On the Joint Distribution of Digital Sums

Jerome A. Solinas
Department of Defense, Fi. Meade, Maryland 20755
Communicated by P. T. Bateman

Received July 9, 1987; revised January 7, 1989

Abstract

Let $s(n)$ be the sum of the digits of n written to the base b. We determine the joint distribution (modulo m) of the sequences $s\left(k_{1} n\right), \ldots, s\left(k_{\ell} n\right)$. In the case where m and $b-1$ are relatively prime, we find that their values are equally distributed among ℓ-tuples of residue classes (modulo m). © 1989 Academic Press, Inc.

1. Introduction

Given an integer $b \geqslant 2$, denote by $s(n)$ the sum of the digits of the nonnegative integer n expressed to the base b. A. O. Gelfond [2] proved that, if $k \geqslant 1, m \geqslant 2$, and $(m, b-1)=1$, then the numbers $s(k n), n=0,1,2, \ldots$ are distributed equally among residue classes $(\bmod m)$. In this paper we consider the joint distribution $(\bmod m)$ of the sequences $s\left(k_{1} n\right), \ldots, s\left(k_{\ell} n\right)$ in the general case.

Throughout this paper, all variables are positive integers unless stated otherwise. We will assume that $\ell \geqslant 1, m \geqslant 2, b \geqslant 2$, and that k_{1}, \ldots, k_{ℓ} are distinct. Since $s(b n)=s(n)$ for all n, we lose no generality in assuming that $b \nmid k_{j}$ for $j=1, \ldots, \ell$.

For arbitrary r_{1}, \ldots, r_{ℓ}, form the system of congruences

$$
\begin{equation*}
s\left(k_{j} n\right) \equiv r_{j} \quad(\bmod m), j=1, \ldots, \ell \tag{*}
\end{equation*}
$$

We will prove the existence of, and evaluate, the rational number

$$
L=\lim _{N \rightarrow \infty} \frac{1}{N} \operatorname{card}\{0 \leqslant n<N: n \text { satisfies }(*)\}
$$

We begin with a simple argument giving a necessary condition for (*) to have a solution. We will let $g=(m, b-1)$ throughout this paper.

Proposition 1. If (*) has a solution, then so does the system

$$
\begin{equation*}
k_{j} n \equiv r_{j} \quad(\bmod g), j=1, \ldots, \ell \tag{**}
\end{equation*}
$$

Proof. Since

$$
s\left(k_{j} n\right) \equiv k_{j} n \quad(\bmod b-1)
$$

for every j, it follows that

$$
s\left(k_{j} n\right) \equiv k_{j} n \quad(\bmod g)
$$

for every j. Thus every solution of (*) also satisfies (**).
It follows from the elementary theory of congruences that, if $(* *)$ has a solution, it has precisely (d_{1}, \ldots, d_{ℓ}) solutions, where

$$
d_{j}=\left(k_{j}, g\right), \quad j=1, \ldots, \ell
$$

Thus if the sequences $\left(s\left(k_{j} n\right)\right)$ are statistically independent $(\bmod m)$, we expect the following theorem.

ThEOREM 1. If (**) has a solution, then

$$
L=\left(\frac{g}{m}\right)^{\prime} \frac{\left(d_{1}, \ldots, d_{t}\right)}{g}
$$

As special cases, we have the following generalizations of Gelfond's theorem.

Corollary 1. If $(m, b-1)=1$, and $(* *)$ has a solution, then $L=1 / m^{\prime}$.
Corollary 2. Let $\ell=1$. If $\left(m, b-1, k_{1}\right) \mid r_{1}$ in $(* *)$, then $L=$ $\left(m, b-1, k_{1}\right) / m$.

2. Type ℓ Sums

To prove Theorem 1, we investigate the sum

$$
\begin{equation*}
\sum_{0 \leqslant n<N} e\left(\frac{1}{m} \sum_{j=1}^{\ell} a_{j} s\left(k_{j} n\right)\right) \tag{1}
\end{equation*}
$$

where $e(x)=\exp (2 \pi i x)$ and $0 \leqslant a_{j}<m$ for $j=1, \ldots, \ell$. In an extension of common usage we call (1) a Type ℓ sum.

Lemma 1. If $n=n^{\prime} b^{r}+n^{\prime \prime}$, where $0 \leqslant n^{\prime \prime}<b^{r}$, then

$$
s(n)=s\left(n^{\prime}\right)+s\left(n^{\prime \prime}\right)
$$

Proof. If $n=\sum_{i} \varepsilon_{i} b^{i}$, then $n^{\prime}=\sum_{i \geqslant r} \varepsilon_{i} b^{i-r}$ and $n^{\prime \prime}=\sum_{i<r} \varepsilon_{i} b^{i}$. The result follows since $\sum_{i} \varepsilon_{i}=\sum_{i \geqslant r} \varepsilon_{i}+\sum_{i<r} \varepsilon_{i}$.

Lemma 2. $s\left(k\left(n+w b^{r}\right)\right)=s\left(\left[k n / b^{r}\right]+k w\right)+s(k n)-s\left(\left[k n / b^{r}\right]\right)$.
Proof. By Lemma 1,

$$
\left.s\left(k n+k w b^{r}\right)\right)=s\left(\left[\frac{k n}{b^{r}}\right]+k w\right)+s\left(k n-\left[\frac{k n}{b^{r}}\right] b^{r}\right)
$$

and

$$
s\left(k n-\left[\frac{k n}{b^{r}}\right] b^{r}\right)=s(k n)-s\left(\left[\frac{k n}{b^{r}}\right]\right)
$$

Let $K=\left[k_{1}, \ldots, k_{\ell}\right]$. For $0 \leqslant h<K$, we define

$$
\begin{align*}
T(r, v, h) & =\sum_{(v+h / k) b^{r} \leqslant n<(v+(h+1) / k) b^{\prime}} c\left(\frac{1}{m} \sum_{j=1}^{\ell} a_{j} s\left(k_{j} n\right)\right), \\
T(r, v) & =\sum_{0 \leqslant h<K} T(r, v, h)=\sum_{v b^{r} \leqslant n<(v+1) b^{r}} e\left(\frac{1}{m} \sum_{j=1}^{\ell} a_{j} s\left(k_{j} n\right)\right) . \tag{2}
\end{align*}
$$

Lemma 3. For $0 \leqslant u<b$, let

$$
\xi_{j}=\left[\frac{b h+u}{K / k_{j}}\right], \quad \lambda=\left[\frac{b h+u}{K}\right] .
$$

Let $\zeta(h, u, v)$ be the complex number

$$
\begin{equation*}
e\left(\frac{1}{m} \sum_{j=1}^{\ell} a_{j}\left(s\left(k_{j} b v+\xi_{j}\right)-s\left(\xi_{j}-k_{j} \lambda\right)\right)\right) \tag{3}
\end{equation*}
$$

Then

$$
T(r+1, v, h)=\sum_{0 \leqslant u<b} \zeta(h, u, v) T(r, 0, b h+u-K \lambda) .
$$

Proof. Write

$$
T(r+1, v, h)=\sum_{0 \leqslant u<b} \sum_{(b v+(b h+u) / K) b^{r} \leqslant n<(b v+(b h+u+1) / K) b^{r}} e\left(\frac{1}{m} \sum_{j=1}^{\ell} a_{j} s\left(k_{j} n\right)\right)
$$

and in each inner sum replace n by $n+(b v+\lambda) b^{r}$. The inner sums become

$$
\sum_{((b h+u) / K-\lambda) b^{r} \leqslant n<((b h+u+1) / K-\lambda) b^{r}} e\left(\frac{1}{m} \sum_{j=1}^{\ell} a_{j} s\left(k_{j}\left(n+(b v+\lambda) b^{r}\right)\right)\right) .
$$

By Lemma 2 with $k=k_{j}$ and $w=b v+\lambda$, the summand equals

$$
e\left(\frac{1}{m} \sum_{i=1}^{\prime} a_{j}\left(s\left(\left[\frac{k_{j} n}{b^{r}}\right]+k_{j}(b v+\lambda)\right)+s\left(k_{j} n\right)-s\left(\left[\frac{k_{j} n}{b^{r}}\right]\right)\right)\right) .
$$

The result now follows from the observation that

$$
\left[\frac{k_{j} n}{b^{r}}\right]=\xi_{j}-k_{j} \lambda
$$

in each inner sum.
Lemma 4. Let $A(v)$ be the K-by-K matrix whose (h, i)th entry is

$$
\begin{equation*}
A_{v, 1}(h, i)=\sum_{\substack{0 \leqslant u<b \\ b h+u \equiv i(\bmod K)}} \zeta(h, u, v) . \tag{4}
\end{equation*}
$$

Then

$$
\left[\begin{array}{c}
T(r+1, v, 0) \\
\vdots \\
T(r+1, v, K-1)
\end{array}\right]=A(v)\left[\begin{array}{c}
T(r, 0,0) \\
\vdots \\
T(r, 0, K-1)
\end{array}\right] .
$$

Proof. The result follows at once from Lemma 3 by matrix multiplication.

The following is an immediate corollary of Lemma 4.
Proposition 2. If $r \geqslant 1$, then

$$
\left[\begin{array}{c}
T(r, v, 0) \tag{5}\\
T(r, v, 1) \\
\vdots \\
T(r, v, K-1)
\end{array}\right]=A(v) A(0)^{r-1}\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right] .
$$

3. Type ℓ Matrices

We call the matrices $A(v)$ Type ℓ matrices. We assume throughout this section that $v=0$. It is clear from (3) that

$$
\zeta(h, u, 0)=1
$$

for $0 \leqslant b h+u<K$.

Denote by $A_{v, r}(h, i)$ the (h, i) th entry of $A(v)^{r}$. By (4),

$$
\begin{equation*}
T(r, 0, h)=A_{0, r}(h, 0) \tag{6}
\end{equation*}
$$

We now derive a formula for $A_{0, r}(h, i)$.
For $\lambda \geqslant 0$ and $0 \leqslant i<K$, we make the (invertible) change of variables

$$
\begin{equation*}
K \lambda+i=b h+u \tag{7}
\end{equation*}
$$

where $h \geqslant 0,0 \leqslant u<b$. We now define the function $a(\lambda, i)$ as follows: for $0 \leqslant \lambda<b$,

$$
a(\lambda, i)=\zeta(h, u, 0)
$$

For

$$
\begin{align*}
\lambda & =\mu b^{r}+v, \quad 0 \leqslant \mu<b, 0 \leqslant v<b^{r}, \\
a(\lambda, i) & =a(v, i) a\left(\mu,\left[\frac{K v+i}{b^{r}}\right]\right) . \tag{8}
\end{align*}
$$

We note that

$$
\begin{equation*}
a(0, i)=1 \quad \text { for } \quad 0 \leqslant i<K \tag{9}
\end{equation*}
$$

Lemma 5. For all $r, 0 \leqslant h<K, 0 \leqslant i<K$,

$$
\begin{equation*}
A_{0, r}(h, i)=\sum_{\lambda b^{\prime} \leqslant K \lambda+i<(h+1) b^{r}} a(\lambda, i) . \tag{10}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left|A_{0, r}(h, i)\right| \leqslant \sum_{\substack{\lambda \\ h b^{r} \leqslant K \lambda+i<(h+1) b^{r}}} 1 \tag{11}
\end{equation*}
$$

Proof. The result is easily verified for $r=0$, and the case $r=1$ follows at once from (4) and (7). Assume that (10) holds for r; we prove it for $r+1$. By matrix multiplication,

$$
A_{0, r+1}(h, i)=\sum_{0 \leqslant \gamma<K} A_{0,1}(h, \gamma) A_{0, r}(\gamma, i) .
$$

By the induction hypothesis, this is

$$
\sum_{0 \leqslant \gamma<K} \sum_{\substack{\mu \\ h b \leqslant K \mu+\gamma<(h+1) b}} a(\mu, \gamma) \sum_{\substack{v \\ \gamma b^{\prime} \leqslant K v+i<(\gamma+1) b^{r}}} a(v, i) .
$$

Let $\psi=K \mu+\gamma$. We may regard μ and γ as functions of ψ, namely, $\mu=[\psi / K]$ and $\gamma=\psi-K[\psi / K]$. Thus we can rewrite the sum over γ and μ as a sum over ψ; i.e.,

$$
A_{0, r+1}(h, i)=\sum_{h b \leqslant \psi<(h+1) b} a(\mu, \gamma) \sum_{\gamma y^{b} \leqslant K \nu+i<(\gamma+1) b^{\prime}} a(\nu, j) .
$$

We now make the substitution (8) in the inner sum; then

$$
a(\lambda, i)=a(v, i) a(\mu, \gamma) .
$$

Thus

$$
A_{0, r+1}(h, i)=\sum_{h b \leqslant \psi<(h+1) b} \sum_{\substack{\lambda \\\left(K_{\mu}+\gamma\right) b^{r} \leqslant K \lambda+i<\left(K_{\mu}+\gamma+1\right) b^{r}}} a(\lambda, i) .
$$

Since $\psi=K \mu+\gamma$, this becomes

$$
=\sum_{\substack{\lambda \\ h b^{\prime}+1 \leqslant K \lambda+i<(h+1) b^{\prime}+1}} a(\lambda, i),
$$

which completes the induction.
We say that the Type ℓ matrix $A(0)$ is trivial if $a(\lambda, i)=1$ for $0 \leqslant \lambda<b$, $0 \leqslant i<K$. If $A(0)$ is trivial, it follows from (8) that

$$
\begin{equation*}
a(\lambda, i)=1 \quad \text { for all } \quad \lambda \geqslant 0, \quad 0 \leqslant i<K . \tag{12}
\end{equation*}
$$

Lemma 6. If the matrix associated with the Type ℓ sum $T(r, 0)$ is trivial, then $T(r, 0)=b^{r}$.

Proof. By (2) and (6),

$$
T(r, 0)=\sum_{0 \leqslant h<K} A_{0, r}(h, 0) .
$$

By Lemma 5, this is

$$
\sum_{0 \leqslant h<T} \sum_{\substack{\lambda \\ h b^{\prime} \leqslant K \lambda(h+1) b^{\prime}}} a(\lambda, 0) .
$$

The result now follows from (12).

Proposition 3. If the matrix associated with the sum $T(r, 0)$ is trivial, then for all $n \geqslant 0$,

$$
e\left(\frac{1}{m} \sum_{j=1}^{\ell} a_{j} s\left(k_{j} n\right)\right)=1
$$

Thus

$$
\sum_{j=1}^{\ell} a_{j} s\left(k_{j} n\right) \equiv 0 \quad(\bmod m)
$$

Proof. Given $n \geqslant 0$, choose r so that $b^{r}>n$. By Lemma 6, $T(r, 0)$ is a sum of b^{r} unimodular complex numbers adding to b^{r}. Thus each term of $T(r, 0)$ equals 1.

We now investigate nontrivial matrices. If $A(0)$ is nontrivial, then $a\left(\lambda_{0}, i_{0}\right) \neq 1$ for some $0 \leqslant \lambda_{0}<b, 0 \leqslant i_{0}<K$. By (9), $\lambda_{0} \neq 0$.

Choose $r^{\prime}>1+\log _{b} K$, so that $b^{r^{\prime}}>K b$. It is easily seen that the sum (10) for each entry of $A^{r^{\prime}}$ is nonempty.

Lemma 7. If A is nontrivial, then

$$
\left|A_{0, r^{\prime}}\left(0, i_{0}\right)\right|<\sum_{\substack{\lambda \\ 0 \leqslant K \lambda+i_{0}<b^{\prime}}} 1 .
$$

Proof. By (10),

$$
A_{0, r^{\prime}}\left(0, i_{0}\right)=\sum_{\substack{\lambda \\ 0 \leqslant K \lambda+i_{0}<b^{\prime}}} a\left(\lambda, i_{0}\right),
$$

This sum contains both $a\left(0, i_{0}\right)=1$ and $a\left(\lambda_{0}, i_{0}\right) \neq 1$. The result follows since (10) is a sum of unimodular terms not all equal.

Lemma 8. If A is nontrivial, then for $0 \leqslant i<K$,

$$
\left|A_{0,2 r^{\prime}}(0, i)\right|<\sum_{\substack{\lambda \\ 0 \leqslant K \lambda+i<b^{2 r}}} 1 .
$$

Proof. From the identity $A^{2 r^{\prime}}=A^{r^{\prime}} A^{r^{\prime}}$ and matrix multiplication,

$$
\begin{equation*}
A_{0,2 r^{\prime}}(0, i)=\sum_{0 \leqslant \gamma<K} A_{0, r^{\prime}}(0, \gamma) A_{0, r^{\prime}}(\gamma, i) . \tag{13}
\end{equation*}
$$

For $r=r^{\prime}$, the sum in (10) is nonempty for each (h, i). Thus it follows from (11) and Lemma 7 that

$$
\left|A_{0, r^{\prime}}\left(0, i_{0}\right) A_{0, r^{\prime}}\left(i_{0}, i\right)\right| \leqslant\left(\sum_{\substack{\lambda \\ 0 \leqslant K+i_{0}<b^{\prime}}} 1\right)\left(\sum_{\substack{\mu \\ i_{0} b^{\prime} \leqslant K \mu+i<\left(i_{0}+1\right) b^{\prime}}} 1\right) .
$$

Combining this with (11) and (13) yields

$$
\left|A_{0,2 r^{\prime}}(0, i)\right|<\sum_{0 \leqslant \gamma<K} \sum_{\substack{\lambda \\ 0 \leqslant K i+\gamma<b^{\prime}}} \sum_{\substack{\mu \\ b^{\prime} \leqslant K \mu+i<(\gamma+1) b^{\prime}}} 1 .
$$

The result follows upon rearranging this triple sum.
Lemma 9. If A is nontrivial, then for $0 \leqslant i<K$,

$$
\sum_{0 \leqslant h<K}\left|A_{0.2 r^{\prime}}(h, i)\right|<b^{2 r^{\prime}} .
$$

Proof. By (11) and Lemma 8,

$$
\sum_{0 \leqslant h<K} \mid A_{0,2 r^{\prime}(h, i) \mid<} \sum_{0 \leqslant h<K} \sum_{h b^{2 r} \leqslant K \lambda+i<(h+1) b^{2 r}} 1,
$$

from which the result follows.
In a similar way we can prove
Lemma 10. For all $v \geqslant 0,0 \leqslant i<K$,

$$
\sum_{0 \leqslant h<K}\left|A_{v, 1}(h, i)\right| \leqslant b .
$$

4. Application to Type ℓ Sums

Proposition 4. If the associated Type ℓ matrix is trivial, then

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{0 \leqslant n<N} e\left(\frac{1}{m} \sum_{j=1}^{\prime} a_{j} s\left(k_{j} n\right)\right)=1 .
$$

Proof. This follows at once from Proposition 3.
We begin our investigation of the nontrivial case with the following lemma, whose proof follows easily by matrix multiplication.

Lemma 11. Let $A=\left[a_{h, i}\right]$ be a K-by- K matrix and let

$$
\mathbf{v}=\left[\begin{array}{c}
v(0) \\
\vdots \\
v(K-1)
\end{array}\right]
$$

Define $N(\mathbf{v})=\sum_{0 \leqslant i<K}|v(i)|$, and suppose that $\sum_{0 \leqslant h<K}\left|a_{h i}\right| \leqslant M$ for $0 \leqslant i<K$. Then $N(A v) \leqslant M N(v)$.

Lemma 12. If the matrix A corresponding to the sum $T(r, 0)$ is nontrivial, then for $a \geqslant 0, v \geqslant 0$,

$$
\left|T\left(2 a r^{\prime}+1, v\right)\right| \leqslant b^{2(1-\delta) a r^{\prime}+1}
$$

for some real $\delta>0$ which is independent of v.
Proof. For all $r \geqslant 0$,

$$
|T(r, v)| \leqslant \sum_{0 \leqslant h<K}|T(r, v, h)|=N\left(\left[\begin{array}{c}
T(r, v, 0) \\
\vdots \\
T(r, v, K-1)
\end{array}\right]\right)
$$

Thus, by Proposition 2,

$$
\left|T\left(2 a r^{\prime}+1, v\right)\right| \leqslant N\left(A(v) A(0)^{2 a r^{\prime}}\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]\right)
$$

It now follows from Lemmas 9, 10, and 11 that

$$
\left|T\left(2 a r^{\prime}+1, v\right)\right| \leqslant b c^{a} N\left(\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]\right)
$$

where $c=\sum_{0 \leqslant h<K}\left|A_{0,2 r^{\prime}}(h, i)\right|$. Since $c<b^{2 r^{\prime}}$, then $c=b^{2 r^{\prime}(1-\delta)}$ for some $\delta>0$. Since

$$
N\left(\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]\right)=1
$$

the result is established.
The next lemma is an easy corollary of Lemma 12.

Lemma 13. If the matrix A corresponding to the sum $T(r, 0)$ is nontrivial, then for some $\delta>0$,

$$
T(r, v) \ll b^{(1-\delta) r}
$$

uniformly for $r \geqslant 0, v \geqslant 0$.

PROPOSITION 5. If the matrix A corresponding to the sum $T(r, 0)$ is nontrivial, then for some $\delta>0$,

$$
\sum_{0 \leqslant n<N} e\left(\frac{1}{m} \sum_{j=1}^{\ell} a_{j} s\left(k_{j} n\right)\right) \ll N^{1-\delta}
$$

as $N \rightarrow \infty$.
Proof. We partition the interval $0 \leqslant n<N$ into subintervals of the form $v_{i} b^{r_{i}} \leqslant n<\left(v_{i}+1\right) b^{r_{i}}$, where $0 \leqslant r_{i} \leqslant \log _{b} N$ for all i, and where each value of r_{i} appears in at most $b-1$ subintervals. The sum in question is bounded by $\sum_{i}\left|T\left(r_{i}, v_{i}\right)\right|$, which by Lemma 13 is

$$
\begin{aligned}
& <\sum_{i} b^{(1-\delta) r_{i}} \\
& <(b-1) \sum_{0 \leqslant i \leqslant \log _{b} N} b^{(1-\delta) i} .
\end{aligned}
$$

The result follows upon summing this geometric series.

Proposimion 6. If the matrix associated with $T(r, 0)$ is nontrivial, then for some $n \geqslant 0$,

$$
\sum_{j=1}^{C} a_{j} s\left(k_{j} n\right) \not \equiv 0 \quad(\bmod m)
$$

Proof. Were this not the case, we would have

$$
T(r, 0)=b^{r}
$$

for all $r \geqslant 0$, in contradiction to Lemma 13 .

5. Determination of Trivial and Nontrivial Sums

By Propositions 3 and 6 , the matrix $A(0)$ associated with the sum $T(r, 0)$ is nontrivial if and only if

$$
\sum_{j=1}^{\ell} a_{j} s\left(k_{j} n\right) \not \equiv 0 \quad(\bmod m)
$$

for some $n \geqslant 0$. We now determine precisely when this happens. We consider two cases.

Proposition 7. Suppose that $m \mid a_{j}(b-1)$ for $j=1, \ldots, \ell$. Then

$$
\begin{equation*}
\sum_{j=1}^{\ell} a_{j} s\left(k_{j} n\right) \equiv 0 \quad(\bmod m) \tag{14}
\end{equation*}
$$

for all n if and only if

$$
\begin{equation*}
\sum_{j=1}^{\ell} a_{j} k_{j} \equiv 0 \quad(\bmod m) \tag{15}
\end{equation*}
$$

Proof. We have

$$
s\left(k_{j} n\right) \equiv k_{j} n \quad(\bmod b-1)
$$

for all n. Thus for all n,

$$
a_{j} s\left(k_{j} n\right) \equiv a_{j} k_{j} n \quad\left(\bmod a_{j}(b-1)\right),
$$

so that

$$
a_{j} s\left(k_{j} n\right) \equiv a_{j} k_{j} n \quad(\bmod m)
$$

It is clear from this that if (15) holds, then (14) holds for all $n \geqslant 0$, and that if (15) fails, then (14) fails for $n=1$.

Proposition 8. Suppose that $m \backslash a_{j}(b-1)$ for some j. Then for some n,

$$
\begin{equation*}
\sum_{j=1}^{\ell} a_{j} s\left(k_{j} n\right) \not \equiv 0 \quad(\bmod m) \tag{16}
\end{equation*}
$$

Before giving the proof, we establish some lemmas.
Let k be the largest k_{j} for which $m \backslash a_{j}(b-1)$, and let a be the coefficient a_{j} corresponding to k. We further put $h=(k, b)$. Note that $h<b$ since we are assuming that $b \nmid k$.

Lemma 14. There exists $f>0$ such that
(i) $b \backslash(f k / h+1) v$ for $1 \leqslant v<h$
(ii) $b \mid f k+h$
(iii) $b^{2} \nmid f k+h$.

Proof. Let w be the largest divisor of b which is relatively prime to b / h.

Then

$$
w \mid h, \quad\left(w, \frac{h}{w}\right)=1
$$

Choose u relatively prime to h / w. Then the congruence system

$$
\begin{align*}
t & \equiv u \quad\left(\bmod \frac{h}{w}\right) \\
\frac{b}{h} t & \equiv 1 \quad(\bmod w) \tag{17}
\end{align*}
$$

has a solution $t>0$, and $(t, h)=1$. Since $h=(b, k)$, we can define f_{0} by

$$
0<f_{0} \leqslant \frac{b}{h}, \quad f_{0} k \equiv-h \quad(\bmod b)
$$

Let $\lambda=f_{0} k / h$; then

$$
h \lambda \equiv-h \quad(\bmod b)
$$

Thus $(\lambda, b / h)=1$, and therefore

$$
\left((\lambda, b), \frac{b}{h}\right)=1
$$

Since also $(\lambda, b) \mid b$, then by the maximality of w,

$$
\begin{equation*}
(\lambda, b) \mid w \tag{18}
\end{equation*}
$$

Let $\mu=t b / h-1$; then $w \mid \mu$ by (17), and

$$
\begin{equation*}
h \mu \equiv-h \quad(\bmod b) \tag{19}
\end{equation*}
$$

Since $w \mid \mu$, then $(\lambda, b) \mid \mu$ by (18), and so the congruence

$$
\begin{equation*}
f_{1} \lambda \equiv \mu \quad(\bmod b) \tag{20}
\end{equation*}
$$

has a solution $f_{1}>0$. Let $f=f_{0} f_{1}$; then by (20),

$$
\frac{f k}{h}+1 \equiv \frac{t b}{h} \quad(\bmod b)
$$

Since $(t, h)=1$, conditions (i) and (ii) follow. Condition (iii) follows from (i) since $b h \nmid f k+h$.

From the inequality

$$
\frac{h}{k+1}<\frac{h}{k}<\min \left(\frac{h+1}{k}, \frac{h}{k-1}\right)
$$

we see that, for sufficiently large γ, we can choose positive integers α and β such that

$$
\frac{h}{k+1} b^{\gamma}<\alpha<\frac{h}{k} b^{\gamma}<\beta<\min \left(\frac{h+1}{k}, \frac{h}{k-1}\right) b^{\gamma}
$$

We may rewrite these inequalities as

$$
\begin{gather*}
k \alpha<h b^{\gamma}<(k+1) \alpha \\
(k-1) \beta<h b^{\gamma}<k \beta<(h+1) b^{\gamma} . \tag{21}
\end{gather*}
$$

We define

$$
\begin{align*}
& \tau_{1}=f b^{\gamma}+\alpha \\
& \tau_{2}=f b^{\gamma+1}+\alpha \\
& \tau_{3}=f b^{\gamma}+\beta \tag{22}\\
& \tau_{4}=f b^{\gamma+1}+\beta
\end{align*}
$$

where f is as defined in Lemma 14. For $i=1,2,3,4$, let

$$
S_{i}=\sum_{j=1}^{\ell} a_{j} s\left(k_{j} \tau_{i}\right)
$$

Finally, we partition the set $\{1,2, \ldots, \ell\}$ into the following classes:

$$
\begin{aligned}
T & =\left\{j: k_{j}=\frac{v}{h} k \text { for some } v \leqslant h\right\} \\
J & =\left\{j \notin T: m \nmid a_{j}(b-1)\right\} \\
I & =\left\{j \notin T: m \mid a_{j}(b-1)\right\} .
\end{aligned}
$$

Lemma 15. For $i=1,2$,

$$
\sum_{j \in I} a_{j} s\left(k_{j} \tau_{2 i-1}\right) \equiv \sum_{j \in I} a_{j} s\left(k_{j} \tau_{2 i}\right) \quad(\bmod m)
$$

Proof. Since $\tau_{2 i-1} \equiv \tau_{2 i}(\bmod b-1)$, then

$$
s\left(k_{j} \tau_{2 i-1}\right) \equiv s\left(k_{j} \tau_{2 i}\right) \quad(\bmod b-1)
$$

for all $j \in I$. The result follows since $m \mid a_{j}(b-1)$ for all $j \in I$.
The following lemma is an immediate corollary.
Lemma 16. $\quad S_{1}-S_{2}-S_{3}+S_{4} \equiv S_{1}^{\prime}-S_{2}^{\prime}-S_{3}^{\prime}+S_{4}^{\prime}(\bmod m)$, where

$$
S_{i}^{\prime}=\sum_{j \in T \cup J} a_{j} s\left(k_{j} \tau_{i}\right) .
$$

We now restrict our attention to $j \in T \cup J$. For such $j, k_{j} \leqslant k$. We write

$$
\begin{array}{ll}
f k_{j}=b u_{j}+u_{j}^{\prime}, & 0 \leqslant u_{j}^{\prime}<b \\
\alpha k_{j}=b^{\gamma} v_{j}+v_{j}^{\prime}, & 0 \leqslant v_{j}^{\prime}<b^{\gamma} \tag{23}\\
\beta k_{j}=b^{\gamma} w_{j}+w_{j}^{\prime}, & 0 \leqslant w_{j}^{\prime}<b^{\gamma} .
\end{array}
$$

Lemma 17. If $j \in J$, then $v_{j}=w_{j}$.
Proof. Since $\alpha \leqslant \beta$ by (21), then $v_{j} \leqslant w_{j}$. Suppose that $v_{j}<w_{j}$; then by (23),

$$
\begin{equation*}
\alpha k_{j}<w_{j} b^{\gamma}<\beta k_{j} \tag{24}
\end{equation*}
$$

Now $k_{j}<k$ since $j \in J$; thus $k_{j} \beta<h b^{\gamma}$ by (21). We conclude that $1 \leqslant w_{j}<h$. It follows from (21) that

$$
\begin{aligned}
\frac{w_{j}}{h} k \alpha<w_{j} b^{\gamma}<\left(\frac{w_{j}}{h} k+1\right) \alpha, \\
\left(\frac{w_{j}}{h} k-1\right) \beta<w_{j} b^{\gamma}<\frac{w_{j}}{h} k \beta
\end{aligned}
$$

By (24), this implies that $k_{j}=\left(w_{j} / h\right) k$, contrary to the hypothesis that $j \in J$. This contradiction establishes the result.

Lemma 18. $S_{1}-S_{2}-S_{3}+S_{4} \equiv S_{1}^{\prime \prime}-S_{2}^{\prime \prime}-S_{3}^{\prime \prime}+S_{4}^{\prime \prime}(\bmod m)$, where

$$
S_{i}^{\prime \prime}=\sum_{j \in T} a_{j} s\left(k_{j} \tau_{i}\right)
$$

Proof. By (22) and (23),

$$
\begin{align*}
& k_{j} \tau_{1}=u_{j} b^{\gamma+1}+\left(u_{j}^{\prime}+v_{j}\right) b^{\gamma}+v_{j}^{\prime} \\
& k_{j} \tau_{2}=u_{j} b^{\gamma+2}+u_{j}^{\prime} b^{\gamma+1}+v_{j} b^{\gamma}+v_{j}^{\prime} \tag{25}\\
& k_{j} \tau_{3}=u_{j} b^{\gamma+1}+\left(u_{j}^{\prime}+w_{j}\right) b^{\gamma}+w_{j}^{\prime} \\
& k_{j} \tau_{4}=u_{j} b^{\gamma+2}+u_{j}^{\prime} b^{\gamma+1}+w_{j} b^{\gamma}+w_{j}^{\prime} .
\end{align*}
$$

By Lemma 17,

$$
s\left(k_{j} \tau_{1}\right)-s\left(k_{j} \tau_{2}\right)-s\left(k_{j} \tau_{3}\right)+s\left(k_{j} \tau_{4}\right)=0
$$

for $j \in J$. The result now follows from Lemma 16.
Lemma 19. If $k_{j}=v k / h, 1 \leqslant v \leqslant h$, then $u_{j}^{\prime}=b-v$ if and only if $v=h$.
Proof. By Lemma 14,

$$
\left(\frac{f k}{h}+1\right) v \equiv 0 \quad(\bmod b)
$$

if and only if $v=h$. Thus

$$
f k_{j} \equiv-v \quad(\bmod b)
$$

if and only if $v=h$.
Lemma 20. If $k_{j}=v k / h, 1 \leqslant v \leqslant h$, then $v_{j}=v-1$ and $w_{j}=v$.
Proof. Since $h \leqslant k$, then

$$
\left(\frac{v-1}{h} k+1\right) \alpha \leqslant \frac{v}{h} k \alpha .
$$

But

$$
(v-1) b^{\gamma} \leqslant\left(\frac{v-1}{h} k+1\right) \alpha
$$

by (21), so that

$$
(n-1) b^{\gamma} \leqslant \frac{v}{h} k \alpha .
$$

Since also

$$
\frac{v}{h} k \alpha<v b^{\gamma}
$$

by (21), we conclude by (23) that $v_{j}=v-1$. A similar argument establishes that $w_{j}=v$ for $1 \leqslant v<h$, and this follows for $v=h$ from (21).

Lemma 21. $S_{1}-S_{2}-S_{3}+S_{4} \equiv a\left(s\left(k \tau_{1}\right)-s\left(k \tau_{2}\right)-s\left(k \tau_{3}\right)+s\left(k \tau_{4}\right)\right)$ $(\bmod m)$.

Proof. Let $j \in T, k_{j} \neq k$. Then $k_{j}=(v / h) k$ where $1 \leqslant v<h$. By the two preceding lemmas, we have

$$
u_{j}^{\prime} \neq b-v, \quad v_{j}=v-1, \quad w_{j}=v .
$$

Thus

$$
s\left(b u_{j}+u_{j}^{\prime}+v_{j}\right)=s\left(b u_{j}+u_{j}^{\prime}+w_{j}\right)-1 .
$$

Therefore, by (25),

$$
s\left(k_{j} \tau_{1}\right)-s\left(k_{j} \tau_{2}\right)-s\left(k_{j} \tau_{3}\right)+s\left(k_{j} \tau_{4}\right)=0
$$

The result now follows from Lemma 18.
Lemma 22. $a\left(s\left(k \tau_{1}\right)-s\left(k \tau_{2}\right)-s\left(k \tau_{3}\right)+s\left(k \tau_{4}\right)\right) \not \equiv 0(\bmod m)$.
Proof. Let $k=k_{j}$. By Lemmas 19 and 20,

$$
u_{j}^{\prime}=b-h, \quad v_{j}=h-1, \quad w_{j}=h .
$$

Thus by (25),

$$
\begin{equation*}
s\left(k \tau_{1}\right)-s\left(k \tau_{2}\right)-s\left(k \tau_{3}\right)+s\left(k \tau_{4}\right)=s\left(u_{j}\right)-s\left(u_{j}+1\right)+b \tag{26}
\end{equation*}
$$

Now

$$
f k+h=\left(u_{j}+1\right) b
$$

by (23) and Lemma 19. Thus $b \nmid u_{j}+1$ by Lemma 14. It follows that $s\left(u_{j}+1\right)=s\left(u_{j}\right)+1$. By (26) we conclude that

$$
s\left(k \tau_{1}\right)-s\left(k \tau_{2}\right)-s\left(k \tau_{3}\right)+s\left(k \tau_{4}\right)=b-1
$$

Since k and a were chosen so that $m \nmid a(b-1)$, the result follows.
Proof of Proposition 8. By Lemmas 21 and 22,

$$
S_{1}-S_{2}-S_{3}+S_{4} \not \equiv 0 \quad(\bmod m)
$$

so that

$$
S_{i} \not \equiv 0 \quad(\bmod m)
$$

for some i. Thus (16) is satisfied with $n=\tau_{i}$.

6. Proof of Theorem 1

We begin the proof by writing

$$
\begin{aligned}
C_{N} & =\operatorname{card}\left\{0 \leqslant n<N: s\left(k_{j} n\right) \equiv r_{j}(\bmod m) \text { for } j=1, \ldots, \ell\right\} \\
& =\sum_{0 \leqslant n<N} \prod_{j=1}^{\ell} \frac{1}{m} \sum_{0 \leqslant a<m} e\left(\frac{a}{m}\left(s\left(k_{j} n\right)-r_{j}\right)\right) .
\end{aligned}
$$

Multiplying out the sums and rearranging, we obtain

$$
C_{N}=\frac{1}{m^{\ell}} \sum_{0 \leqslant a_{1}<m} \cdots \sum_{0 \leqslant a_{l}<m} e\left(-\frac{1}{m} \sum_{j} a_{j} r_{j}\right) \sum_{0 \leqslant n<N} e\left(\frac{1}{m} \sum_{j} a_{j} s\left(k_{j} n\right)\right) .
$$

By Propositions 4 and 5, the (rational) limit

$$
L=\lim _{N \rightarrow \infty} \frac{C_{N}}{N}
$$

exists, and

$$
L=\frac{1}{m^{\ell}} \sum_{0 \leqslant a_{1}<m} \ldots \sum_{\substack{0 \leqslant a_{t}<m \\\left(a_{1}, \ldots, a_{\ell} \in R\right.}} e\left(-\frac{1}{m} \sum_{j} a_{j} r_{j}\right),
$$

where R is the set of ℓ-tuples $\left(a_{1}, \ldots, a_{\ell}\right)$ for which the corresponding Type ℓ sum is trivial.

By Propositions 3 and $6, R$ is the set of ℓ-tuples $\left(a_{1}, \ldots, a_{\ell}\right)$ for which

$$
\left.\sum_{j=1}^{\ell} a_{j} s\left(k_{j} n\right)\right) \equiv 0 \quad(\bmod m)
$$

for all $n \geqslant 0$. By Propositions 7 and 8 , this implies that

$$
L=\frac{1}{m^{\ell}} \sum_{\substack{0 \leqslant a_{1}<m \\ m\left|a_{1}(b-1) \\ m\right| \Sigma_{j} \\ m_{j} a_{j} k_{j}}} \ldots \sum_{\substack{0 \leqslant a_{\ell}(b-1)}} e\left(-\frac{1}{m} \sum_{j} a_{j} r_{j}\right) .
$$

Therefore

$$
\begin{aligned}
L= & \frac{1}{m^{2 \ell+1}} \sum_{0 \leqslant a_{1}<m} \cdots \sum_{0 \leqslant a_{\ell}<m} e\left(-\frac{1}{m} \sum_{j} a_{j} r_{j}\right) \sum_{0 \leqslant u<m} e\left(\frac{u}{m} \sum_{j} a_{j} k_{j}\right) \\
& \cdot \sum_{0 \leqslant v_{1}<m} e\left(\frac{a_{1} v_{1}(b-1)}{m}\right) \cdots \sum_{0 \leqslant v_{\ell}<m} e\left(\frac{a_{\ell} v_{\ell}(b-1)}{m}\right) .
\end{aligned}
$$

Rearranging this sum, we obtain

$$
L=\frac{1}{m} \sum_{0 \leqslant u<m} \prod_{j=1}^{\prime} \frac{1}{m} \sum_{0 \leqslant v_{j}<m} \frac{1}{m} \sum_{0 \leqslant a_{j}<m} e\left(\frac{a_{j}}{m}\left(k_{j} u+(b-1) v_{j}-r_{j}\right)\right) .
$$

Therefore

$$
L=\frac{1}{m} \sum_{0 \leqslant u<m} \prod_{j=1}^{\prime} \frac{1}{m} \operatorname{card}\left\{0 \leqslant v_{j}<m: m \mid k_{j} u+(b-1) v_{j}-r_{j}\right\} .
$$

We recall that $g=(b-1, m)$. The congruence

$$
(b-1) v \equiv r-k u \quad(\bmod m)
$$

has g solutions v if $g \mid r-k u$, and none if $g \nmid r-k u$. Thus

$$
L=\frac{1}{m} \sum_{\substack{o \leq u<m \\ \text { sijkink } \\ \text { for } j=1 \\ j}} \prod_{j=1} \frac{g}{m} .
$$

Therefore

$$
L=\left(\frac{g}{m}\right)^{\ell} \frac{1}{m} \operatorname{card}\left\{0 \leqslant u<m: k_{j} u \equiv r_{j}(\bmod g), j=1, \ldots, \ell\right\} .
$$

By the elementary theory of congruences, this implies that

$$
\begin{equation*}
L=\left(\frac{g}{m}\right)^{\ell} \frac{1}{g} \operatorname{card}\left\{0 \leqslant u<g: k_{j} u \equiv r_{j}(\bmod g), j=1, \ldots, \ell\right\} . \tag{27}
\end{equation*}
$$

The congruence system appearing in (27) is just the system (**). The theorem now follows from our earlier remark that if (**) has a solution, then it has precisely (d_{1}, \ldots, d_{f}) solutions.

7. Further Remarks

By taking more care in the above arguments, it is possible to give an explicit error bound for the remainder term

$$
R(N)=\frac{C_{N}}{N}-L .
$$

Indeed, it is shown in [3] that

$$
\begin{equation*}
|R(N)| \leqslant \frac{12}{11} b^{5} T^{2} N^{-\sigma}, \tag{28}
\end{equation*}
$$

where

$$
\sigma=\frac{4 \sin ^{2}(\pi / 2 m)}{b^{4} T^{2} \log \left(b^{4} T^{2}\right)}
$$

This bound is far from best possible.
The results of this paper are easily generalized to deal with the system

$$
\begin{equation*}
s\left(k_{i} n+h_{i}\right) \equiv r_{j} \quad(\bmod m), j=1, \ldots, \ell \tag{***}
\end{equation*}
$$

in the case where

$$
\begin{equation*}
h_{j}=\left[\frac{k_{j} \rho}{K}\right] \tag{29}
\end{equation*}
$$

for some ρ with $0 \leqslant \rho<K$. Lemma 3 is easily generalized to this case, and the generalization of Theorem 1 follows at once. (See [3].)

For a system (***) where (29) does not hold, it can still be possible to obtain an analog of Lemma 4 using a matrix of a slightly different form. (See [3] for an example of this.) We conjecture that the techniques of this paper can be extended to generalize Theorem 1 to the case (***).

Gelfond's proof [2] of his theorem used generating functions rather than Type ℓ sums. Thus the proof of Theorem 1 provides a new proof of Gelfond's result. It is unlikely that generating functions can be used to obtain nontrivial bounds for Type ℓ sums with $\ell>1$.

Finally, we mention another application of Type 2 sums. Gelfond [2] conjectured that, if ($m, b-1$) $=1$, then the numbers $s(p)$ (p prime) are equally distributed among residue classes $(\bmod m)$. This conjecture would be true if, for $a=1, \ldots, m-1$,

$$
\begin{equation*}
\sum_{p \leqslant N} e\left(\frac{a}{m} s(p)\right)=o(\pi(N)) \tag{30}
\end{equation*}
$$

as $N \rightarrow \infty$. By using Vaughan's version of Vinogradov's method of exponential sums [1], it is easily seen that (30) follows from the following conjecture.

Conjecture. For all sufficiently large N there exist U and V such that $U \geqslant 2, V \geqslant 2, U V \leqslant N$, and such that for all M with $U \leqslant M \leqslant N / V$, we have

$$
\sum_{V<j \leqslant N / M} \sum_{V<k \leqslant N / M}\left(\sum_{\substack{M<n \leqslant 2 M \\ n \leqslant N / k \\ n \leqslant N / k}} e\left(\frac{a}{m}(s(j n)-s(k n))\right)^{2}=o\left(N^{2} \log ^{-12} N\right)\right)
$$

as $N \rightarrow \infty$.
The bounds (28) are far too weak to prove this conjecture.

ACKNOWLEDGMENT

The author expresses his gratitude to Professor Hugh L. Montgomery, who directed the doctoral thesis [3] of which this paper is a revision and expansion.

References

1. H. Davenport, "Multiplicative Number Theory," 2nd ed., Springer-Verlag, New York. 1980.
2. A. O. Gelfond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arithm. 13 (1968), 259-265.
3. J. Solinas, "A Theorem of Metric Diophantine Approximation and Estimates for Sums Involving Binary Digits," Thesis, University of Michigan, August 1985.
