On Matroids of the Greatest W-Connectivity

Li Weixuan*
University of Waterloo, Waterloo, Ontario, Canada
Communicated by the Editors

Received November 24, 1982

The Whitney connectivity (W-connectivity) of a matroid M is defined by T. Inukai and L. Weinberg as the least integer k for which there exists a subset S of the ground set E of M such that $\rho(S) \geqslant k, \rho(E-S) \geqslant k$, and

$$
\rho(S)+\rho(\boldsymbol{E}-\boldsymbol{S})-\rho M+1=k
$$

where ρ is the rank function of $M . M$ is called a Whitney matroid if there exists no such integer. In this case, the W-connectivity of M to be the rank of M is defined. In this paper, several properties of Whitney matroids are demonstrated. In addition, the Whitney matroids whose duals are also Whitney matroids are characterized, and an interpretation of binary W-matroids is given.

1. Elementary Results

In this paper, M is a matroid with the rank function ρ on a finite set E of n elements. For an element ρ of E, the restriction of M to $E-e$ will be denoted by $M-e$, and the contraction of M to $E-e$ will be denoted by M / e. For the terminology and notation not specified here, see [4].

According to Inukai and Weinberg [3], the Whitney connectivity (Wconnectivity) of M, denoted by $\lambda(M)$, is defined as the least integer k for which there is a subset S of E such that $\rho(S) \geqslant k, \rho(E-S) \geqslant k$, and

$$
\rho(S)+\rho(E-S)-\rho M+1=k
$$

If no such integer exists, then the W-connectivity of M is defined in [3] to be infinite. However, for reasons explained below, we prefer to define $\lambda(M)=\rho M$ in this case. For convenience, a matroid with $\lambda(M)=\rho M$ will be called a Whitney matroid (W-matroid). By [3, Lemma 6] W-matroids are just those whose W-connectivity is defined to be infinite in [3].

In this section, we will deduce several elementary properties of W -

[^0]matroids. In Section 2, we characterize the W-matroids whose dual matroids are also W-matroids, and in Section 3, an interpretation of a binary W matroid is given.

The following theorem given in [3] demonstrates some necessary and sufficient conditions for a matroid to be a W-matroid.

Theorem 1 [3, Theorem 5]. The following statements are equivalent:
(a) M is a W-matroid.
(b) For each nonnull proper subset S of E, either S or $E-S$ contains a base of M.
(c) For each nonnull proper subset S of E, either $\rho(M \cdot S)=0$, or $\rho(M \cdot(E-S))=0$.
(d) For each pair of cocircuits C^{*} and C_{1}^{*} of $M, C^{*} \cap C_{1}^{*} \neq \varnothing$.

By Theorem 1, we can easily give another alternative definition of a W matroid.

Lemma 2. M is a W-matroid if and only if each cocircuit of M contains a base of M.

Proof. Suppose that C^{*} is a cocircuit of the W-matroid M. Since $E-C^{*}$ is a hyperplane of $M, E-C^{*}$ does not contain a base of M. Hence, by Theorem $1(\mathrm{~b}), C^{*}$ contains a base of M.

Conversely, suppose that each cocircuit of M contains a base. Let C^{*} and C_{1}^{*} be cocircuits of M, and let B be a base of M contained in C^{*}. Then $C^{*} \cap C_{1}^{*} \neq \varnothing$, because $B \cap C_{1}^{*} \neq \varnothing$. Hence, by Theorem $1(\mathrm{~d}), M$ is a W matroid.

Combining this result and the assertion of [3, Lemma 6] that, if M is not a W-matroid, then $\rho\left(C^{*}\right) \geqslant \lambda(M)$ for any cocircuit C^{*} of M, we have

Corollary 3. For any matroid M,

$$
\lambda(M) \leqslant \min \left\{\left|C^{*}\right| ; C^{*} \text { is a cocircuit of } M\right\}
$$

Since the W-connectivity of a matroid corresponds to the vertex connectivity of a graph [3 , Theorem 1], and the minimum cardinality of cocircuits of a matroid corresponds to the edge connectivity, Corollary 3 is a natural extension of the well-known result in graph theory that the vertex connectivity is less than or equal to the edge connectivity of a graph. It is just for this reason that we define the W-connectivity of the matroids having the greatest W - connectivity to be ρM and not infinite.

The following lemma shows the connection between a W-matroid and its minors.

Lemma 4. Let $e, e^{\prime} \in E$. Then
(a) M-e is a W-matroid implies that M is a W-matroid;
(b) M is a W-matroid implies that M / e is a W-matroid;
(c) if e and e^{\prime} are parallel elements, or e is a loop, then M is a W matroid implies that M-e is a W-matroid.

These results follow readily by Theorem 1 (d).
By Lemma 4(a) and (c), we can restrict ourselves to considering simple matroids in studying W-matroids. In view of Lemma 4(a), we define a W matroid M to be minimal if for any element e of $M, M-e$ is not a W matroid.

THEOREM 5. A W-matroid M is minimal if and only if, for any element e of M, there are cocircuits C^{*} and C_{1}^{*} of M such that $C^{*} \cap C_{1}^{*}=e$.

This result is an immediate consequence of Theorem 1 (d).
A uniform matroid $U_{r, n}$ is a matroid on a set E of n elements such that every subset of E with r elements is a base.

Theorem 6. Denote ρM by r. Then M is a W-matroid implies that $n \geqslant 2 r-1$. The equality holds if and only if $M=U_{r, 2 r-1}$.

Proof. If M is a uniform matroid, then it is easy to verify that M is a W matroid if and only if $n \geqslant 2 r-1$. When M is not a uniform matroid, let S be a subset of E such that $|S|=r$, and S is not a base of M. Now S does not contain a base of M, so, by Theorem $1(\mathrm{~b}), E-S$ contains a base of M. Thus $|E-S| \geqslant r$. Hence, $|E|=|S|+|E-S| \geqslant r+r=2 r$.

2. Dual Whitney Matroids

In [2], Inukai and Weinberg identify the matroids having the greatest Tutte connectivity as being a class of uniform matroids. But in the case of Whitney connectivity, the structure of a W-matroid is not as simple as it first appears. So we try to consider some more specific cases. First, we consider the W-matroids whose duals are also Whitney matroids. The next theorem characterizes these matroids:

Theorem 7. Both M and M^{*} are W-matroids if and only if one of the following conditions is satisfied:
(a) n is odd, and $M-U_{r, n}$, where $r=\frac{1}{2}(n+1)$ or $\frac{1}{2}(n-1)$.
(b) n is even, and
(b1) every subset of E of $\frac{1}{2} n$ elements is either a base or a cobase of M, and
(b2) every subset of E of $\frac{1}{2} n+1$ elements contains a base and a cobase of M.

Proof. Necessity. Suppose that both M and M^{*} are W-matroids. If M is a uniform matroid, then it is easy to see that $\rho M=\frac{1}{2}(n-1)$, or $\frac{1}{2} n$, or $\frac{1}{2}(n+1)$. Conditions (a) and (b) are satisfied.

If M is not a W-matroid, let S be a subset of E such that $|S|=\rho M$, and S is not a base of M. Now S contains a circuit C of M. Since M^{*} is a W. matroid, C contains a cobase B^{*} of M. If B^{*} is a proper subset of S, then S is a dependent set of M^{*}. Thus there is a cocircuit C^{*} of M contained in S. Since M is a W-matroid, C^{*} contains a base B of M. By $B \subseteq C^{*} \subseteq S$, and $|B|=|S|=\rho M$, we conclude that $B=S$, and then S itself is a base of M, contradicting the hypothesis. Hence, $B^{*}=S$; i.e., S is a cobase of M. Accordingly, $\rho M^{*}=\rho M=\frac{1}{2} n$.

On the other hand, let T be a subset of E of $\frac{1}{2} n+1$ elements. Since M is a W-matroid and $E-T$ contains no base of M, by Theorem $1(\mathrm{~b}), T$ contains a base of M. Similarly, T contains a cobase of M.

Sufficiency. When n is odd, $r=\frac{1}{2}(n+1)$ or $\frac{1}{2}(n-1)$, and $M=U_{r, n}$, it is obvious that M and M^{*} are W-matroids. When n is even, and conditions (b1) and (b2) are satisfied, we prove that M is a W-matroid. (The same argument serves to prove that M^{*} is also a W-matroid.) By Theorem 1(b), we need only to show that, for every nunnull proper subset S of E, either S or $E-S$ contains a base of M. By (b1), we see that $\rho M=\frac{1}{2} n$.

Let S be a subset of E. If $|S|=\frac{1}{2} n$, by (b1), S or $E-S$ is then a base of M. Otherwise, without loss of generality, we may assume that $n>|S| \geqslant$ $\frac{1}{2} n+1$. By (b2), we see that S contains a base of M. The proof is complete.

We note that conditions (b1) and (b2) are independent of each other. Let $E=\{a, b, c, d\}$. The family

$$
\{\{a, b\},\{a, c\},\{a, d\}\}
$$

of subsets of E is the base set of a matroid on E which satisfies (b1) but not (b2), and the family

$$
\{\{a, c\},\{a, d\},\{b, c\},\{b, d\}\}
$$

of subsets of E is the base set of a matroid on E which satisfies (b2) but not (b1).

In Theorem 7, when n is odd, it is obvious that $U_{r, 2 r+1}$ is not a minimal W-matroid, and $U_{r, 2 r-1}$ is a minimal W-matroid; when n is even, we have the following result:

Theorem 8. If both M and M^{*} are W-matroids and n is even, then M is a minimal W-matroid if and only if, for every element e of E, there is a base B of M containing e which is not a cobase of M.

Proof. Necessity. Suppose that M and M^{*} are W-matroids, and $e \in E$. If every base of M containing e is a cobase of M, then e is in the intersection of all the cobases of M which are not bases of M. Consider a subset S of E which has exactly $\frac{1}{2} n$ elements and does not contain e. By Theorem 7(bl), S is either a base or a cobase of M. Since $e \notin S$, by the hypothesis, S is a cobase of M implies that S is a base of M. Hence, S is a base of M. Consequently, every subset of E having $\frac{1}{2} n$ elements is a base of $M-e$, i.e., $M-e=U_{r, 2 r-1}$, where $r=\frac{1}{2} n$. Accordingly, M is not a minimal Whitney matroid.

Sufficiency. Suppose that every element of E belongs to a base of M which is not a cobase of M. Let $e \in E$, and B is a base of M which is not a cobase of M such that $e \in B$. The dual version of the proof of the necessity of (b1) of Theorem 7 shows that B is a cocircuit of M. Since $E-B$ is a cobase of $M,(E-S) \cup e$ contains a cocircuit C^{*}, and $B \cap C^{*}=e$. By Theorem $5, M$ is a minimal Whitney matroid, completing the proof.

The cycle matroid of K_{4}, the complete graph of 4 vertices, is an example of a minimal W-matroid with a W-matroid dual.

3. Binary W-Matroids

In [3, Corollary 1], it is proved that M is a graphical simple W-matroid if and only if it is the cycle matroid of a complete graph. In this section, we consider the more general case that M is a binary simple W-matroid. First, we have

LEMMA 9. The symmetric difference of two distinct cocircuits of a binary W-matroid M is itself a cocircuit of M.

Proof. Let C_{1}^{*} and C_{2}^{*} be distinct cocircuits of M. By the property of a binary matroid, $C_{1}^{*} \triangle C_{2}^{*}$ is a union of disjoint cocircuits of M. Observing that there exist no disjoint cocircuits in a W-matroid, we conclude that $C_{1}^{*} \triangle C_{2}^{*}$ is a cocricuit of M.

Let V be the set of nonzero vectors of dimension $r, r \geqslant 2$, over the field $G F(2)$, and let $M(V)$ be the matroid induced by V. Since the cycle matroid of the complete graph of $r+1$ vertices is a restriction of $M(V)$, by Lemma 4(a), we have

Lemma 10. $\quad M(V)$ is a W-matroid.

The matroid $M(V)$ has the following properties:
Lemma 11. Let B be a bse of V, and let $S \subseteq B$. Then
(a) when $|S| \geqslant 2$, there exists a unique element e in $V-S$ such that $S \cup e$ is a circuit of $M(V)$; and
(b) when $|S| \geqslant 1$, there is a unique cocircuit C^{*} of $M(V)$ such that $C^{*} \cap B=S$.

Proof. (a) It follows by the observation that $S \cup e$ is a circuit of $M(V)$ if and only if $e=\sum_{x \in S} x$.
(b) For each element x of B, there is a unique cocircuit C_{x}^{*} in $(V-B) \cup x$. Let $C^{*}(S)$ be the symmetric difference of the family of cocircuits $\left\{C_{x}^{*} ; x \in S\right\}$. By Lemma $9, C^{*}(S)$ is a cocircuit of $M(V)$. It is obvious that $C^{*}(S) \cap B=S$.
If there are two cocircuits C_{1}^{*} and C_{2}^{*} such that $C_{1}^{*} \cap B=C_{2}^{*} \cap B=S$, and $C_{1}^{*} \neq C_{2}^{*}$, then $C_{1}^{*} \triangle C_{2}^{*}$ is a cocircuit of $M(V)$ which does not intersect B. It is impossible.

Let $D \subseteq V$ be an independent set of $M(V)$. The subset of V

$$
O C(D)=\{e ; e \in D, \text { or } D \cup e \text { contains a circuit of even length }\}
$$

is called the odd closure of D.
Lemma 12. Suppose that $A \subseteq V$. Then there exist two distinct cocircuits C_{1}^{*} and C_{2}^{*} such that $C_{1}^{*} \cap C_{2}^{*}=A$ if and only if A is the odd closure of an independent set of $r-1$ elements.

Proof. Necessity. Let C_{1}^{*} and C_{2}^{*} be cocircuits of $M(V)$ such that $C_{1}^{*} \cap C_{2}^{*}=A$. Since $V-C_{1}^{*}$ and $V-C_{2}^{*}$ are hyperplanes of $M(V)$, by a result in linear algebra, the rank of $\left(V-C_{1}^{*}\right) \cap\left(V-C_{2}^{*}\right)$ is $r-2$. Hence we can take a base of $M(V)$ as follows:

$$
B=\left\{e_{1}, e_{2}, \ldots, e_{r}\right\},
$$

where $e_{1} \in C_{1}^{*}-C_{2}^{*}, e_{2} \in C_{2}^{*}-C_{1}^{*}$, and e_{i} belongs to neither C_{1}^{*} nor C_{2}^{*} for $i=3,4, \ldots, r$. Consequently, denoting an element

$$
e=e_{i_{1}}+e_{i_{2}}+\cdots+e_{i_{i}}, \quad 1 \leqslant i_{1}<i_{2}<\cdots<i_{t} \leqslant r
$$

by $e_{i_{1}, i_{2}, \ldots, i_{t}}$, we have

$$
A=\left\{e_{1,2, i_{3}, \ldots, i_{t}} ; 3 \leqslant i_{3}<\cdots<i_{t} \leqslant r, t \geqslant 2\right\} .
$$

Now it is clear that $\left\{e_{1,2, \ldots, k} ; k=2,3, \ldots, r\right\}$ is a maximal independent set in A having $r-1$ elements, and A is the odd closure of this set.

Sufficiency. If A is the odd closure of an independent set $B^{\prime}=$ $\left\{e_{1}, e_{2}, \ldots, e_{r-1}\right\}$. Let $B=\left\{e_{1}, e_{2}, \ldots, e_{r-1}, e_{r}\right\}$ be a base of $M(V)$. By Lemma 11(b), there exist cocircuits C_{1}^{*} and C_{2}^{*} such that $C_{1}^{*} \cap B=B^{\prime}$ and $C_{2}^{*} \cap B=B$.

Denote a cocircuit C^{*} of $M(V)$ such that $C^{*} \cap B=e_{i}$ by $C^{*}(i)$. We have

$$
C_{1}^{*}=C^{*}(1) \Delta C^{*}(2) \Delta \cdots \Delta C^{*}(r-1)
$$

and

$$
C_{2}^{*}=C^{*}(1) \Delta C^{*}(2) \Delta \cdots \Delta C^{*}(r) .
$$

An element $e_{i_{1}, i_{2} \ldots \ldots i_{t}}=e_{i_{1}}+e_{i_{2}}+\cdots+e_{i,}, 1 \leqslant i_{1}<i_{2}<\cdots<i_{t} \leqslant r$, belongs to $C_{1}^{*} \cap C_{2}^{*}$ if and only if both $\left|\left\{i_{1}, i_{2}, \ldots, i_{l}\right\} \cap\{1,2, \ldots, r-1\}\right|$ and $\left|\left\{i_{1}, i_{2}, \ldots, i_{t}\right\} \cap\{1,2, \ldots, r\}\right|$ are odd. Thus $i_{t} \leqslant r-1$ and t is odd, or, equivalently, it is in the odd closure of B^{\prime}, completing the proof.

Corollary 13. Each pair of cocircuits of $M(V)$ intersects in exactly 2^{r-2} elements.

Proof. It follows readily by enumeration.
By this corollary, we have the following proposition:
Theorem 14. Every binary simple matroid having at least $3 \cdot 2^{r-2}$ elements is a W-matroid.

Proof. This result follows by the observation that every binary matroid is a restriction of $M(V)$.

The bound given in Theorem 14 is best possible in the sense that there exists a binary simple matroid having $3 \cdot 2^{r-2}-1$ elements which is not a W-matroid. To construct such a matroid, we take an independent set B^{\prime} of $M(V)$ having $r-1$ elements, and let A be the odd closure of B^{\prime}. Then, by Lemma 12 and Corollary 13, the restriction of $M(V)$ to $V-A$ is a binary simple matroid which has $3 \cdot 2^{r-2}-1$ elements and is not a W-matroid.

Another immediate consequence of Lemma 12 is the following:
Theorem 15. Suppose that $T \subseteq V$. Then the restriction of $M(V)$ on T is a W-matroid if and only if, for any independent set B^{\prime} of $M(V)$ having $r-1$ elements, either there exists $e \in T$ belonging to B^{\prime} or there exists $e^{\prime} \in T$ such that the unique circuit in $B^{\prime} \cup e^{\prime}$ is of even length.

Observing that every binary simple matroid is a restriction of $M(V)$, Theorem 15 characterizes the binary simple W-matroids.

Theorem 15 can be stated in another form. Two independent sets

$$
B^{\prime}=\left\{x_{1}, x_{2}, \ldots, x_{r-1}\right\}
$$

and

$$
B^{\prime \prime}=\left\{y_{1}, y_{2}, \ldots, y_{r-1}\right\}
$$

are said to be equivalent if every element of $R^{\prime \prime}$ is in the odd closure of B^{\prime}. It is easy to verify that this relation is in fact an equivalence relation. Let \mathscr{B} be the collection of independent sets having $r-1$ elements. The equivalence relation defined above decides the cquivalence classes of \mathscr{B}. Denote the set of equivalence classes of \mathscr{B} uner this relation by $\left\{N_{1}, N_{2}, \ldots, N_{s}\right\}$, and M_{i} is the union of the members, each taken as a subset of V, of $N_{i}, i=1,2, \ldots, s$. Then Theorem 15 asserts that, for $T \subseteq V$, the restriction of $M(V)$ to T is a W-matroid if and only if $T \cap M_{i} \neq \varnothing$, for each $i=1,2, \ldots, s$. Thus, using the algorithm in [1, p. 423], we can construct all the binary simple W-matroids from the family ($M_{1}, M_{2}, \ldots, M_{s}$).

References

1. C. Berge, "Graphs and Hypergraphs," North-Holland, Amsterdam, 1973. [English]
2. T. Inukai and L. Weinberg, Theorems on matroid connectivity, Discrete Math. 22 (1978), 311-312.
3. T. Inukai and L. Wennerg, Whitney connectivity of matroids, SIAM J. Algebraic Discrete Methods 2 (1981), 108-120.
4. D. J. A. Welsh, "Matroid Theory," Academic Press, New York, 1976.

[^0]: * On leave from Changsha Railway Institute, Changsha, Hunan, China.

