extrapolated for the years 2012-2016 by applying population forecasts from the official Finnish statistics. Health care resource use and Finnish unit costs (€2011, societal perspective) were obtained from published national sources. RESULTS: Approximately 35% of the 2.2 million Finns of over 50 years of age can be consid-
ered to be at moderate or high risk for PDs due to the underlying chronic medical conditions. The vaccination of these people with PCV13 could provide an estimated net health gain of €218 million compared to the current no-vaccination situation during the five years. Among the risk groups considered, the largest net savings (€66.2 million) could be expected to be obtained by vaccinating people with heart disease due to its high prevalence in the target population. CONCLUSIONS: The implementation of a PCV13 vaccination program for adults (>50 years) at higher PD-risk with PCV13 vaccine could potentially lead to substantial cost savings during the forthcoming years in Finland.

PIN23

ECONOMIC ANALYSIS OF ATAZANAVIR AS 1ST LINE TREATMENT FOR VIH PATIENTS, ON STABLE AND SEVERE HEALTH STATE

METHODS: An economic Model was developed to evaluate the Budget Impact of using Atazanavir (ATZ), as 1st line treatment for VIH patients in the Spanish National Health System perspective, over a 10-year period. Therapies included in the analysis were Darunavir (DRV), Lopinavir (LPV) and Efa-
virenz (EFV). Patient data were obtained through microsimulation model, with a patient cohort simulated, statistically significant and representative (N = 40,000).

RESULTS: In a cohort of patients from local databases were considered pharmacologic and direct health care costs. An annual discount rate assumed was of 3%. The discontinuation rates after AEs assumed for all treatments were: 71.3% from diarrhea, 61.1% from nausea, 28.8% from jaundice, 82.5% from rash and 55% from CNS events. The model estimated a net health gain per patient was presented at annual and cumulative level. RESULTS: Atazanavir used to led to differential annual costs per patient after 10 years of treatment of 595€, 209€ and 76€, with respect to DRV, LPV and EFV. The highest savings generated by ATV derived from durable health of 1st line treatment (807€, 909€ and 1045€ EFV), followed by return to health and durable viral suppression. This savings offset ATV drug cost versus other antiretroviral drugs.

CONCLUSIONS: This analysis showed that treatment with Atazanavir for VIH pa-
tients, on stable and severe health state, generates net savings for Spanish National Health System: 595€, 209€ and 76€, with respect to DRV, LPV and EFV, in terms of differential annual costs per patient after 10 years treatment.

PIN24

CLINICAL AND ECONOMIC EVALUATION OF AN ADULT PNEUMOCOCCAL VACCINATION PROGRAMME AIMED AT THE SPANISH HIV POPULATION

OBJECTIVES: To estimate the budget impact associated with use of Atazanavir as 1st line treatment in Spanish market of antiretroviral drugs for VIH patients, on stable and severe health state. METHODS: An economic Model was developed to evaluate the Budget Impact of using Atazanavir (ATZ), as 1st line treatment for VIH patients in the Spanish National Health System perspective, over a 10-year period. Therapies included in the analysis were Darunavir (DRV), Lopinavir (LPV) and Efavirenz (EFV). Patient data were obtained through microsimulation model, with a patient cohort simulated, statistically significant and representative (N = 40,000). The considered cohort of patients from local databases were considered pharmacologic and direct health care costs. An annual discount rate assumed was of 3%. The discontinuation rates after AEs assumed for all treatments were: 71.3% from diarrhea, 61.1% from nausea, 28.8% from jaundice, 82.5% from rash and 55% from CNS events. The model estimated a net health gain per patient was presented at annual and cumulative level. RESULTS: Atazanavir used to led to differential annual costs per patient after 10 years of treatment of 595€, 209€ and 76€, with respect to DRV, LPV and EFV. The highest savings generated by ATV derived from durable health of 1st line treatment (807€, 909€ and 1045€ EFV), followed by return to health and durable viral suppression. This savings offset ATV drug cost versus other antiretroviral drugs.

CONCLUSIONS: This analysis showed that treatment with Atazanavir for VIH pa-
tients, on stable and severe health state, generates net savings for Spanish National Health System: 595€, 209€ and 76€, with respect to DRV, LPV and EFV, in terms of differential annual costs per patient after 10 years treatment.

PIN25

HEALTH AND ECONOMIC BENEFITS OF AVOIDING HOSPITAL PEN MOVES FOR PATIENTS IN GERMANY

METHODS: A study was performed to estimate the health and cost benefit of avoiding hospital pen moves for patients with prolonged neutropenia or undergoing bone marrow or hematopoietic stem-cell transplantation from a German hospital perspective. METHODS: A decision analytic model was constructed to estimate potential treatment costs of voriconazole versus liposomal amphotericin B. Each pathway was defined by probabilities of an event and costs of clinical outcomes. Probabilities were derived from literature, clinical trials, and expert panels. In the base case, patients who failed first-line therapy were assumed to experience a single switch between comparator drugs or add on the other drug as second-line treatment. Base-case evaluation included drug management costs and additional hospitalization costs due to adverse events. Sensitivity analyses were conducted to assess robustness of results. All costs were inflated to 2011 Euros. RESULTS: Based on clinical trial success rates of 52.8% (voriconazole) and 50% (liposomal amphotericin B), and length of treatment (LOT) = 10-day intravenous (IV) = 5-day oral for voriconazole and 15-day IV for liposomal amphotericin B, voriconazole had a lower total treatment cost than liposomal amphotericin B ($121,256 vs $18,133). Assuming the same ef-
ficacy (50%) in first-line therapy, voriconazole still had a lower total treatment cost than liposomal amphotericin B ($121,837 vs $18,133). Assuming the same LOT (10 or 15 days) in both arms, voriconazole maintained a lower cost. Cost savings were primarily due to lower drug costs and shorter IV LOT associated with voriconazole. The model was sensitive to drug prices and hospital per day costs. CONCLUSIONS: This study suggests that voriconazole is likely to be cost-saving compared to liposomal amphotericin B in the treatment of IA from the German hospital perspective.