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ABSTRACT

We will show that for every integer n = 3 there exists a free non-abelian group of linear isometries of
the vector space @ such that any subgroup fixing any point & # 0 of Q" is cyclic. Recall that two
elements of F> commute if and only if they belong to a cyclic subgroup of ;.

0. INTRODUCTION

F; will always denote a free (non-abelian) group with 2 free generators. Given a
metric space X it is interesting to know if there exists an F; of isometries of X
acting without fixed points (i.e., y(x) # xfor ally € F,, v # id and all x € X) or
at least locally commutative (i.e., vy’ = v'y for all 4,v' € F; such that there
exists x € X for which y(x) = x = v'(x)).

The existence of such F> has several interesting and surprising geometric
consequences which were discovered and studied by Klein, Fricke, Hausdorff
and later by many authors. Some examples will be given at the end of the in-
troduction. Motivated by those applications we will prove here the existence of
such F; for some of the spaces Q" and S" ! N Q" with the usual Euclidean
metric.

Here Q is the field of real rational numbers, SO,(Q) will denote the special
orthogonal group of rotations of @" around the origin 0 and || - || the Euclidean
norm in @”. The main theorem of this paper is the following:

Theorem 0. Ifnisodd, n23, qis a positive rational, and ,/q is irrational, then the
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group SO,(Q) has a free subgroup F» which acts in a locally commutative way on
Q" \ {0} and acts without fixed points on {T € Q" : ||7||/,/g € Q, T # 0}.

Notice that we can assume without loss of generality that g is a square-free in-
teger. It can happen that the set {7 € Q" : ||5]|/,/g € Q, T # 0} is empty, but
for such g this is so if and only if » = 3 and ¢ = 7(mod 8); see Ch. 20 in [8] or
(16]. The problem if Theorem 0 is true for ¢ = 1 is still open. Also the following
problem is still open: Does there exist a free group F; of isometries of @* which
acts without fixed points? [For R the answer is yes; see [2), [11] or Theorem 5.7
in [18]. For related material (also for the cases of R? and Z°) see [6], [10] and
[17]] A similar theorem which was already proved in [15] will be used in the
proof of Theorem 0:

Theorem 1. Ifnis a positive integer which is divisible by 4, then the group SO, (Q)
has a free subgroup F which acts without fixed points on Q" \ {0}.

(As conjectured in [14] and [16], Theorem 1 should be true for all even n=>4, and
to prove this it would suffice to prove it for n = 6. Indeed every even n=4 is of
the form 4K or 4K + 6; hence we can construct the required free generators of
F, for such n by placing along the main diagonal matrices representing the free
generators of F, for n = 4 and n = 6. Again in the case of R” the answer is pos-
itive for all even n =4, see [0] or [3).)

Theorem 0 for n = 3 was already proved in [16]. Hence to prove it for all odd
nz 3 it suffices to prove it for n = 5. Indeed every such n is of the form 4K + 3 or
4K + 5, hence one can construct the required free generators of F, in SO,(Q)
by placing along the main diagonal matrices representing the free generators of
F, forn=4and n=3, or n=4 and n = 5, where the case n =4 is given by
Theorem 1. Thus our proof will discuss only the case n = 5.

Corollary 0. For each nz3 the group SO,(Q) has a free subgroup F> which is lo-
cally commutative on Q" \ {0}.

Proof. We use in a similar way the fact that each n=3 is of the form 3Kp+
4K, + 5K, applying the cases n = 3, 4 and 5 of Theorems 0 and 1. [

Now we give four examples of applications of these theorems. Let G be a group
of permutations of a set X, and A =~ B means that A4 is G-congruent to B, i.e.,
A, BS X and there exists v € G such that y(4) = B.

Example 0. If there exists Fy which acts without fixed points on X then there ex-
ists a partition of X into three disjoint sets A, B, C such that

AxB~C~AUB~BUC~CUA.

[This is due essentially to F. Hausdorff; for a stronger theorem of R.M. Rob-
inson; see [12] or Corollary 4.12 in [18]]
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Example 1. The statements (a) there exists Fy which is locally commutative on X,
and (b) there exist three partitions of X into disjoint sets

X=AgUA UA UA3s = ByUB; =B, U B,
such that
Ap= By for h=0,1,2and3,

are equivalent to each other.

[(@)=(b) is a special case of a theorem of R.M. Robinson and (b)=-(a) is due to
T.J. Dekker; see [12] and [1], or Theorem 4.5 and Theorem 4.8 in [18].]

Example 2. If there exists F, which is locally commutative on a denumerable X
then there exists a set E < X such that

E~EAF
for every finite F < X (/A denotes the symmetric difference of sets).

[For more general theorems, see [9].]

Recall that, if X is a metric space, a set A S X is called regular open iff A is the
interior of its closure. Informally speaking A is regular open if it is open with-
out any missing dust. Let 4 V B denote the interior of the closure of 4 U B.

Example 3. For each n23 and each positive rational q, the sphere (,/qS"~ Hn
Q" = {0 e Q" : ||| = \/q} has twelve regular open subsets Ay,. ., As and By,. . .,
Bs such that Ay,. .., As are pairwise disjoint, By, B) and B, are pairwise disjoint,
B3, By and Bs are pairwise disjoint,

(V@S" HNQ"=AgV---VAs=ByVB VB, =BV B,V Bs,
and '
Ay =By, for h=0,...,5.

[This follows from a more general theorem of R. Dougherty and M. Foreman
[4] and our Corollary 0. Indeed a statement similar to Example 3 for the real
spheres ,/gS" ™' = {T € R" : ||&]| = /4)}, where 23 and F> < SO,(R), follows
from the theorem in [4]. So it suffices to pick F> € SO,(Q) as in the Corollary 0
and to intersect their sets 4, and B, with Q"]

Unlike for the case of the field R, the Examples 0-3 (which pertain to the field
Q) can be proved without using the axiom of choice.

The author is greatful to Jan Mycielski for many remarks which improved
this paper.

1. THE GENERATORS OF F)

As mentioned in the Introduction we can assume without loss of generality that
n =5 and that q is a positive integer. We can also assume that g is square-free
and g # 1 (since /g ¢ Q). Then there exist an odd prime p and an integer 4 such
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that p is a divisor of 1 + 4 but not of ¢, and q is a quadratic non-residue to the
modulus p; see [16] (this is a special case of Satz 147 in [5]). Let

1+ 0 0 0 0
| 0 1-5 -2 0 0
a:m 0 2b 1-—b2 0 0 s
0 0 0 1-H -2
0 0 0 % 1-p
and
-0 -2 0 0 0
| % 1-p 0 0 0
G=——_| o 0 1-5 -2 0
L+ 0 % 1-8 0
0 0 0 0 1+4p2

Thus «, 8 € SO5(Q). We will show that the group generated by « and 3 is a free
group of rank 2 which satisfies the conclusion of Theorem 0. From now on, F>
denotes the group generated by « and 3.

2. A LEMMA ABOUT AXES OF ROTATIONS

For each positive integer m, notice that the fixed points of a generic rotation
¢ € SO2n+1(R) constitutes a 1-dimensional line. The purpose of this section is
to work out a more explicit representation of this axis. The formula established
here will be used in Section 3. A square matrix

)
o= : .
o - dom

which belongs to SOy,,.1(R), i.e., ¢ satisfies ‘¢ - ¢ = id and det¢p = 1, can be
represented in the form

1 0

cm=1  _gm=1)
0 S(m—l) c(m—l)

where
0
tO e t2m

T=1| : . ]€8SOm1(R),
pgmoo.. p2m
o
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and ¢, s € R with (¢”)? + (s¢))* = 1 for r =0, 1,.. ., m — 1 (see for example
Chapter IV, §6 in [13] or Theorem 5.4 in [19]). Moreover we have the following
lemma, in which we denote the remainder z mod (2m + 1) by [z].

Lemma 0. Let ¢ € SOy, 11 (R) be represented as stated above. Then, for i =0,
1,... 2m, we have

[f+14+802r+1) i+1+8(2r) . i -
2mm1 Z sgn 8 H (¢[:+ 1 +§E2:)] ] - ¢{i+ 1 +§(2:l_ 1)]) = 2mt6Ssl e S(m 1)’
where ©,,, is the symmetric group on {0,1,...,2m — 1}.

Proof. We observe first

j!
(%) ¢~ “¢11~22 . +It2r.+2 ’2r.+1 2.+ 25",
r,,—

and

i 2
(%) . =dar- T =101T,

7 m

2m 2m

where 7 J’ is the cofactor of t} in 7. We can get this lemma by a direct calculation:

m—1 ,
ml' 5 sgnél'[ [t+1+62r+l)] ¢[1+l+6(2r)] )=

2 m S5 [z+1+€2r i+1+8(2r+1)]
1+ 3(2 1+802r+1 1+3(2r+1 1+3(2
s [T (1 e e e
Fo=
m—1m-— ] m-1
+1+3(0)],[i+1+8 i+14+3(1)] [i+1+38(0
|ZSgngE E Z (tgr0+1 ( ]t[2’r0+2 ()]_I[Ztr0+l ()]t[21r0+2 ()])
rg= 0}'1 T [—0

(1SS _ fi+1480) i+ 1+42)
2ri+1 2}‘|+2 2"1+1 2f1+ )

.‘(t[H—1+6(2m—2)]t[i+1+§(2m—1)] t[t+1+§(2m—1)]t[t+1+§(2m 2)])
21 +1 21 +2 21 +1 2rpo1+2

sro)glr) L glm-1) —

i+ 1+ 3( 1+3(1 +1+8(1 1+8(0
|ZZ DY (Xg: Sgn?’(tlzlroﬂ )]lgr:Jrz W [zlro+1 )]t[zlr:+2 ()])

m. o Iy Tm—1
(t[z+1+§(2)]t[x+1+6(3)] t[x+1+6(3)]t 1+»(2)]
AT | 2rn+2 2ri+1 2r) + )
[t+l+52m ) li+1+82m-1)] _ [1+1+é =) [i+1+38(2m-2)]
(11 Dty +2 D 1 +1 D142 ) )
s(’O)S(rl Logltm-1) —
ZZ Z 27
e I
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i+1] i+ li+1] li+1] fi+1] i+1]

Bro+1 Baro+2 2+ 1 2 +2 Otm1 41 D2y 42
‘[2i+2]1 t[2i+2]2 t[2i+2]1 ’[2i+2]2 ’[2i+2] i {2i+2] 2
ro+ ro + rn+ r + Tm-—-1+ m—1+
13 i13 i3 i+3 i3] i3
t [4 z 4 v ]
[2r0+1 2r0+]2 2r) +1 2ri +2 2r,,,_]1+1 2rm-1+2
. i+4] [i+4 [i+4] [i+4] [i+4 [i+4]
det| 5,/ Lory +2 L+t by 42 Ot +1 D142
t[i+im~l} t[i+2'm—1] t[i+im—1] t[i+2'm—1] t[f+2}n—1] fi+3m—1]
2rp+1 2rp+2 2r +1 2ry+2 21 +1 2rmo1+2
li +2m| {i +2m] [i+2m] [i +2m] o li+2m] li+2m
1 t t t t
2rp+1 2rg+2 2r +1 2r +2 2ry-1+1 201 +2
(ro) ¢(r1) (rm-1) —
-s S .-.s =
i+1] fi+1]
t et
1 2m
=2m‘det : .. : 'SSI"'S(m_l):
i+ 2m] T Jit2m
4 b
0 0
tl lZm
gy pi-l oo Lo gl
=27 (—1)"*" . det tli+1 . tzi’il css!esml) =
1 e gdd
2 >
tlm tzﬂ
0 0
‘] cee e 1Y
m ; t{*l ’ﬁ;l , m—1)
=2"-(-1) - det fit1 g | ossees =
1 2m
t%m t%;';
=2m.fl s’ smmD) =
:zm-té.ss/...s(m_l))

where the first and last equality were obtained from (*) and (%), respec-
tively. O

Corollary 1. Let us denote

15

ax(¢) =2m| @ |ss'oosY,

2m
%

Then ak(¢) # 0 implies that the set of fixed points of ¢ in R**! is the line con-
taining the vector ax(¢p).

Proof. If ax(¢) # 0 then ss’---s™~1 3 0. So the set of fixed points of
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(1 0

do = s e

c(m_]) _S(M—l)

O sm=1  olm=1) /

is the 1-dimensional line containing the vector

1
0

0

Hence the set of fixed points of ¢ = T T ! is the line containing the vector

N
T|.|= N P
o) \i¥r

3. SOME LEMMAS

From now on, for any integers z and z’, the relation z = z’ denotes congruence
mod p, where p is the prime chosen in Section 1. Let b be the integer defined in
Section 1. For vectors and matrices with integral entries, the relation = means
that all respective entries are congruent mod p. Then we can show the follow-
ing:

Lemma 1. Let w be a non-empty reduced word in a and (3. Then there exist a
positive integer M and integers P, Q, R and S such that:

if wis of the form af - - - af then

0 0 0 0 0

o P —ePb R —eRb
(1+6)™w=10 e'Pb —c'ePb® c'Rb —c'eRP |,

0 0 —eQb S —eSh

0 c'Qb —c'cQb* €'Sh —e'eSh?
PS—QR=4M"1

if wis of the form o - - - [ then
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0 0 0 0 0
P —6Pb R —6Rb O

(1+b6"w=| e'Pb —'6Pb* 'Rb —c'6Rb® 0 |,
Q -6Qb S  —6Sb O
e’'Qb —c'6Qb* €'Sh —c'6Sh? 0

PS — QR = —4M,

ifwis of the form 8 - - - a® then

0 P —ePb R —¢Rb
0 6'Pb —6'cPb® 6'Rb —6'cRb?
1+""w=}0 Q@ —-eQb S —eSh |,
0 6'Qb —8'=Qb* 6'Sh —5'eSh?
0 0 0 0 0
PS — QR = —4M,
if wis of the form 3% - - - 3% then
P ~6Pb R —6Rb O
§'Pb  —8'6Pb* §'Rb —6'6RB: 0
1+8¥w=]| @  —6Qb S —68b 0|,
§'Qb —6'6Qb* §'Sh  —6'6SH* 0O
0 0 0 0 0

PS - QR=4M-"

wheree', 8', € and § are either —1 or 1 and fw is the length of w.

Proof. We can express the conclusion of the lemma in the following way:
if wis of the form o' - - - a¢ then there exist P, 0, R, S and M as above such that:

(1+)™w=pPa!, - @'+ Q@ -'a', +Ril, -'@>, + Si,
PS— QR=4M"1,

~€5

if w is of the form a¢’ - - - 8% then there exist P, 0, R, S and M such that:

(1+ 82w = Pal, - @, + Qud, - 'a®; + Ridl, - '@ + S, - a2,
PS - QR= —4¥,

if w is of the form 3% - - - a¢ then there exist P, O, R, S and M such that:

(1 ‘+“ bZ) W= Pu5/ t-‘l + Qu6' " + Ru5: t—‘3 + Su6l M
PS — QR = —4M,

_59

if w is of the form 3% - - - 3° then there exist P, O, R, S and M such that:
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(1 +6*)"w = Pad - @°, + Q2 -7

PS—QR=4M"1
where
1 0
eb 1
=101, al={eb|, @
0 0
0 0

0
0
1
b
0

m

and

U5+ Sitd, -
0
0

=10
1
eb

ué,

Now we will consider four stages of complexity of w: wisa™!, 3~!, a or B; wis a
power of a or of §; wis a product of a power of a and a power of 3; and w is an
arbitrary non-trivial reduced word. We will use the following equations which

are easy to check

b ifh—h'=—
G gh = 1——15:"5b2 ifh—h':O,
- e —e'b ifh—h =1,
0 if h—h'=-3,-2,2 or 3.
First, if w = ¢, we have
1+ 0 0 0 0
0 1-5 -2 0 0
(1+b)af = 0 2b 1-b 0 0
0 0 0 1-H =—2¢b
\ o 0 0 2b 1-#
0 0 0 0 0
0 2 —2b 0 0
={0 2b 20> 0 0 |=20"a
0 0 0 2 —2bh
0 0 0 2cb 207

So we can choose P=S =2, Q0 =R =0, M =2 and we obtain

—QR=4=4M"1,

as required. Similarly, if w = 3%, we have

_'_bZ)IB& 2(—'0 1-006+l—l'2 1= 26)

Sowe canchoose P=S5 =2, 0 = R=0, M =2 and we obtain

PS—QR=4=4M"1

¢k we can show that
(1+b2) aek_.z?k l(-*l t~1 +

Indeed, by the induction

Ifw=a«a

=3

U,

'ﬁ3

Ze)-

=3 13
i),
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( +b2) aek (1+b2)k 1 ek 1) . (1+b2)a5_
_22k 3(-‘1 t—'l +ﬁ3 t-'3 ) z(ul 1 1 +u _ta3 )___
=2%-2((1 —bz)*‘-“‘ +o+o+(1—b2)a§-'iz3 )=

=% 1@l ),
So we can choose P = § = 2%-!, 0 = R =0, M = 2k and we obtain
PS— QR=4%"1=4M-}
as required. Similarly, if w = 3%, we have
(1+ B2 6% = 221 (@0. 2%, + 2 - a2,).
So we can choose P = § = 2¥-1, 0 = R=0, M = 2/ and we obtain
PS— QR=4"1=4M-1,
If w = a5 3%, we have
(14 ) +okgd — (1 4 B2 a . (1 + 526" =
- 22k @l +ii3 ) 2@, i ) =

22k+21 2(6b—’1 t—'06+0_6bu1 t-¢26+6bu3 t—025) —

22k+21 2b(6ij1 ’uoé——eﬁa l~26+5u3 t—026)

So we can choose P =S =2%+2~26p 0 =0, R= —2%+2-2¢p M =2k+
2] — 2 and we obtain

PS — QR =42k+2[—2b2 = 42k+21——2 . (_1) = __4M.

Finally, if w = af .. 3°, we will show by induction that there are such P, Q, R
and S that

L+ 02w = Pal, @0, + Q@ - 'i% + Ral, - 'ud s + Sid, iy,
and there is M such that
PS - QR = —4M,

Let w = wa™ g%, where w = af - - - 3% has shorter length than w. Then, by in-
ductive assumption, we have
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(1+56)"w =
=(1+b)"%-(1 B ktigek gl =
= (I_’ii', .t-‘06, + Qz'i3, . ’iZ°5, +Rl—il 'tﬁzé’ +S‘i4‘3 _t~26,)
92k +2- 2b(5"‘ ' 0 - 1 i 25'*‘5“3 132 2)=
= 2%+2-2p(_§'5Pbii!, -'*0 —6'6Qba’, - '@ s+ c6Rbit), - 0 s+ £65bi3, - a0 5+
+ 8’ Pbiil, -"‘25+65Qb u_é—RbuE,- u_6~SbuE,~’ﬁz_5+
+0 40— §'6Rbu!, - 2 5 — §'68bii2, - i 5) =
= 2%+AU-2p2(_ §(5'P — aR)iz;, il —6(8'0 —eS)id, w0 +
+ (e(8'P —eR) — §'6R)a!, - 42 5 + ((6'Q ~ £S) — 6'68)i3, - 7).
So we put
P=-2%+U-25p2(§'P _ ¢R), R=2%+U-2p2(¢(§'P — eR) — 6'6R),
Q= 2%+U-25p2(6'Q — S), §=2%*+2"2p2((6'Q — €S) — 6'65),
M=M+2k+2-2,
and then
PS — QR = 4%*+U-2p%(PS — QR) = 4% +2-2. 1 . (—4M) = _4¥

If w=ac---af, let w be of the form a¢ --- 8% such that w = wa*. Then we
have

(14 6)"w =
=1+ (1 + ) a* =
= (Pil - '@y + Qiil -0y + Riy, - @25 + S@, -2 )-
22k 1(_.1 t-'l +u3 t—oSE) —
=2%"1(-¢ Pba‘ Gl — §'Qbii’, - @', + eRbi), G, +eShild, @', +
+0+0— 6sz’i a3 — 'Sk, - u_e) =
=2%-1p(— (6§'P~eR)itl, - ﬁ_e ~(8'Q—eS)yid, ', -
—&'Rul, -t~ 6'S@3, @),
and if we choose
= —2%-1p(§'P —cR), R= -2%"1§'bR,
Q=-2%"1p(5'Q—e8), S=-2%"1§'b8,
M =M + 2k,
then
PS — QR = 4%~'p2(PS — QR) = 4%~ . (1) . (—4M) = 4M |,
Ifw= % ... 3, let wbe of the form a¢ - - - 3 such that w = 3. Then we have
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A+)"w=>1+)8". 1+ =
= 221—1(~0 70+ ﬁg/ . '1'4’25,)-
(Pal -l + o ul s+ Ral a4 St uty) =
=22-1(~5'Pbil, - '@ +£Pbu6, W0+
+0—68'Qbii%, -4, —
— &'Rbitd, - 'i% +8Rbu5/ DL
+0 - 6'Shi2, - 'u2 ;) =
=24-1p(— §'Pul, a4 (eP — §' Q) - @0, —
—6’Ru6,- 25+ (eR— 88 -'u2y),
and if we choose
= —2%"16'bP, R=-2""16'bR,
Q=2"1p(cP-6'Q), S=22"'b(ecR-6'S),
M=2+M,
then
PS— QR =4""1p}(P§ — QR) = 4%~ . (=1) - (—4M) =4M "1,
Ifw=p3"-.aflet w=w"of theforma---87%. Then we have
(1+)"w=(1+b)" =
='(Pu', a4l + Qu®, -ul + Ru' -ag, +8i3, @k =
= Paj -'a', + Rak, - 'a', + Qg - 'ul, + Sud, - 'ud,,
and if we choose P=P,0=R,R=0,S =S5, M = M, then
PS—QR=PS5—RO=—4M=_aM [J

Lemma 0 and Lemma 1 imply the following:

Lemma 2. For arbitrary non-empty reduced word w, there exists a positive integer
M such that:

if wis of the form a - - - af then
(1+¢e'e)/2

(14 B> ™ax(w) = —4M

SooCOm

if wis of the form o' - - - 3% then
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—ob
(1+b2)*™ax(w) = —aM| ¢'6 |,
—e'b
1
if wis of the form 3% - - - a® then
1
&'b
(14 B ™ax(w) = —4M| §'¢ |,
eb
1
if wis of the form 3% - - - 3 then
0
0
(142 ™ak(w) = —4M 0
0
(1+66)/2

Proof. By Lemma 0 and Corollary 1, we can calculate ak(w) directly:

(W2 Wz)(W W4) - (Wl (Wz WZ) + (Wl - W4)(W Wg
(Wz ”’2)(“’4 Wg) W(a) wy)
ax(w) = (w3 - w4)(& - 0% - Ew3 uﬁ)gr‘zﬁ ) (Wg w3;(w 4) )
— (wl —w? + w wh —
1 D B MR B wi)

Hence, if w = a¢' - - - a¢, we have

(145%™ ax(w) =
(¢'Pb + ePb)(¢'Sb + £Sb) — (Q — R)(—&'eQb* + 'cRb?) + (¢' Qb + eRb)(—eQb — €' Rb)
(—€Qb — £'Rb)(0 — 0) — (—& QB2 + ¢'eRBA)(0 — 0) + (0 — 0)(e"Sb + £Sb)
(€'Sh + £8b)(0 — 0) — (0 — 0)(—cRb — £'Qb) + (R ~ 0)(0 — 0) -
(0 — 0)(e'Pb + £Pb) — (—€Rb — ' Qb)(0 — 0) + (~¢'cRB? + ¢'c 0B2)(0 ~ 0)
(0 — 0)(—£Qb — £'Rb) — (0 — 0)(Q — R) + (0 — 0)(c'Pb + e Pb)

i

—(1 +€'e)b?/2 (1+¢€e)/2
0 0
_4(PS — QR) 0 | g
0 0
0 0

Similarly, if w = 8% - - - 3%, we have

(1+ 67" ™ax(w) = —4

SO OO

(1+6'6)/2
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Ifw=a®- -3 wehave

(1+ b2 ™ax(w) =

(—€'6Pb? — R)(—€'6Sb? — 0) — (—6Qb + 5Rb)(e'Sh — 0) + (~&'6Qb* — 0)(S + '6Rb?)
(S + €'6RB)(0 — &' Qb) — ('S — 0)(0 — Q) + (0 — &' Pb)(~£'65h* — 0)
(=£'65B% — 0)(P — 0) — (0 — 0)(0 + £’6Qb%) + (—6Rb + 5Qb)(0 — &' Ob) =
(0 — &' Qb)(—¢ 6P — R) — (0 + £'6Qb?)(e'Pb — 0) + (0 — £'Sb)(P — 0)
(P = 0)(S + £'6Rb2) — (¢'Pb — 0)(—5Qb + 6Rb) + (Q — 0)(—'6PH — R)

I}

b 1
b —6b
=(PS—QR)| —'6b? | = —4M| €'
—e'b —e'b

1 1

Ifw=p"-- af wehave

(1+62)*™ax(w) = (1 + B ™ax('w) = (1 + b2)*™ak(w) =

1 1
—(=8")b | &b
= (PS - RQ)| (—¢)(=6") | = —4M| 8¢ |,
—(—e)b eb
1 1

where w=w! (=a~¢---5%). O

4. PROOF OF THE SECOND PART OF THEOREM (

Corollary 1 and Lemma 2 imply immediately the following corollary.

Corollary 2. The set of fixed points of every non-trivial word in o and (3 is a 1-di-
mensional line in R, and the group F, generated by o and (3 is freely generated by
aand 3.

Proof. By Lemma 2, the vector ax(w) is non-zero (if w is of the form A .- A~!
we have ak(w) # 0 by using ax(AwA~!) = A(ax(w)) inductively). Hence Cor-
ollary 2 follows from Corollary 1. Of course the second part of the conclusion
about free generation follows from the first part. [J

Now we are in position to prove the second part of Theorem 0 (for n = 5).
Theorem 2. F; acts without fixed points in the set {G € @’ : ||§ l/v/d€Q,v# 0).

Proof. Let w € F5, w # id. We may assume without loss of generality that w is
cyclically reduced, i.e., wis not of the form A - - - A~! (since the non-existence of
fixed points of w is equivalent to the non-existence of fixed points of AwA~! in
(Te@:|7]/vEeQ, U+ 0}; see the equality in parenthesis of the proof of
Corollary 2). By Corollaries 1 and 2 all the fixed points of w are of the form
a - ax(w), where a € Q. Thus it suffices to show that ||a - ax(w)||/,/§ is irrational,
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i.e., that || ak(w)||/\/q is irrational. By Section 1, q is a quadratic non-residue to
p, and of course ak(w) € Q°. By Lemma 2, we have

g- (146" | ax(w)|* = ¢ - 16Y.

Hence || ak(w)||/,/g cannot be rational. [

5. PROOF OF THE FIRST PART OF THEOREM 0.

Let w and w’ be non-empty reduced words in F>. We will use the following re-
lations: w ~ w’ which means that w and w’ have a common fixed point in
Q*\ {6}, and w ~ w'’ which means that w and w’ commute (Thus the first part
of Theorem 0 reduces to the implication w ~ w' = w ~ w’).

Remark. Notice that both ~ and ~ are equivalence relations on F; \ {id}. For
~ this follows from Corollary 2. For ~ this follows from the fact that in a free
group F, two elements commute iff they belong to the same maximal cyclic
subgroup; see p. 42, 6. in [7].

Proposition 0. For non-zero integers k and I, we have
W w S wow S i ~ '

Furthermore, if w™! # w', we have
we~wwew~w S w~ww',

And the same facts hold for the relation ~.

Proof. Notice that w* ~ w' < w ~ w’ follows from w* ~ w (by Corollary 2).
Likewise for the relation ~~ (since {W : w ~ w} is a maximal cyclic subgroup of
F,). Now Proposition 0 is visible. [0

Proposition 1. We have the following implication:

wew =>w~w,

Proof. Let w be a generator of the maximal cyclic subgroup of F; containing w
and w’' (see Remark above). Since n = 5, W has a fixed point in R®\ {0} and
hence in @’ \ {0}. Thus w and w’ have the same fixed points and w ~ w' fol-
lows. [

The purpose of this section is to prove the converse of the implication of Pro-
position 1. In the following three lemmas, the relations « and % mean the ne-
gation of ~ and =~ respectively, and we write w C w’ if w is an initial segment of
w’', i.e., we can represent w' in the form wi without cancellation.

It is easy to see that each non-empty reduced word w € F, can be inverted,
cyclically permuted, and reduced such that it will be of one of the following six
types
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QO a—l...ﬂ_l’ a_l“‘,B

g...g: a--- 471, a---f.

Lemma 3. If' wand w' are reduced words of distinct types of the above kind, then
w £ w', i.e., wand w’ have no common fixed points in @’ \ {0} (nor in R* \ {0},.

Proof. All fifteen cases follow easily from Lemma 2. [

Lemma 4. Ifwandw' are non-empty reduced words of the same type, thenw ~ w’
impliesw ~ w',

Proof. Let « be the first letter of w and w’, and X the last letter. Then k=1 # A,
If w ~ w’ then w C w’ or w' C w. To prove it, assume not, i.e., assume that we
can represent w = ww and w’ = Wi’ without cancellation by non-empty re-
ducedwords w=k---o,w=7---dand W' =7/ Awitho ' £ 7 £7 #07.
Then, by Lemma 3, two words w™lww=#w=7---As---0 and w™'w'iw =
Ww'w=r71’---Ak---0 are not ~-equivalent. This is a contradiction. So we can
assume w C w’ without loss of generality. If w 5 w’', since w is ~-equivalent to
the non-empty reduced word w = w~!w’, by Lemma 3, # has the form « - - - A.
Then by Proposition 0 it is enough to show that w ~ W where w is shorter than
w'. Hence, arguing by induction, we can assume w = w’. Then w >~ w’ is ob-
vious. [

Lemma 5. Let w be a non-empty reduced word of the form o.* - - - B3 and w' a non-
empty reduced word of the form o - - - a ¢ or of the form 372 - - 3°. Thenw # w'.

Proof. For w' = af---a7¢, if wa® C w’, since the non-empty reduced word
w = wlw’ is of the form o - - - &~ which has shorter length than w’, we can
consider this lemma for w and w. So we can assume wa® € w'. If w C w', i.e., if
wa ¢ C w’ or wBt C w’, since (w!w’) ! is of the form a®---aforac--- 3¢, by
Lemma 3, we have w o (w 'w/)™\. If w2 w’ (so neither wC w’™" nor
w D w'™!), since w # w'wand w'wis of the form a° - - - 3, by Lemma 4, we have
w & w'w. Otherwise, i.e., if neither w C w’ nor w 2 w', since w 3 w' 'w and
w'"'w is of the form ¢ - - - 3, by Lemma 4, we have w % w'"'w. The proof for
w' =3¢ ..3 issimilar. [

Finally we are ready to prove the first part of Theorem 0.
Theorem 3. The action of the group Fy on @\ {0} is locally commutative, in
other words, for any non-empty reduced words w and w' we have:

wr~w = weaw

Proof. By the former equivalences of Proposition 0, it is enough to show this
forw=a,8,a - a ' -8 a - 87}, a 8. For w=qa, by the former
of Proposition 0 and Lemma 3, we can assume w' = alvaq,a-ala - aq
gl...gorB---f L Ifw =8"--Borw =337}, by Lemma 3, we have
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woww Ifw =a~¢---Fa for ¢, 6 in {—1,1} and a positive integer k, by
Lemma 3, we have w £ w'w=e%. Otherwise, i.e., if w' = a---a, by Lemma 4,
w ~ w' implies w ~ w’. For w = (3, the proof is similar. For w = o - - - 3%, by the
former of Proposition 0 and Lemmas 3 and 5, we can assume w’ = a™¢--- af,
BB borat---F Ifw=a¢ -0 by Lemma 3, we have w £ w'w. If
w =03...8% by Lemma 3, we have w X ww'. Otherwise, ie., if
w' =af---3° by Lemma4, w~ w' impliesw ~w’. 0O
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