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Abstract

This paper studies the solution of graph coloring problems by encoding into propositional satisfiability problems. The study covers
three kinds of satisfiability solvers, based on postorder reasoning (e.g., grasp, chaff), preorder reasoning (e.g., 2cl, 2clsEq), and back-
chaining (modoc). The study evaluates three encodings, one of them believed to be new. Some new symmetry-breaking methods,
specific to coloring, are used to reduce the redundancy of solutions. A by-product of this research is an implemented lower-bound
technique that has shown improved lower bounds for the chromatic numbers of the long-standing unsolved random graphs known
as DSJC125.5 and DSJC125.9. Independent-set analysis shows that the chromatic numbers of DSJC125.5 and DSJC125.9 are at
least 18 and 40, respectively, but satisfiability encoding was able to demonstrate only that the chromatic numbers are at least 13 and
38, respectively, within available time and space.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

We assume the reader is familiar with the satisfiability problem, which seeks to determine if any assignment to
the propositional variables of a Boolean formula causes it to evaluate to true. In recent research, planning problems,
hardware and software verification problems and others have been encoded as satisfiability problems. We look at solving
graph coloring via satisfiability.

Nearly all complete satisfiability solvers are in the DPLL family (for Davis, Putnam et al. [5]). They search for a
satisfying assignment by fixing variables one by one and backtracking when an assignment forces the formula to be
false. The procedure is not very effective in its original form, but it has been enhanced with various techniques to reduce
the search space.

Reasoning techniques can be broadly classified as preorder and postorder. Preorder techniques are applied as the
search goes forward, and include binary-clause reasoning, equivalent-literal identification, and other efficient reasoning
steps whose goal is to show that certain variable bindings cannot lead to a satisfying assignment [3,19,24,14,1]. The most
complete preorder reasoning is done by 2cl [24], but the implementation is too inefficient for currently challenging
problems. A more efficient implementation of preorder reasoning is found in 2clsEq [1], which introduces a special
form of resolution named hyperbinres.

Postorder techniques are applied when the search is about to backtrack, because a “conflict” has been discovered
[20,25,2,18]. Postorder techniques are variously called non-chronological backtracking, conflict-directed back-jump-

URL: www.cse.ucsc.edu/∼ avg.

0166-218X/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2006.07.016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82360358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/dam


A. Van Gelder / Discrete Applied Mathematics 156 (2008) 230–243 231

ing, clause recording, and learning. These techniques are compared in a recent paper [26]. As of 2001, the leading
implementation in this category is generally agreed to be chaff [18], although the technique was introduced into
high-performance SAT solvers in grasp [20] and relsat [2] during the 1990s. More recently, new solvers have
been implemented using ideas from chaff. There are substantial difficulties in combining full preorder reasoning
with postorder techniques, and only one prototype has been reported [23]. However, 2clsEq is able to use postorder
reasoning, together with carefully selected preorder reasoning [1].

A somewhat different approach is to use propositional model elimination. Model elimination is distinguished by
being a back-chaining theorem prover [12,15,16]. It has been adapted for propositional use and is capable of producing
either a proof or a counter-example [22]. The implementation is named modoc. The motivation for back-chaining is
that the proof search spreads out from the goal and might confine itself to relevant clauses.

Since the Dimacs competition for graph coloring in 1993, there has been a lot of progress in satisfiability solvers, so
we think it is worth taking another look at this technique for solving graph coloring. In particular, we are interested in
alternative encodings that might perform better than the standard encoding for large problems. In 1993, neither solvers
nor computers were powerful enough to solve large problems. Today the situation is shown to be different.

We are particularly interested in whether there are interactions between encoding techniques and solver styles. It is
not the purpose of this paper to evaluate the latest and greatest satisfiability solvers; indeed, the bragging rights will
undoubtedly change by the time this paper is published. Therefore, we used solvers that implement important ideas
and have proved to be reliable. Experimental results are presented in Section 6.

It is now thought that high-performance satisfiability solvers may have commercial value, and this perception has
driven the development of such solvers since the turn of the century. A practical benefit of solving graph coloring by
translating to satisfiability is that new satisfiability solvers can be utilized as they become available, with almost no
implementation effort. This benefit might be limited to the coloring of “structured” graphs, because the highest-powered
satisfiability solvers are geared toward “structured” formulas (as opposed to randomly generated formulas). In fact, the
large-scale competition among numerous satisfiability solvers held in conjunction with the 2005 Conference on Theory
and Practice of Satisfiability Testing shows almost a complete dichotomy between the best solvers for “industrial”
benchmarks and the best for “random” benchmarks [10].

2. Notation

In CNF, the formula is a conjunction of clauses and each clause is a disjunction of literals; each literal is a propositional
variable x or its negation ¬x. If q = ¬x is a negative literal, ¬q is considered to be its complement, x. We denote a
clause as [q1, q2, . . . , qk] and a formula as {C1, C2, . . . , Cm}. An empty formula is true and [ ], the empty clause, is
false. We also define the tautologous clause �, which is true under any assignment.

3. Traditional encoding (tr)

We start with an undirected graph G with n vertices and m edges. The question is whether it can be colored with K
colors, numbered 0, . . . , K − 1. Vertex numbers range from 1 through n. The traditional encoding uses K propositional
variables for each graph vertex, nK in all. We call this encoding tr.

If v is a vertex, then vc is a propositional variable that means vertex v has color c, c=0, . . . , K −1. The propositional
formula contains mK negative binary clauses:

[¬uc, ¬vc],
where (u, v) is an edge. It also contains n positive K-clauses,

[v0, v1, . . . , vK−1],
where v is a vertex.

4. Circuit-based encodings

We start with an undirected graph G with n vertices and m edges. For simplicity assume the number of colors K is a
power of 2. Let L = lg(K) (more generally, L = �lg(K)�). The colors are integers 0, . . . , K − 1, written with L bits.
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Fig. 1. Circuit outputs 1 if and only if colors of u and v differ in at least one bit.

Fig. 2. Clauses for edge (u, v) in the xg encoding.

Bit 0 is the low-order bit. If v is a vertex, then vb is a propositional variable that means that bit b of the color of vertex
v is 1. There are nL such variables.

Let (u, v) be an edge in G. The requirement that u and v have different colors can be stated as the requirement that
they differ on at least one bit. The circuit in Fig. 1 represents this constraint. One point is that there are several ways to
encode this circuit into clauses. Another point is that we do not need any “positive” clauses to force the vertex to have
“some” color. If we have “and” together the circuit fragments shown above for each edge, then the graph is K-colorable
if and only if some input setting produces an output of 1.

4.1. Standard bitwise (xg) encoding

The usual way to represent the bit-wise constraints is equivalent to replacing “xor” gates with an “and-or” equivalent,
and distributing to obtain a product of sums, i.e., conjunctively joined disjunctive clauses. We call this encoding xg (see
Fig. 2).

There are K clauses of 2L literals each for each edge. For example, the starred clause requires that u and v cannot
both have color 3.

The main advantage of the xg encoding is that it uses about n lg K variables instead of nK in the traditional encoding.
The main disadvantage is that all the clauses are long.

4.2. Xor explicit (xe) encoding

It is interesting that the circuit fragment can be encoded in other ways. In particular, we can introduce variables to
represent the outputs of the “xor” gates, a trick that goes back to Tseitin in the 1960s. We call this encoding xe because
the “xors” are explicitly represented.

Let xu,v,b represent the gate that “xors” bit b of vertices u and v. There are L such variables per edge, mL for the
whole graph. We need four 3-clauses to enforce xu,v,b = xor(ub, vb):

[ub, vb, ¬xu,v,b]
[¬ub, ¬vb, ¬xu,v,b]
[¬ub, vb, xu,v,b]
[ub, ¬vb, xu,v,b],
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Table 1
Sizes of CNF formulas for various encodings

Encoding Variables Clauses Literals

tr nK mK 2-clauses (n + 2m)K

n K-clauses
xg nL mK (2L)-clauses 2mKL + nL2/4

nL/2 (L/2)-clauses
xe (n + m)L 4mL 3-clauses 13mL + nL2/4

m L-clauses
nL/2 (L/2)-clauses

The graph has n vertices and m edges. There are K colors; L = �lg(K)�.

Ranging over L bits, this produces 4L 3-clauses for each edge. In addition we need one L-clause per edge for the “or”
gate:

[xu,v,0, xu,v,1, . . . , xu,v,L−1].

4.3. Disallowed combinations of bits

Finally, we consider the case that K is not a power of 2. Define D = 2L − K , the number of “disallowed” colors. For
each vertex we need some clauses to prohibit that vertex from taking on a disallowed color. We could simply prohibit
each of the D colors separately, using D K-clauses, but we can do much better when D is large.

An example makes the idea clear, using vertex v. Suppose K = 11, so L = 4 and D = 5. Color 10 in binary is 1010.
So if v3 = 1, then v2 must be 0. Also, if v3 = 1 and v1 = 1, then v0 must be 0. The clauses are

[¬v3, ¬v2]
[¬v3, ¬v1, ¬v0].

In general, all the 1-bits to the left of a 0-bit imply the 0-bit, in the binary representation of K − 1.
One clause is needed for each 0 in the binary representation of the maximum color using L bits. The scheme works for

any maximum color and is also useful for symmetry breaking. For prohibiting colors greater than K −1, the maximum
number of clauses needed is L − 1 per vertex; this only occurs when the high-order bit of (K − 1) is 1. The maximum
number of literals is about L2/4; the exact formula is �(L+1)/2��(L+1)/2�. This occurs for about L/2 ones followed
by L/2 zeros. We use this value for size comparisons.

4.4. Comparison of encoding sizes

Table 1 shows the sizes of formulas based on various encodings. Examination of this table suggests that the xe
encoding becomes interesting when the number of colors is in the range 16–32, or higher.

5. Breaking symmetry

It is well known that unsatisfiable coloring problems take “forever” because all permutations of colors are tried due
to symmetry, unless something is done to prevent this. A standard gimmick is to look for a clique quickly, and force
the colors on that clique. We investigated some generalizations of this idea.

If there are K colors, then we can select any K − 1 vertices, say u1, . . . , uK−1, and require ui to have a color less
than i. If the first C of the selected vertices are in a clique, then the colors of u1, . . . , uC are forced. But more generally,
if u1, . . . , uK−1 comprise a dense subgraph, then there will be relatively few possible colorings.
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Several heuristics for choosing a “hot spot” of this sort can be thought of easily. We implemented and evaluated two
heuristics. They both try to “close down” on a clique from above, rather than build up from below. In the process, a
subset of the vertices are ordered.

(b1) Our first try uses the node of maximum degree, d, as the “start,” u1. Ties are broken by the sum of the neighbors’
degrees. Then the neighbors of u1 are ordered by decreasing degree and placed in sequence following u1, as
u2, . . . , ud+1. Now, for any number of colors, K, the sequence with restricted colors is u1, . . . , uK−1. Of course,
if the highest-degree node does not have K−2 neighbors, the graph is trivially K-colorable, even (K−1)-colorable.
The computation time is in O(n2) for a graph with n vertices.

(b2) The second heuristic is more complicated, but also more effective in the experiments. For each vertex v the vertices
wi adjacent to v are dynamically ranked as described below. The sequence produced is v (as u1) followed by the
wi in descending rank order. Now d is the degree of v, but not necessarily the maximum degree of any vertex in
the graph.
The initial ranking of wi is based on how many triangles of the form (wi, v, wj ) exist. Whichever vertex, say wlow,
is lowest in rank (for fixed v) is placed last in the v-sequence; i.e., it is tentatively ud+1. Then wlow is effectively
removed as an adjacency of v for ranking purposes; that is, other wi’s no longer get credit for their triangles
involving wlow. Repeatedly, rankings are updated and vertices are placed in front of the suffix of the sequence,
growing it from ud+1 to ud , to ud−1, and eventually down to u2. In this way, some prefix of the final sequence
is a clique involving v. Whichever sequence produces the largest clique in this way is kept. Ties are broken by
favoring larger degrees.
Since d is not necessarily an upper bound on the number of colors required, additional vertices are added arbitrarily
after ud+1 to make the sequence as long as the maximum degree in the graph; these vertices have never been
needed in practice.
The computation time is in O(n2 + nd2

max) for a graph with n vertices and maximum degree dmax.

The final sequence, u1, . . . , ud+1, is used in two ways. For encoding K colors it supplies the u1, . . . , uK−1 mentioned
above, upon which colors are restricted. It is also used for a greedy coloring procedure to provide the sequence in which
vertices are greedily assigned colors. This produces an upper bound on the number of colors that require testing.

Thus, during preprocessing, the chromatic number for the graph is bracketed between the size of the clique at the
beginning of the final v-sequence and the number of colors used by the greedy procedure. This range is searched by
encoding the graph coloring problem into a satisfiability problem for various candidate numbers of colors. The search
may be sequential or binary search.

Our implementation, named solvecolor, is written in ANSI C, and is available from the author. It encodes the
problem into a file containing the CNF formula and forks the satisfiability solver as a separate Unix process. For
these experiments, the satisfiability solver was tested on formulas even if solvecolor knew the answer due to its
preprocessing. This experimental design ensures that

(1) The satisfiability solver verifies the optimal solution, without relying on the encoder’s opinions about cliques and
greedy colorings. It is worthwhile to emphasize that the encoding uses a sequence of vertices, but does not rely on
any properties of that sequence, except that no vertex appears more than once.

(2) The satisfiability solver is run on at least one unsatisfiable formula related to each graph. Any satisfiable formula
might be solved in linear time by fortunate guesses, but there is no known way to verify unsatisfiability in polynomial
time, even with fortunate guesses.

Point (2) had some surprising consequences in the experiments.

6. Experimental results

So far we have tried 2cl, chaff, 2clsEq, and modoc on the two circuit-based encodings, xg and xe, and the
traditional encoding tr. The programs represent three styles of SAT solving: chaff is generally accepted as a pioneer
for the postorder style, although newer solvers in this genre are outperforming it now; 2cl represents the preorder
style; 2clsEq is a mix of preorder and postorder; and modoc represents the back-chaining model-elimination style.
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All CPU times are seconds based on an Intel Xeon, 2 GHz, 4 GB memory, 512 K secondary cache. For calibration,
dfmax takes 16.96 s on r500.5.b. Runs that exceeded their allocated CPU time or terminated abnormally for other
reasons, are indicated by “+?” in the tables. Runs done on other platforms (Sun UltraSparc 60, 450 MHz, or Intel
Pentium4, 2.66 GHz) are normalized into “Xeon units.” For example, 30 UltraSparc seconds = 12 Xeon seconds =
8 Pentium4 seconds.

6.1. Preliminary results

We report the general findings of this phase without giving detailed tables. We tested without any symmetry-
breaking clauses, and with the simple (b1) and more complicated (b2) symmetry-breaking heuristics described in
Section 5. The (b1) symmetry-breaking heuristic produced one to three orders of magnitude speedup compared to no
symmetry breaking. For a typical example, this table shows some times using the tr encoding on myciel5 for five colors
(uncolorable).

Symmetry breaking None (b1) (b2)

CPU secs. for chaff 1025 15 20
2clsEq 27 2 3

Other programs and encodings showed similar patterns.
The (b2) symmetry-breaking heuristic is much better at finding large cliques than the (b1) heuristic. In some

cases this produced another order of magnitude speedup, especially with graphs that have a high chromatic num-
ber. Aside from speeding up the test for a specific number of colors, the better lower bound eliminates some of the
tests that might otherwise be needed. For these reasons, all tests reported in the tables use the (b2) symmetry-breaking
heuristic.

We found that 2cl was considerably slower than the other programs. It was dropped from later experiments. We
also noticed that chaff usually ran out of memory before it ran out of time. The version in these experiments is the
original version to be distributed, called Mchaff.

All of the graphs studied may be found at the COLOR02 web site and many are described in the Workshop
proceedings [21]. Most of the graphs are generated from applications. The remaining graphs are the myciel series
(constructed) or the DSJC series (random). Table 2 shows the numbers of vertices and undirected edges in these
graphs.

We chose the myciel series for our initial tests because it has no cliques to provide an easy way to break symmetries:
the clique number remains at 2 while the chromatic number grows. Thus clique-based symmetry-breaking methods are
doomed, and we were curious whether our symmetry-breaking methods would be an improvement.

The myciel family has instances numbered 2, 3, and 4 that proved to be very easy, and are omitted from the tables.
The first mildly challenging instance is myciel5 for five colors (uncolorable), and the myciel6 for six colors is extremely
difficult. Apparently, the satisfiable (i.e., colorable) versions are all pretty easy in this family.

The DSJC series contains randomly generated graphs, and a small selection of these are included at the request of
the referees. Today’s leading complete sat solvers are designed to solve problems from industrial applications, which
contain a lot of “structure.” We anticipate that such solvers will do poorly on encodings of random graphs, because it
has been observed that they do poorly on randomly generated CNF formulas.

The programs tested permit many parameters to be varied. For chaff, we used parameters recommended by the
author to reduce the memory requirements, compared to the default parameters. With the parameters used, chaff still
used more than 1 GB of memory routinely. For 2clsEq and modoc, we used the default parameters. We observed
that 2clsEq often used well over 1 GB of memory, whereas modoc had a much smaller memory footprint, usually
under 256 MB.

6.2. Main results

We now turn to the computationally intensive experiments. For each combination of satisfiability solver and encoding,
the same graphs were tested. Heuristic (b2) was used for symmetry breaking throughout.
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Table 2
Numbers of vertices and undirected edges in graphs tested, as well as chromatic numbers (�) and sizes of cliques found by heuristic (b2)

Graph Vertices Edges � (b2) Clique

Matrix partitioning
abb313GPIA 1557 53356 9 8
ash331GPIA 662 4181 4 3
ash608GPIA 1216 7844 4 3
ash958GPIA 1916 12506 4 3
will199GPIA 701 6772 7 6

Mycielski
myciel5 47 236 6 2
myciel6 95 755 7 2
myciel7 191 2360 8 2

Classroom scheduling
school1_nsh 352 14612 14 14
school1_sh 385 19095 14 14

Random
DSJC125.1 125 736 5 4
DSJC125.5 125 3891 ?? 10
DSJC125.9 125 6961 ?? 33

Register allocation
fpsol2.i.1 496 11654 65 65
fpsol2.i.2 451 8691 30 30
fpsol2.i.3 425 8688 30 30
inithx.i.1 864 18707 54 54
inithx.i.2 645 13979 31 31
inithx.i.3 621 13969 31 31
mulsol.i.1 197 3925 49 49
mulsol.i.2 188 3885 31 31
mulsol.i.3 184 3916 31 31
mulsol.i.4 185 3946 31 31
mulsol.i.5 186 3973 31 31
zeroin.i.1 211 4100 49 49
zeroin.i.2 211 3541 30 30
zeroin.i.3 206 3540 30 30

The controlling program, solvecolor, started with a number of colors one less than the clique size that it found,
to be sure the satisfiability solver was exercised on an unsatisfiable formula, and to avoid relying on its own clique
computation for correctness. Then, the number of colors was increased by one repeatedly until the satisfiability solver
found a solution. The loop was terminated when the number of colors exceeded that found by the well-known greedy
algorithm by two.

It might seem that a more sophisticated procedure to vary the number of colors would be more efficient, especially
if the clique size and greedy number are well separated. An alternative was coded that performs binary search. One
would think that allowing more colors would make the problem easier.

However, our experience is that increasing the number of colors unnecessarily makes the encoded propositional
formulas so much larger that their sheer bulk degrades performance seriously, and risks exhausting memory after putting
in a lot of time. So after some preliminary experimentation with strategies, we settled on the simplest, increasing one
step at a time.

To avoid a deluge of numbers we show only the times for the chromatic number and one less. (One exception is
myciel7, for which we show the results for five colors; no combination of encoding and solver succeeded in showing any
larger uncolorable value. Other exceptions are DSJC125.5 and DSJC125.9.) We should mention that the preprocessing
and encoding times were quite minor in comparison to the times taken by the satisfiability solvers. In one extensive run
solvecolor tested 24 graphs and consumed 0.76 CPU hours on its own, while the satisfiability solvers consumed
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Table 3
Most challenging graphs, critical color numbers

Graph/Sat solver No. of colors Unsat CPU secs. by encodings No. of colors Sat CPU secs. by encodings

tr xg xe tr xg xe

abb313GPIA
chaff 8 81647 8 50305+? 9 1772 15412+? 30638+?
2clseq 8 18000+? 27000+? 18000+? 9 18000+? 27000+? 18000+?
modoc 8 27000+? 5400+? 5400+? 9 27000+? 5400+? 5400+?

fpsol2.i.1
chaff 64 3 12 9 65 18000+? 17 16
2clseq 64 5 18000+? 387+? 65 6 4961 55+?
modoc 64 2 27000+? 10569+? 65 13 27000+? 27000+?

inithx.i.1
chaff 53 3 18 44 54 7200+? 36 1384
2clseq 53 7 8485+? 2+? 54 12 5400+? 2+?
modoc 53 2 27000+? 27000+? 54 18 27000+? 27000+?

myciel6
chaff 6 3978+? 3253+? 2247+? 7 0 0 0
2clseq 6 2980 18000+? 18000+? 7 0 0 2
modoc 6 27000+? 27000+? 27000+? 7 0 1 2

DSJC125.5
chaff 12 1176 823 3768 19 18000+? 6269 18000+?
2clseq 12 689 18000+? 18000+? 19 18000+? 18000+? 18000+?
modoc 12 18000+? 18000+? 18000+? 19 18000+? 18000+? 18000+?

Programs run with (b2) symmetry-breaking heuristic. Time-outs are indicated by “+?”.

11.0 CPU hours. The solver times on the critical numbers of colors are compared for the most challenging graphs in
Table 3. The corresponding data for all 27 graphs tested are shown in Tables 4–6.

6.3. Discussion

One of the goals of this work was to find out if various encodings fit better or worse with various solver techniques.
The complete tables (4, 5, and 6) make it clear that the traditional encoding is usually the best performer, often by
orders of magnitude.

However, looking at the most challenging graphs (see Table 3), we see that the xg and xe encodings work better
for chaff when the chromatic number is high (fpsol.i.1 and inithx.i.1). This large number of colors is where we
expect the benefits of xg and/or xe encodings to kick in, but we are reaching the limits of computer resources. In
fact, the quick abnormal terminations of 2clsEq are apparently due to being unable to allocate its needed data
structures. Here is a comparison of the approximate encoding sizes for inithx.i.1 for 53 colors (uncolorable) or 54 colors
(colorable).

tr xg xe

Variables (thousands) 32 5 117
Literals (millions) 3.2 11.9 1.7

The numbers for fpsol.i.1 are equally daunting. Notice the rock/paper/scissors quality of the numbers: there is no
clearcut preferred encoding.

To keep things in perspective, remember that solvecolor, the encoding program has identified a 54-clique in
this graph and is encoding it for only 53 colors in the unsatisfiable case. As described in Section 5, the vertices of the
54-clique have their colors restricted so that u1 must get color 0, u2 must get color 0 or 1, but is adjacent to u1, so it
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Table 4
Chaff runs with (b2) symmetry-breaking heuristic, critical color numbers

Graph No. of colors Unsat CPU secs. by encodings No. of colors Sat CPU secs. by encodings

tr xg xe tr xg xe

abb313GPIA 8 81647 8 50305+? 9 1772 15412+? 30638+?
ash331GPIA 3 0 0 0 4 0 0 17
ash608GPIA 3 0 0 0 4 0 1 235
ash958GPIA 3 0 0 1 4 0 4 733
fpsol2.i.1 64 3 12 9 65 18000+? 17 16
fpsol2.i.2 29 1 155 2089 30 1 5 11
fpsol2.i.3 29 1 5 2366 30 1 5 7
inithx.i.1 53 3 18 44 54 7200+? 36 1384
inithx.i.2 30 1 8 34 31 1 13 2063
inithx.i.3 30 1 7 46 31 1 13 7053
mulsol.i.1 48 1 4 1 49 1 4 6
mulsol.i.2 30 0 3 7200+? 31 0 3 5
mulsol.i.3 30 0 10 4363+? 31 0 3 5
mulsol.i.4 30 0 16 3651+? 31 0 4 6
mulsol.i.5 30 0 1 5 31 0 3 1
myciel5 5 20 8 6 6 0 0 0
myciel6 6 3978+? 3253+? 2247+? 7 0 0 0
myciel7 5 22 18000+? 50 8 0 0 0
school1_nsh 13 1 54 1702 14 1 1253 156
school1_sh 13 1 4 294 14 1 23 111
will199GPIA 6 0 0 1 7 0 2 158
zeroin.i.1 48 1 4 2 49 1 4 1
zeroin.i.2 29 0 1 1 30 0 1 8
zeroin.i.3 29 0 1 1 30 0 1 9
DSJC125.1 4 0 0 0 5 0 1 1
DSJC125.5 12 1176 823 3768 19 18000+? 6269 18000+?
DSJC125.9 37 6529 18000+? 18000+? 46 18000+? 10133+? 18000+?

must get color 1, and so on, through u53, which must eventually get color 52. There is no color available for the 54th
vertex of the clique.

We thought that the satisfiability solvers would detect this condition quite trivially. With the tr encoding, unsatisfia-
bility can be shown with unit-clause propagation. Indeed, all the solvers succeed handily in this case.

We were quite surprised to discover that the circuit-based encodings conceal this “trivial” refutation. If the solver
is smart enough, it only needs to consider the variables associated with 54 vertices, about 6% of the total variables. It
is evident that 2clsEq and modoc have drifted away from this critical set of variables somehow. Although chaff
takes longer than it did on the tr encoding, it seems to have maintained the focus.

Turning to the satisfiable versions of fpsol.i.1 and inithx.i.1, we observe that chaff succeeded only with the circuit-
based encodings. For some reason the other programs had no difficulty with the tr encoding, while chaff had great
difficulty. We do not understand why this happened; a conjecture is that the random restarts and the large number of
variables caused chaff to keep forgetting its progress.

The xg encoding was also very effective for chaff to show that abb313GPIA is not 8-colorable; this is the largest
graph tested, with 1557 vertices, although its chromatic number is moderate. The tr encoding took almost 24 h on
this problem. If the time limit had been comparable to other runs, this would have showed up as a failure. The xe
encoding ran out of memory after about 14 h. Again, we conjecture that random restarts may have slowed the progress
of chaff, and possibly the smaller number of variables used by the xg encoding turned out to reduce or eliminate
restarts.

On the other hand, there is no indication that 2clsEq and modoc ever do better with the circuit-based encodings,
and often do orders of magnitude worse with them, compared to the traditional encoding. The data are insufficient to
draw a firm conclusion, but there is a suggestion that the strategy of chaff, rapid searching and limited reasoning,
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Table 5
2clsEq runs with (b2) symmetry-breaking heuristic, critical color numbers

Graph No. of colors Unsat CPU secs. by encodings No. of colors Sat CPU secs. by encodings

tr xg xe tr xg xe

abb313GPIA 8 18000+? 27000+? 18000+? 9 18000+? 27000+? 18000+?
ash331GPIA 3 0 0 1 4 1 1 17
ash608GPIA 3 0 0 1 4 2 2 63
ash958GPIA 3 1 1 2 4 4 5 163
fpsol2.i.1 64 5 18000+? 387+? 65 6 4961 55+?
fpsol2.i.2 29 1 1098 2030+? 30 2 729 3600+?
fpsol2.i.3 29 1 1344 18000+? 30 2 930 14418+?
inithx.i.1 53 7 8485+? 2+? 54 12 5400+? 2+?
inithx.i.2 30 2 8436+? 19+? 31 4 5400+? 17+?
inithx.i.3 30 2 6171+? 15+? 31 4 5400+? 17+?
mulsol.i.1 48 1 1386 27000+? 49 2 943 27000+?
mulsol.i.2 30 1 341 6031+? 31 18000+? 27000+? 5400+?
mulsol.i.3 30 1 405 6407+? 31 18000+? 27000+? 5400+?
mulsol.i.4 30 1 415 20301+? 31 18000+? 358 4557+?
mulsol.i.5 30 1 566 3286+? 31 18000+? 246 5400+?
myciel5 5 3 213 783 6 0 0 0
myciel6 6 2980 18000+? 18000+? 7 0 0 2
myciel7 5 272 18000+? 18000+? 8 0 1 11
school1_nsh 13 2 46 18000+? 14 2 2727 18000+?
school1_sh 13 2 105 325+? 14 2 3154 18000+?
will199GPIA 6 0 1 2 7 3 6 51
zeroin.i.1 48 2 580 27000+? 49 3 241 27000+?
zeroin.i.2 29 1 111 13760+? 30 1 44 3600+?
zeroin.i.3 29 1 94 3595+? 30 1 43 3600+?
DSJC125.1 4 0 0 0 5 0 0 11
DSJC125.5 12 689 18000+? 18000+? 19 18000+? 18000+? 18000+?
DSJC125.9 37 18000+? 18000+? 18000+? 46 26958 18000+? 18000+?

is more compatible with the circuit-based encodings. The xg encoding minimizes the number of variables, making a
smaller search space than the alternatives.

Both 2clsEq and modoc are based on more extensive reasoning, and the wide clauses of the xg encoding are an
impediment for them. Reasoning seems to have carried the day for 2clsEq to prove that myciel6 cannot be 6-colored.
The tr encoding produces mostly binary clauses, and 2clsEq performs extensive binary-clause reasoning. We note
that another program, 2cl, also performs extensive binary-clause reasoning, and also solved this problem, in 3247
CPU seconds.

The best competition on myciel6 seems to be from smallk, a graph coloring decision program designed for testing
3–8 colors [4]. Some results are

Graph Colors smallk time Best sat-solver time Sat-solver (encoding)

myciel6 6 2728 2980 2clsEq (tr)

abb313GPIA 8 86400+? 8 chaff (xg)

This program, which does many reasoning steps that are also done by 2clsEq and 2cl, showed that myciel6 cannot
be 6-colored in 2728 CPU seconds. It also showed that myciel5 cannot be 5-colored in 0.52 CPU seconds, whereas the
best of the satisfiability solvers required about 2 CPU seconds.

Another interesting result was the demonstration that abb313GPIA has a 9-coloring. This graph was produced by
Hossain and Steihaug, who reported that the question of whether this graph is 9-colorable is open, and that two
graph-coloring programs, dsatur and smallk, were unsuccessful after 3 days [7]. We were able to solve this
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Table 6
Modoc runs with (b2) symmetry-breaking heuristic, critical color numbers

Graph No. of Unsat CPU secs. by encodings No. of Sat CPU secs. by encodings

colors tr xg xe colors tr xg xe

abb313GPIA 8 27000+? 5400+? 5400+? 9 27000+? 5400+? 5400+?
ash331GPIA 3 0 0 0 4 0 2 27
ash608GPIA 3 0 0 4 4 1 3 979
ash958GPIA 3 0 0 7 4 1 9 1164
fpsol2.i.1 64 2 27000+? 10569+? 65 13 27000+? 27000+?
fpsol2.i.2 29 1 27000+? 27000+? 30 4 27000+? 27000+?
fpsol2.i.3 29 1 27000+? 27000+? 30 4 27000+? 27000+?
inithx.i.1 53 2 27000+? 27000+? 54 18 27000+? 27000+?
inithx.i.2 30 1 27000+? 27000+? 31 8 27000+? 27000+?
inithx.i.3 30 1 27000+? 27000+? 31 7 27000+? 27000+?
mulsol.i.1 48 0 352 11193+? 49 3 12748 27000+?
mulsol.i.2 30 0 27000+? 27000+? 31 2 1256 27000+?
mulsol.i.3 30 0 27000+? 27000+? 31 2 1406 27000+?
mulsol.i.4 30 0 27000+? 27000+? 31 2 1784 27000+?
mulsol.i.5 30 0 27000+? 1190+? 31 2 1670 43
myciel5 5 2 292 690 6 0 0 0
myciel6 6 27000+? 27000+? 27000+? 7 0 1 2
myciel7 5 21 5751 14400+? 8 0 11 4
school1_nsh 13 0 27000+? 27000+? 14 3 27000+? 27000+?
school1_sh 13 1 27000+? 27000+? 14 4 27000+? 27000+?
will199GPIA 6 0 3389 27000+? 7 1 27000+? 27000+?
zeroin.i.1 48 0 1819 14301+? 49 3 23279 5400+?
zeroin.i.2 29 0 337 2338 30 2 4884 287
zeroin.i.3 29 0 570 27000+? 30 2 3430 291
DSJC125.1 4 0 1 308 5 58 811 18000+?
DSJC125.5 12 18000+? 18000+? 18000+? 20 18000+? 18000+? 18000+?
DSJC125.9 37 18000+? 18000+? 18000+? 47 18000+? 18000+? 18000+?

problem with the traditional encoding, but not with the xg or xe encodings. Only chaff has solved it so far, taking
1772 s.

As supplied, smallk does not attempt to find a 9-coloring, but the authors provide instructions on how to change
some parameters so that it will make the attempt, along with a warning that it is likely to run very slowly. We
tried smallk for 24 h to test for an 8-coloring on abb313GPIA and it did not terminate. As mentioned above
chaff proved that abb313GPIA is not 8-colorable. We are unsure whether any other program has duplicated this
feat.

The numbers for fpsol.i.1 are equally daunting. Notice the rock/paper/scissors quality of the numbers: there is no
clearcut preferred encoding.

Two of the three random graphs studied are open problems and we made only minor progress toward resolving them.
Unfortunately, there has been erroneous information about DSJC125.5 and DSJC125.9 propagated through the Internet
and some conference proceedings. The largest clique size for DSJC125.5 is 10, as shown by running dfmax [21]. Our
(b2) heuristic found a clique of this size.

Our sat encodings for 12 colors were found to be unsatisfiable, establishing a lower bound of 13 for the chromatic
number of DSJC125.5; this appears to be an improvement on previously published lower bounds, but see the next
paragraph. However, no valid coloring with fewer than 19 colors was discovered, whereas other researchers have
achieved 17 colors [8,13,17].

Using analysis by independent sets, we have shown that the chromatic number of DSJC125.5 is at least 16. Because
this is somewhat off the topic of this paper, it is presented in Appendix A. The satisfiability solvers we used ran out of
time or memory or both trying to solve the encodings for 13, 14, and 15 colors, all of which must be unsatisfiable by
the result in Appendix A.
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For DSJC125.9, our (b2) heuristic found a clique of size 33, whereas 34 is optimum, per dfmax. The tr encoding for
37 colors was shown to be unsatisfiable. A lower bound of 40 is shown via analysis by independent sets in Appendix A.
The best valid coloring found was 46 colors. Johnson et al. [8] have achieved 44 colors. The sparser graph DSJC125.1
presented no problems.

The method we used seems to be fairly robust. We have solved a fair range of problems, at least one previously
open. We have myciel6 with six colors, a relatively small graph, but one that is structurally very difficult. Then we have
fpsol2.i.1 with 64–65 colors and inithx.i.1 with 53–54 colors, both large graphs with large coloring numbers. Finally,
we have abb313GPIA, which dwarfs the rest of the graphs, but needs only nine colors. However, the success needs to
be qualified by the observation that there was no one combination of encoding and satisfiability solver that solved all
of the problems within the resource limits.

In terms of the general merit of using satisfiability solvers for graph coloring, we believe there are a few significant
accomplishments among these tests. First, one solver succeeds on myciel6 with six colors; that is, it proves the graph
is uncolorable. We understand that this is beyond the reach of most graph coloring programs. Second, we were able
to prove that abb313GPIA is 9-colorable and is not 8-colorable. The question of 9-colorability of this graph was open
and the question of 8-uncolorability might also have been open [7].

7. Conclusion

We were able to “piggy-back” on the large amounts of software development effort invested in satisfiability over the
last decade. We introduced a few new heuristics to guide the encoding and handed the problem over to several existing
satisfiability solvers (as of 2002). The preprocessing and encoding took a minor fraction of the overall running time.
The results seem to be comparable to, if not better than, those obtained by full-fledged coloring algorithms.

Extensive empirical testing of “all possible” satisfiability solvers on the encodings is beyond the scope (and compu-
tational resources) of this research. Our simple strategy of invoking the solver for successive numbers of colors requires
the use of complete solvers. Possible future work would be to test incomplete satisfiability solvers on the encodings
and compare results to incomplete graph coloring heuristics, both of which abound.

The method of symmetry breaking described here might be applicable both to algorithms that work on graph coloring
directly and to other constraint satisfaction problems. By dynamically pruning from an overly large set of candidates, a
sequence is formed once that is useful for varying numbers of colors. On the instances tested, the method often found
a maximum clique, but the sequence is useful even if this does not happen.

The circuit-based encodings showed disappointing results, but were not complete failures. More study is needed to
see if the xe encoding can be improved, and to understand under what circumstances the xg or xe encodings are likely
to outperform the traditional encoding.
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Appendix A. Independent-set analysis of DSJC125.5 and DSJC125.9

In this Appendix we consider lower bounds for the chromatic numbers of DSJC125.5 and DSJC125.9, two random
graphs in the COLOR02 benchmark suite that have been unsolved for more than a decade. The largest cliques in
DSJC125.5 and DSJC125.9 were found to be sizes 10 and 34, respectively, using dfmax. These provide what turn out
to be rather weak lower bounds.

We present lower bounds for the chromatic numbers of the graphs DSJC125.5 and DSJC125.9, using independent-
set analysis. Johri and Matula used independent-set analysis to obtain probabilistic lower bounds on random graphs,
giving tables for probability .999999 [9]. Johnson et al. state probabilistic lower bounds for these graphs, attributed to a
program written by Thomason, but do not explain what the phrase “with high probability” means for specific values of
n [8]. Numerous researchers have proposed heuristic algorithms for graph coloring based on independent-set analysis
[6,8,9,11]. The underlying idea is that each color class must be an independent set and each pair of color classes must
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be disjoint. For conciseness we use the abbreviation “j-IS” for “independent set of size j.” The size of the largest
independent set of a graph G is conventionally denoted as �(G), or just � if the graph is understood from context.

A partition of n is defined to be a nonincreasing sequence of positive integers that total to n. Its length is the number
of elements in this sequence. A subpartition is a prefix of a partition. For any valid k-coloring of a graph with n vertices,
the sizes of the color classes can be arranged to form a partition of n with length k [9]. To determine whether a particular
graph G with n vertices can be k-colored, it suffices to consider all partitions of n of length k, where the first number
in the partition is at most �(G). For the remainder of this discussion n = 125.

The first step is to find �(DSJC125.5), for example, using dfmax [8] to find a maximum clique in the complement
graph. Throughout, the computer procedures find cliques in the complement graph whenever independent sets are
mentioned. We found �(G) = 10. This immediately yields a lower bound of �125/10� = 13 for the chromatic num-
ber, which seems to be an improvement on any previously published for DSJC125.5. We are able to strengthen this
to 16.

The second step is to enumerate all the independent sets of sizes 10, 9, and 8. The procedures are implemented in
matlab and are available from the author. The logic is similar to dfmax, but simplified and modified to record all
independent sets of the target size. Some independent sets of size 9 are subsets of those of size 10, etc. This step reveals
that there are two independent sets of size 10 and 100 of size 9 and 2352 of size 8.

The third step is to enumerate all the disjoint unions of independent sets of sizes 10 and 9. The technique is to
repeating try to expand a previously found disjoint union by including one more disjoint independent set. First, it
is found that the two 10-IS’s are not disjoint. Next enumerate disjoint unions of one 10-IS and one 9-IS to give all
2-colorable subsets of size 19, and enumerate disjoint unions of two 9-IS’s to give all 2-colorable subsets of size 18.
Extend these to include one more 9-IS in all possible ways to give all 3-colorable subsets of sizes 28 and 27. Extend
these to include one more 9-IS in all possible ways, etc.

A subpartition is called achievable if there is some disjoint union of independent sets whose sizes correspond to the
subpartition. It turns out that the only achievable subpartitions using 10 and 9 are (10, 9, 9, 9, 9) and (9, 9, 9, 9, 9) and
prefixes of those subpartitions. In other words there are no disjoint unions of six independent sets of sizes 10 and 9. This
whole approach is opportunistic, and becomes feasible because of the few subpartitions that require further analysis.
Actually, the programming time was greater than the computing time, overall.

There are only a few partitions of 125 of length 15, once we are restricted to those having only achievable subpartitions
involving sizes 9 and 10. They are shown in the following table, with gaps following the parts already known to be
achievable.

10 9 9 9 9 8 8 8 8 8 8 8 8 8 7
10 9 9 9 8 8 8 8 8 8 8 8 8 8 8

9 9 9 9 9 8 8 8 8 8 8 8 8 8 8

The fourth and final step is to try to expand the disjoint unions shown to the left of the gaps above to include 8-IS’s,
shown to the right of the gaps. The following table shows the longest achievable subpartitions that extend the above
table by using 8-IS’s.

10 9 9 9 9 8 8 8
10 9 9 9 8 8 8 8 8

9 9 9 9 9 8 8 8 8 8

It follows that there are no partitions of 125 of length 15 all of whose subpartitions are achievable.

Claim 1. The chromatic number of DSJC125.5 is at least 16.

For DSJC125.9 the same approach yields a lower bound of 40 for the chromatic number. The largest independent
set is size 4. There are nine 4-IS’s, but at most five can be combined with disjoint unions. Thus at least 105 vertices
need to be partitioned into color classes of size at most 3; 35 disjoint 3-IS’s is the best that might be achieved.

Claim 2. The chromatic number of DSJC125.9 is at least 40.
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