x, γ ) = γ (0).

Lemma 23. ([3, Lemma 3.4]) If f : X → Y is a homotopy equivalence over B, then q : R → Y is shrinkable. �
Finally, we establish our theorem as application. Consider f : X → Y any exterior map over a fixed exterior space B

X
f

p

Y

q

B

If {Bα}α∈A is covering of B we will write, for each α
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Xα
fα

pα

Yα

qα

Bα

where Xα = p−1(Bα), Yα = q−1(Bα) and fα, pα and qα denote the natural restrictions.

Theorem 24. If {Bα}α∈A is an e-numerable covering of B and each fα is an exterior homotopy equivalence over Bα , then f : X → Y
is an exterior homotopy equivalence over B.

Proof. By Proposition 20 we can assume that we are working in Top∞ , and by abuse of language we can use the same
notation for the corresponding objects and maps. That is, we can think that

X
f

p

Y

q

B

is a commutative diagram in Top∞ and {Bα}α∈A is a classical numerable covering of B such that the base point b0 ∈ B
belongs to each Bα . Moreover, each fα is an ∞-homotopy equivalence over Bα . We shall denote by x0 and y0 the respective
base points of X and Y .

Now, for every α ∈ A, let f −
α : Yα → Xα denote a fibrewise ∞-homotopy inverse. As the fibrewise homotopy equivalences

in Top∞ are, in particular, classical fibrewise homotopy equivalences, we can use the previous results. By Lemma 23 we have
that each qα : Rα → Xα is shrinkable, where

Rα = {
(x, γ ) ∈ Xα × Y I

α: pα(x) = qαγ (t), ∀t ∈ I and γ (1) = fα(x)
}

Therefore, by Lemma 22 we have that q : R → Y is also shrinkable. In particular q has the SEP so there exists a section
S = ( f ′, θ) : Y → R .

First of all we observe that q : R → Y is an ∞-map, being (x0, C y0 ) the base point of R (here C y0 denotes the constant
path). Indeed, if (x, γ ) ∈ R satisfies q(x, γ ) = γ (0) = y0 then we have

p(x) = q
(
γ (0)

) = q(y0) = b0

so that x = x0. On the other hand, for any t ∈ I we have

q
(
γ (t)

) = p(x) = p(x0) = b0

so γ = C y0 is the constant path and we conclude that (x, γ ) = (x0, C y0 ).
Being S a section of the ∞-map q we also observe that, necessarily S : Y → R must be an ∞-map. Indeed, if S(y) =

(x0, C y0 ) then y = qS(y) = q(x0, C y0 ) = y0, so that S−1({(x0, C y0 )}) = {y0}.
Recall that S is of the form S(y) = ( f ′(y), θ(y)) where f ′ is a map f ′ : Y → X over B and θ is a map θ : Y → X I ,

which induces, in a natural way, a homotopy Θ : Y × I → X over B , given by Θ(y, t) = θ(y)(t). Since S is an ∞-map it is
straightforward to check that f ′ is also an ∞-map and that Θ−1({x0}) = {y0} × I . Moreover, Θ : idY �B f f ′ in (Top∞)B .

It only remains to prove that there exists Θ ′: idX �B f ′ f in (Top∞)B . Applying the above reasoning to f ′ we have that
there exist f ′′ : X → Y over B and Θ ′: idX �B f ′ f ′′ in (Top∞)B . But

f ′ f ′′ = f ′idY f ′′ �B f ′ f f ′ f ′′ �B f ′ f idX = f ′ f

so idX �B f ′ f . �
This result has a very interesting proper counterpart. Indeed, consider f : X → Y any proper map over a fixed space B ,

that is, a commutative diagram of proper maps

X
f

p

Y

q

B

Then we obtain as a corollary the corresponding theorem in the proper setting:
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Theorem 25. If {Bα}α∈A is a closed p-numerable covering of B and each restriction

p−1(Bα)
fα

pα

q−1(Bα)

qα

Bα

is a proper homotopy equivalence over Bα , then f : X → Y is a proper homotopy equivalence over B. �
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