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Let s(n) be the sum of the digits of n written to the base b. We determine the joint 
distribution (modulo m) of the sequences s(k,n), . . . . s(k,n). In the case where m and 
b- 1 are relatively prime, we find that their values are equally distributed among 
t-tuples of residue classes (modulo m). 0 1989 Academic PESS, hc. 

1. INTRODUCTION 

Given an integer b 2 2, denote by s(n) the sum of the digits of the non- 
negative integer n expressed to the base b. A. 0. Gelfond [2] proved that, 
if k 2 1, m > 2, and (m, b - 1) = 1, then the numbers s(kn), n = 0, 1,2, . . . are 
distributed equally among residue classes (mod m). In this paper we 
consider the joint distribution (mod m) of the sequences s(k,n), . . . . s(k,n) 
in the general case. 

Throughout this paper, all variables are positive integers unless stated 
otherwise. We will assume that &’ 2 1, m > 2, b 2 2, and that k,, . . . . k, are 
distinct. Since s(bn) = s(n) for all n, we lose no generality in assuming that 
btkjforj=l,...,e. 

For arbitrary rl , . . . . r,, form the system of congruences 

s(kp) s rj (mod m), j= 1, . . . . e. (*I 

We will prove the existence of, and evaluate, the rational number 

L=J@m$card(O$n<N:n satisfies (*)}. 

We begin with a simple argument giving a necessary condition for (*) to 
have a solution. We will let g = (m, b - 1) throughout this paper, 

PROPOSITION 1. Zf (*) has a solution, then so does the system 

kjn 3 rj (mod g), j= 1, . . . . L’. 
132 
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Proof: Since 

s(kp) = kin (modb- 1) 

for every j, it follows that 

s(kjn) E kjn (mod g) 

for every j. Thus every solution of (*) also satisfies (w). 1 

It follows from the elementary theory of congruences that, if (**) has a 
solution, it has precisely (d,, . . . . d,) solutions, where 

d, = (kj, g), j = 1, . ..) P. 

Thus if the sequences (s(k,n)) are statistically independent (mod m), we 
expect the following theorem. 

THEOREM 1. If(w) has a solution, then 

L= g ’ (4, -..y de) 
0 m g . 

As special cases, we have the following generalizations of Gelfond’s 
theorem. 

COROLLARY 1. Zf (m, b - 1) = 1, and (**) has a solution, then L = l/m’. 

COROLLARY 2. Let /=l. Zj” (m,b-l,k,)Ir, in (w), then L= 
(m, b - 1, k,)/m. 

2. TYPE f  SUMS 

To prove Theorem 1, we investigate the sum 

C e (k i *js(kjn)), (1) 
O<n<N /=I 

where e(x) =exp(2+x) and O<aj< m for j= 1, . . . . d. In an extension of 
common usage we call (1) a Type / sum. 

LEMMA 1. If n=n’b’+n”, where O<n”<b’, then 

s(n) = s(n’) + s(n”). 
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Proof. If n =Ci Eibi, then n’ =CiPr Eibipr and n”=Ci<, qbi. The 
result follows since xi &i = xiar ei + CiCr ci. 1 

LEMMA 2. s(k(n + wb’)) = s( [kn/b’] + kw) + s(kn) - s( [knlb’]). 

Proof By Lemma 1, 

s(kn + kwb’)) = s ([F]+kw)+s(kn-[$]b’) 

and 

s(kn-[$]b’)=,s(kn)-,([:I). 1 

Let K= [k,, . . . . k,]. For 0 <h < K, we define 

T(r, u, h) = c 
(D+h/k)b’~n<(v+(h+l)/k)b’ 

e A j$l o,s(k,n)), 
( 

(2) 
T(r, u) = c T(r, u, h) = c 

O<h<K ub’<n<(u+l)b’ 
e i jil ajdk,n)). 

( 

LEMMA 3. For O<u< b, let 

tj=[g, qg]. 

Let i(h, u, u) be the complex number 

(3) 

Then 

T(r+ 1, u, h)= c [(h, u, u) T(r,O, bh+u-KA). 
OQU<b 

ProoJ Write 

T(r+l, u, h)= 1 
O<u<b (bv+(bh+u)/K)b’gn<(bv+(bh+u+l)/K)b’ 

A jil ajs(k,n)) 7 c e 

and in each inner sum replace n by n + (bu + A) b’. The inner sums become 

c 
((bh+u)/K-I)b’Cn<((bh+u+l)/K--)b’ 

ij$Iaj~(kj(n+(b~+i)b’))). 
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By Lemma 2 with k = kj and w  = bo + 2, the summand equals 

‘(A;, aj(s([F] +kj(bU+L))+s(kiH)-s([g]))). 

The result now follows from the observation that 

[ 1 k,n 
b’ 

=rj-ki/. 

in each inner sum. 4 

LEMMA 4. Let A(v) be the K-by-K matrix whose (h, i)th entry is 

(4) 

Proof: The result follows at once from Lemma 3 by matrix multipiica- 
tion. 1 

The following is an immediate corollary of Lemma 4. 

PROPOSITION 2. Ifr2 1, rhen 

3. TYPE k MATRICES 

(5) 

We call the matrices A(u) Type G matrices. We assume throughout this 
section that u = 0. It is clear from (3) that 

l(h, u, 0) = 1 

for O<bh+u<K. 
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Denote by A,,@, i) the (h, i)th entry of A(u)‘. By (4), 

T(r, 0, h) = Ao,,(h, 0). (6) 

We now derive a formula for A,,,(h, i). 
For Iz 2 0 and 0 < i < K, we make the (invertible) change of variables 

Kl+i=bh+u, (7) 

where h 2 0, 0 <u < b. We now define the function a(& i) as follows: for 
O</l<b, 

For 

We note that 

a(& i) = ((h, 24, 0). 

il=pb*+v, O<p<b, O<v<b’, 

a( I, i) = a( v, i) a ( ,[yy). p 

~(0, i) = 1 for O<i-=zK. (9) 

LEMMA 5. For all r, O<h<K, O<i<K, 

A,,V, i) = a(& i). 

hb’CKl+ic(h+l)b’ 

Thus 

(8) 

(10) 

L%,,V~ 01 G (11) 
hb’<Kd+i-z(h+l)b’ 

ProoJ The result is easily verified for r = 0, and the case r = 1 follows 
at once from (4) and (7). Assume that (10) holds for r; we prove it for 
r + 1. By matrix multiplication, 

A o,?+ l(h i) = 1 Ao,I(~ Y) Ao,h 4. 
O<y-cK 

By the induction hypothesis, this is 

c c 4% Y) c a(v, i). 
OGycK 

hb<Kp+;<(h+l,b yb%Kv+;<(y+l)b’ 
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Let Ic/ = K,u + y. We may regard p and y as functions of $, namely, 
p = [e/K] and y = $ - K[$/K]. Thus we can rewrite the sum over y and 
p as a sum over *; i.e., 

A *,r+ ,(k 4 = c 44 Y f c afv, i). 

hb<$<‘(h+I)b yb’dKv+:‘<,y+I,b’ 

We now make the substitution (8) in the inner sum; then 

a(& i) = a(v, i) a(~, y). 

Thus 

a(2, i). 
ti 

hb<#<(h+l)b (Kp+y)b’<KA+c<(Kp+y+I)b’ 

Since rl/ = Kp + y, this becomes 

= a(A ih 
hb’+‘<KA+i-c(h+l)b’+’ 

which completes the induction. 1 

We say that the Type I matrix A(0) is trivial if a(& i) = 1 for 0 <A <b, 
0 < i < K. If A(0) is trivial, it follows from (8) that 

a(L, i) = 1 for all I3 0, 0 <i< K. (12) 

LEMMA 6. Zf the matrix associated with the Type e sum T(r, 0) is trivial, 
then T(r, 0) = 6’. 

Proof. By (2) and (6), 

T(r, 0) = c AoAk 0). 
O<h<K 

By Lemma 5, this is 

atA 0). 
O<h<T 

hb’<Kl<(h+l)b’ 

The result now follows from (12). 1 
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PROPOSITION 3. If the matrix associated with the sum T(r, 0) is trivial, 
then for all n 2 0, 

e 
( 

kj$, ais( = 1. 

Thus 

i ajs(kjn) z 0 (mod m). 
j=l 

Proof. Given n 2 0, choose r so that b’ > n. By Lemma 6, T(r, 0) is a 
sum of b’ unimodular complex numbers adding to b’. Thus each term of 
T(r, 0) equals 1. 1 

We now investigate nontrivial matrices. If A(0) is nontrivial, then 
a(&,, i,) # 1 for some 0 <lo < 6, 0 < i,, <K. By (9), 1, # 0. 

Choose r’ > 1 + log, K, so that b” > Kb. It is easily seen that the sum 
(10) for each entry of A” is nonempty. 

LEMMA 7. Zf A is nontrivial, then 

IA,,,@, io)l < c 1. 
a 

Proof By (lo), 

Ao,r40, io) = 4, io). 

0 < K1+ io c b” 

This sum contains both a(0, i,) = 1 and a(&,, io) # 1. The result follows 
since (10) is a sum of unimodular terms not all equal. 1 

LEMMA 8. If A is nontrivial, then for 0 < i < K, 

Proof. From the identity A”’ = A”A” and matrix multiplication, 

Ao,2,r(0, 4 = c Ao,AOy Y) Ao,,4~, 9. 
O<yiK 

(13) 
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For r = r’, the sum in (10) is nonempty for each (h, i). 
(11) and Lemma 7 that 

139 

Thus it follows from 

OsKl+iQ<b' iob’<KpCi-c(i0+l)h’ 

Combining this with (11) and (13) yields 

lAo,*r40? 4 -=I c c c ‘. 
O<y<K i P O<K,l+ych” .,b’<Kp+i<(-y+ 1)/f 

The result follows upon rearranging this triple sum. fl 

LEMMA 9. If‘ A is nontrivial, then for 0 < i < K, 

o<;< K lAo.,rdh, 4 < b*“. 

Proof By (11) and Lemma 8, 

,<T<, IAo,,r4k i)l < c c 1, 
O$h<K 1 

hb2r’4K1+i<(h+I)h2” 

from which the result follows. 1 

In a similar way we can prove 

LEMMA 10. For all v 2 0, 0 d i < K, 

c lA,,(h, 91 G h. 
O<h<K 

4. APPLICATION TO TYPE f  SUMS 

PROPOSITION 4. If the associated Type L’ matrix is trivial, then 

Proof. This follows at once from Proposition 3. t 

We begin our investigation of the nontrivial case with the following 
lemma, whose proof follows easily by matrix multiplication. 
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LEMMA 11. Let A = [u~,~] be a K-by-K matrix and let 

WI 
v= 

[ . I 

: . 

u(K- 1) 

Define N(v)=CociCK \u(i)l, and suppose that &,CL4K \aJ GM for 
0 < i < K. Then N( Av) < MN(v). 

LEMMA 12. If the matrix A corresponding to the sum T(r, 0) is non- 
trivial, then for a > 0, v > 0, 

IT(2ar’+ 1, u)l <b2(1-‘d)ar’+1 

for some real 6 > 0 which is independent of v. 

Proof. For all r 2 0, 

lT(r, ul < c \T(r, v, h)l =N 
OSh<K ([ T(:::“,,1)’ 

Thus, by Proposition 2, 

(T(2ar’ + 1, u)l < N 

i 

A(o) A(O)24 

It now follows from Lemmas 9, 10, and 11 that . 
I T(2ar’ + 1, u)l < bc”N I) 

where c=COghLK lAo,2r,(h, i)l. Since c < b2”, then c = b2r’C’--6) for some 
6 > 0. Since 

1 
0 

N . ![I =l, 

6 

the result is established. 4 

The next lemma is an easy corollary of Lemma 12. 
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LEMMA 13. If the matrix A corresponding to the sum T(r, 0) is non- 
trivial, then for some 6 > 0, 

T(r, v) + b” - ‘jr 

uniformIy for r 2 0, v 2 0. 

PROPOSITION 5. If the matrix A corresponding to the sum T(r, 0) is non- 
trivial, then for some 6 > 0, 

asN+oo. 

Proof. We partition the interval 0 < n < N into subintervals of the form 
vibr, < n < (vi + 1 )b’l, where 0 < ri < log, N for all i, and where each value of 
ri appears in at most b - 1 subintervals. The sum in question is bounded 
by Ci JT(r;, vi)j, which by Lemma 13 is 

G(b- 1) 1 b”-6”. 
O~iClog~N 

The result follows upon summing this geometric series. # 

PROPOSITION 6. Zf the matrix associated with T(r, 0) is nontrivial, then 
for some n > 0, 

f: q&n) f 0 (mod m). 
j= 1 

Proof: Were this not the case, we would have 

T(r, 0) = b’ 

for all r 2 0, in contradiction to Lemma 13. 1 

5. DETERMINATION OF TRIVIAL AND NONTRIVIAL SUMS 

By Propositions 3 and 6, the matrix A(0) associated with the sum T(r, 0) 
is nontrivial if and only if 

i ajs(kjn) f: 0 (mod m) 
j=l 
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for some n > 0. We now determine precisely when this happens. We 
consider two cases. 

PROPOSITION 7. Suppose that m ( aj(b - 1) for j = 1, . . . . e. Then 

i UjS(kj?z) E 0 (mod m) 
j=l 

for all n if and only if 

e 
c ajkjzO 

j=l 

Proof We have 

s(kjn) 3 kin 

for ail n. Thus for all n, 

ujs(kjn) 3 ajkjn 

so that 

(mod m). 

(modb- 1) 

(mod q(b - l)), 

(14) 

(15) 

ajs(kjn) = ajkjn (mod m). 

It is clear from this that if (15) holds, then (14) holds for all n > 0, and that 
if (15) fails, then (14) fails for n= 1. 1 

PROPOSITION 8. Suppose that m i aj(b - 1) for some j. Then for some n, 

jTl ajs(kjn> f 0 tmod m)’ (16) 

Before giving the proof, we establish some lemmas. 
Let k be the largest kj for which m 1 aj(b - l), and let a be the coefficient 

ui corresponding to k. We further put h = (k, b). Note that h < b since we 
are assuming that b j k. 

LEMMA 14. There exists f > 0 such that 

(i) bl(fk/h+ 1)vfor 1 <v<h 

(ii) bJ fk+h 

(iii) b2 jfk + h. 

Proof. Let w  be the largest divisor of b which is relatively prime to b/h. 
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Then 
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Choose u relatively prime to h/w. Then the congruence system 

b 
pl (mod us) 

(17) 

has a solution r > 0, and (t, h) = 1. Since h = (b, k), we can define fa by 

f,ks -h (mod b). 

Let 2 = f,k/h; then 

hl= -h (mod 6). 

Thus (A, b/h) = 1, and therefore 

( > W),~ =1. 
Since also (A, b) 1 b, then by the maximality of w, 

(4 b)l w. 

Let p=tb/h- 1; then wlp by (17), and 

hp= -h (mod b). 

Since w  ) p, then (A, b) 1 p by (18), and so the congruence 

f,A=P (mod b) 

has a solution fi > 0. Let f = f. fl ; then by (20), 

(mod 6). 

(18) 

(191 

(20) 

Since (t, h) = 1, conditions (i) and (ii) follow. Condition (iii) follows from 
(i) since bhJfk+h. 1 
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From the inequality 

we see that, for suffkiently large y, we can choose positive integers c1 and 
/? such that 

We may rewrite these inequalities as 

ka < hbY < (k + l)a, 

(k-l)/?<hbY<kp<(h+l)bY. 

We define 

z1 =fby + a 

T2=fbYf1+a 

z3 = fby + B 

z4=fby+l+j3, 

(22) 

where f is as defined in Lemma 14. For i = 1,2,3,4, let 

si= i ajs(kj7,). 

j=l 

Finally, we partition the set { 1,2, . . . . e} into the following classes: 

j:kj=ik for some v<h 

J=(j$T:mJuj(b-l)} 

I= {j$T:mIuj(b-1)). 

LEMMA 15. For i= 1,2, 

(21) 

j;I ajsCkj7,,- 1) s C ajS(kj7,i) 
jsI 

(mod m). 
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ProoJ Since tzi- I E rzi (mod b - l), then 

S(kjZ,i- *) Z! S(kjZ*i) (modb-I) 

for all j E: I. The result follows since m ) u,(b - 1) for all j E I. 1 

The following lemma is an immediate corollary. 

LEMMA 16. S, - S2 - S3 + S4 E S’, - S; - S; + S& (mod m), where 

Sj= 1 ajs(kjti). 
jeTuJ 

We now restrict our attention to j E T u J. For such j, k, < k. We write 

fk, = bu, + u;, O<u;<b 

akj = byvj + v;, O<v;<b” (23) 

flkj=bYwj+wj, 0 < w; < by. 

LEMMA 17. Zf j E J, then vi = wj. 

Proof. Since a < /? by (21), then vi < I+;. Suppose that vi < Wj; then 
by (23), 

akj < wjby < j?kj. (24) 

Now k, < k since je J; thus kj/3 < hbY by (21). We conclude that 1 Q wj < h. 
It follows from (21) that 

By (24), this implies that kj = (w,lh)k, contrary to the hypothesis that jc J. 
This contradiction establishes the result. l 

LEMMA 18. S, - S2 - S3 + S., E Sy - S! - S; + Sz (mod m), where 

S;‘= c ajs(kjti). 
je T  

Prooj By (22) and (23), 
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kjz, = ujbY+’ +(u;+vj)bY+u; 

kjzz=ujbY+2+u;bY+1+vjby+v; 

kjr3 = ujbY+’ + (u; + wj)bY + w; 

kjz4 = ujby+’ + uJby+’ + wjbY + w;. 

By Lemma 17, 

for j E J. The result now follows from Lemma 16. 1 

(25) 

LEMMA 19. If kj=vk/h, 1 <v<h, then $=6-v ifandonfy ifv=h. 

Proof. By Lemma 14, 

(mod 6) 

if and only if v = h. Thus 

fkj= -v (mod b) 

if and only if v = h. [ 

LEMMA 20. Zf kj = vklh, 1~ v <h, then vi = v - 1 and wj = v. 

Proof Since h Gk, then 

(Fk, 1) a+kct. 

But 

(v-l)b’+k+l). 

by (21), so that 

Since also 
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by (21), we conclude by (23) that u, = v - 1. A similar argument establishes 
that wj = v for 1 < v < h, and this follows for v = h from (21). 1 

LEMMA 21. S, - Sz - S3 + S, E a(s(ks,) - s(~T?) - s(kt,) + $(/CT,)) 
(mod m). 

ProoJ: Let j E T, k, # k. Then k, = (v/h)k where 1 < v < h. By the two 
preceding lemmas, we have 

u; # b - v, vj=v- 1, w, = v. 

Thus 

s(bu, + u; + uj) = s(bu, + u; + wj) - 1. 

Therefore, by (25), 

s(kjT,) - s(kjz,) - s(k,t,) + s(kjTq) = 0. 

The result now follows from Lemma 18. 1 

LEMMA 22. a(s(kTl) - s(kt,) - s(kz,) + s(kTq)) f 0 (mod m), 

Proof: Let k = k,. By Lemmas 19 and 20, 

u; = b - h, vj=h- 1, y=h. 

Thus by (25), 

Now 

s(kz,) - s(ks,) - s(kt,) + s(kT,) = s(u,) - s(uj + 1) + 6. 

fk+h=(uj+ l)b 

(26) 

by (23) and Lemma 19. Thus b j uj + 1 by Lemma 14. It follows that 
s(uj + 1) = s(uj) + 1. By (26) we conclude that 

s(kr,)-s(kz,)-s(kz,)+s(kz,)=b- 1. 

Since k and a were chosen so that m l a(b - 1 ), the result follows. 1 

Proof of Proposition 8. By Lemmas 21 and 22, 

s,-s,-&+&+O (mod m ). 

so that 

Sif” (mod m) 

for some i. Thus (16) is satisfied with n = t,. fl 



148 JEROME A.SOLINAS 

6. PROOF OF THEOREM 1 

We begin the proof by writing 

C,=card{O<n<N:s(kjn)=rj (modm) forj= 1, . . . . e) 

Multiplying out the sums and rearranging, we obtain 

c&& c . . . C 
OCU,<rn O<U~<rn 

e(-;f;I$a/j) C e(~~ajs(k,n)). 
J OGn<N J 

BY Propositions 4 and 5, the (rational) limit 

L= lim + 
N-+co 

exists, and 

(a~....,ar)~ R 

where R is the set of e-tuples (a,, . . . . a,) for which the corresponding Type 
e sum is trivial. 

By Propositions 3 and 6, R is the set of L’-tuples (a,, . . . . a,) for which 

j$l ajs(kjn)) s 0 (mod m) 

for all n 2 0. By Propositions 7 and 8, this implies that 

1 -- 
m 

Therefore 
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Rearranging this sum, we obtain 

L$ c fi I 1 
OCucm j=lm 

4 1 
o<u,<m o<a,<m 

e(~(kju+(b-l)uj-rj)). 

Therefore 

L=i C fi hcard{O <uj<m:m(k,u+(b- l)vi-ri}. 

OGucm j=l 

We recall that g = (b - 1, m). The congruence 

(b-l)urr-ku (mod m) 

has g solutions u if g ( r - ku, and none if g [ r - ku. Thus 

glr,--k,u 
for j= 1. . P 

Therefore 

By the elementary theory of congruences, this implies that 

i~card{O<~<g:kj~=rj(modg),j=I,....(}. (27) 

The congruence system appearing in (27) is just the system (**). The 
theorem now follows from our earlier remark that if (**) has a solution, 
then it has precisely (d,, . . . . d/) solutions. 

7. FURTHER REMARKS 

By taking more care in the above arguments, it is possible to give an 
explicit error bound for the remainder term 

R(N)=+ 

Indeed, it is shown in [3] that 

(R(N)1 G +fb’T*N-“, (28) 
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4 sin*( n/2m) 
a = b4T2 log(b4T2)’ 

This bound is far from best possible. 
The results of this paper are easily generalized to deal with the system 

s( kjn + hi) E rj (mod m), j = 1, . . . . e (***) 

in the case where 

(29) 

for some p with 0 < p < K. Lemma 3 is easily generalized to this case, and 
the generalization of Theorem 1 follows at once. (See [3].) 

For a system (***) where (29) does not hold, it can still be possible to 
obtain an analog of Lemma 4 using a matrix of a slightly different form. 
(See [3] for an example of this.) We conjecture that the techniques of this 
paper can be extended to generalize Theorem 1 to the case (***). 

Gelfond’s proof [2] of his theorem used generating functions rather than 
Type e sums. Thus the proof of Theorem 1 provides a new proof of 
Gelfond’s result. It is unlikely that generating functions can be used to 
obtain nontrivial bounds for Type 6’ sums with G > 1. 

Finally, we mention another application of Type 2 sums. Gelfond [2] 
conjectured that, if (m, b - 1) = 1, then the numbers s(p) (p prime) are 
equally distributed among residue classes (mod m). This conjecture would 
be true if, for a = 1, . . . . m - 1, 

(30) 

as N+ co. By using Vaughan’s version of Vinogradov’s method of 
exponential sums [ 11, it is easily seen that (30) follows from the following 
conjecture. 

CONJECTURE. For all sufficiently large N there exist U and V such that 
U> 2, V>, 2, UVG N, and such that for all M with U,< M< NIV, we have 

c = (M<:*Mec: 
(s(jn) - s(kn)) > * = o(N* log-‘* N) 

V-xjCNIM ViksNjM 
n<Nlj 

n<N/k 

as N+co. 

The bounds (28) are far too weak to prove this conjecture. 
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