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a b s t r a c t

The self-consistency of a thermodynamical theory for hadronic systems based on the non-
extensive statistics is investigated. We show that it is possible to obtain a self-consistent
theory according to the asymptotic bootstrap principle if the mass spectrum and the
energy density increase q-exponentially. A direct consequence is the existence of a limiting
effective temperature for the hadronic system. We show that this result is in agreement
with experiments.

© 2012 Elsevier B.V. All rights reserved.

The asymptotic bootstrap principle, which leads to a self-consistent thermodynamical theory of strong interactions at
high energies, was a successful framework to understand high energy collisions. The theory predicted a limiting temperature
for the fireball produced during the reaction, and provided formulas for transverse momentum distributions and for the
mass spectrum of hadrons. The theory, fully developed by Hagedorn [1], was able to describe experimental data for center-
of-mass (CMS) energies up to

√
s ≈ 20 GeV. At higher energies, however, no agreement was found between calculations

and experiments.
The solution was proposed independently by Bediaga et al. [2] and Beck [3] by including the so-called non-extensive

statistics due to Tsallis [4] into the thermodynamical description of fireballs. This was done by the substitution of the
Boltzmann factor which appears in Hagedorn’s theory by a generalization which takes the q-exponential function as a main
ingredient, i.e.,

exp{−βE} → [1 + (q − 1)βE]
−

q
(q−1) (1)

where q, called entropic factor, is an unknown quantity that is characteristic of the system.
With this simple substitution it was possible to recover the good agreement between calculation and experiment, even at

energies as high as those achieved at LHC [5,6], with q > 1. The success of the generalized formalism indicates that there are
correlations among partons in the quark–gluon plasma (QGP) [7]. These correlations generate temperature fluctuations in
the non-equilibrated system [8,9], which slowly moves through quasi-static states to an equilibrium point [10]. In fact, β is
the inverse of an effective temperature in the generalized formalism, although herewemay refer to it simply as temperature.

In the present work we assume that the non-extensive thermodynamics is the correct framework for describing highly
excited hadronic systems. We show that in this framework it is possible to obtain a self-consistent theory of fireballs based
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on a generalization of the asymptotic bootstrap principle. We obtain new consistent mass spectrum and density of states,
and show that there is a limiting temperature for the excited system.

Hagedorn’s theory is based on the equivalence of two different forms for the partition function of excited hadronic
systems,

Z(Vo, T ) =


∞

0
σ(E) exp{−βE}dE (2)

and

ln[1 + Z(Vo, T )] =
Vo

2π2

∞
n=1

1
n


∞

0
dm


∞

0
dp p2ρ(n;m) exp{−nβ


p2 + m2}, (3)

where

ρ(n;m) = ρB(m) − (−1)nρF (m) (4)

with ρB(m) and ρF (m) being, respectively, the mass spectrum for bosons and for fermions, and σ(E) being the density of
states for the system at energy E.

The consistency between the two forms of the partition function is ensured by the asymptotic condition expressed
through the weak constraint

ln[ρ(x)] → ln[σ(x)], (5)

for x → ∞.
Using the substitution shown in Eq. (1) we get the generalized version of the partition functions,

Zq(Vo, T ) =


∞

0
σ(E)[1 + (q − 1)βE]

−
q

(q−1) dE (6)

and

ln[1 + Zq(Vo, T )] =
Vo

2π2

∞
n=1

1
n


∞

0
dm


∞

0
dp p2ρ(n;m)[1 + (q − 1)β


p2 + m2]

−
nq

(q−1) , (7)

respectively. Since experiments have shown that q > 1, this restriction is adopted in what follows.
Wewill develop a self-consistent theorywhere these two definitionsmust be asymptotically equivalent. In the following

we use a few times the transformation

[1 + (q − 1)ax]−
1

q−1 → [1 + (q′
− 1)x]−

a
q′−1 , (8)

with (q−1)a = (q′
−1). In all cases this transformation is used for calculation purposes only. We start studying the integral

In(m) =


∞

0
dp p2[1 + (q − 1)β


p2 + m2]

−
nq

(q−1) , (9)

which we write in the form

In(m) = m3


∞

1
dx x


x2 − 1 [1 + (q′

− 1)x]−
nβm+n(q′−1)

(q′−1) (10)

with q′ such that (q − 1)βm = q′
− 1.

Observe that for nβm → ∞ the main contribution to the integral comes from values close to x̄ =


1 +

1
nβm . Linearizing

the function g(x) = x
√
x2 − 1 around x̄we obtain

g(x) ≈

nβm(x − 1). (11)

Using this approximation for g(x) in the expression for In(m) it follows that

In(m) ≈ m3

nβm


∞

1
(x − 1)[1 + (q′

− 1)x]−
nβm

(q′−1)
−ndx. (12)

The integration can be easily performed, resulting


∞

1
[1 + (q′

− 1)x]−
nβm+n(q′−1)

(q′−1) dx =
q′−

nβm+(n−1)(q′−1)
(q′−1)

nβm + (n − 1)(q′ − 1)
(13)
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and 
∞

1
x[1 + (q′

− 1)x]−
nβm+n(q′−1)

(q′−1) dx =
q′−

nβm+(n−1)(q′−1)
(q′−1)

nβm + (n − 1)(q′ − 1)

+
1

nβm + (n − 1)(q′ − 1)
×

q′−
nβm+(n−2)(q′−1)

(q′−1)

nβm + (n − 2)(q′ − 1)
. (14)

For (q′
− 1) = (q − 1)βm ≪ βm and βm ≫ 1 we get

In(m) =
m3/2

(nβ)3/2
[1 + (q − 1)nβm]−

1
q−1 , (15)

where the relation between q′ and qwas used.
Substituting In(m) into Eq. (7) for Zq(Vo, T ) it results that

Zq(Vo, T ) = exp


Vo

2π2(nβ)3/2

∞
n=1

1
n


∞

0
dmm3/2ρ(n;m) [1 + (q − 1)nβm]−

1
q−1


− 1. (16)

Clearly the leading term corresponds to n = 1, therefore we will drop the summation in what follows.
According to the asymptotic bootstrap principle, form, E → ∞ the two expression for Zq must be equivalent, thus

Zq(Vo, T ) =


∞

0
σ(E)[1 + (q − 1)βE]

−
q

(q−1) dE

= exp


Vo

2π2β3/2


∞

0
dmm3/2ρ(m)[1 + (q − 1)βm]

−
1

q−1


− 1,

with ρ(m) = ρ(1;m). At the same time the weak constraint on the mass and energy densities,

ln[σ(E)] = ln[ρ(m)], (17)

must be fulfilled.
Now we show that the self-consistency can be asymptotically achieved by choosing

m3/2ρ(m) =
γ

m
[1 + (qo − 1)βom]

1
qo−1 =

γ

m
[1 + (q′

o − 1)m]

βo
q′o−1 (18)

and

σ(E) = bEa 
1 + (q′

o − 1)E
 βo
q′o−1 , (19)

where γ is a constant and q′
o − 1 = βo(qo − 1). Here, a, b and γ are arbitrary constants. Note that for q′

→ 1 the two exp-
ressions above approach the corresponding expressions in Hagedorn’s theory.

Using the above expression for ρ(m) in that for Zq we get

1 + Zq(Vo, T ) = exp


Vo

2π2β3/2

 M

0
dmm3/2ρ(m)


1 + (q′′

− 1)m
−

β

q′′−1

+


∞

M

dm
m

[1 + (q′

o − 1)m]

βo
q′o−1 γ [1 + (q′′

− 1)m]
−

β

q′′−1


,

whereM has to be chosen sufficiently large and (q′′
− 1) = β(q − 1). Then

1 + Zq(Vo, T ) = Z1(Vo, T ) + exp


γ Vo

2π2β3/2


∞

M

dm
m

[1 + (q′

o − 1)m]

βo
q′o−1 [1 + (q′′

− 1)m]
−

β

q′′−1


(20)

with

Z1(Vo,M) =

 M

0
dmm3/2ρ(m)


1 + (q′′

− 1)m
−

β

q′′−1 . (21)

We can choose q′
o such that q′

o − 1 = q′′
− 1, then

1 + Zq(Vo, T ) = Z1(Vo,M) + exp


γ Vo

2π2β3/2


∞

M

dm
m

[1 + (q′

o − 1)m]
−

β−βo
q′o−1


. (22)
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In order to evaluate this integral, note that ã

a
[1 + (q − 1)a′m]

−
1

q−1 −1da′
=

1
m


[1 + (q − 1)am]

−
1

q−1 − [1 + (q − 1)ãm]
−

1
q−1


. (23)

For anym > 0 we can find ã > a such that

[1 + (q − 1)am]
−

1
q−1 ≫ [1 + (q − 1)ãm]

−
1

q−1 , (24)

so that ã

a
[1 + (q − 1)a′m]

−
1

q−1 −1da′
≈

[1 + (q − 1)am]
−

1
q−1

m
. (25)

Using this result in Eq. (22) with a = β − βo and (q′′
o − 1)a′

= q′
o − 1, we can write

∞

M

dm
m

[1 + (q′

o − 1)m]
−

a
q′o−1 ≈

 ã

a


∞

m̃
[1 + (q′′

o − 1)a′m]
−

1
q′′o−1

−1
dmda′

−

 M

m̃

dm
m

[1 + (q′

o − 1)m]
−

a
q′o−1 , (26)

where m̃ is an arbitrary constant. Integrating onm in the first term of the equation above we get
∞

M

dm
m

[1 + (q′

o − 1)m]
−

a
q′o−1 ≈

 ã

a

[1 + (q′′
o − 1)a′m̃]

−
1

q′′o−1

a′
da′

−

 M

m̃

dm
m

[1 + (q′

o − 1)m]
−

β−βo
q′o−1 . (27)

Now we can choose m̃ such that

[1 + (q′′
− 1)ãm̃]

−
1

q−1 ≈ 1, (28)

so that the integration on a′ can be easily performed resulting
∞

M

dm
m

[1 + (q′

o − 1)m]
−

β−βo
q′o−1 ≈ ln


1

β − βo


+ ln ã −

 M

m̃

dm
m

[1 + (q′

o − 1)m]
−

β−βo
q′o−1 , (29)

where we substituted a by β − βo.1
With this result and Eq. (22) we obtain the asymptotic form of the partition function

Zq(Vo, T ) →


1

β − βo

α

+ Fq(Vo,M) − 1 (30)

where

α =
γ Vo

2π2β3/2
, (31)

and

Fq(Vo,M) = Z1(Vo,M) + exp


γ Vo

2π2β3/2


ln ã −

 M

m̃

dm
m

[1 + (q′

o − 1)m]
−

β−βo
q′o−1


. (32)

Observe that Fq(Vo,M) approaches a constant as β → βo.

1 An alternative way to obtain this result is noticing that under the conditions relevant here we have
∞

M

dm
m

[1 + (q − 1)am]
−1/(q−1)

≈ 2F1


1

q − 1
,

1
q − 1

; 1 +
1

q − 1
;

−1
aM(q − 1)

 
1

aM(q − 1)

1/(q−1)

(q − 1),

where 2F1 is the Hypergeometric function. Also

2F1


1

q − 1
,

1
q − 1

; 1 +
1

q − 1
;

−1
aM(q − 1)


≈

1
(q−1) ln


1

aM(q−1)




1
aM(q−1)

 1
q−1

,

resulting
∞

M

dm
m

[1 + (q − 1)am]
−1/(q−1)

≈ ln(1/a) − ln[(q − 1)M],

which is equivalent to the result derived here.
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Now we turn our attention to the second expression for Zq, presented in Eq. (6), that is,

Zq(Vo, T ) =


∞

0
bEa

[1 + (q′

o − 1)E]
−

β−βo
q′o−1

−1
dE, (33)

where Eq. (7) was used.
The right side of this equation is the q-Laplace Transform of the function h(E) = bEα , according to the definition given

by Lenzi et al. [11], which results to be

Zq(Vo, T ) = bΓ (a + 1)
Γ


β−βo
q′
o−1 − a


(q′

o − 1)a+1Γ


β−βo
q′
o−1 + 1

 . (34)

Here we have the constraint
β − βo

q′
o − 1

> a + 1 (35)

to have convergence in integration of Eq. (33).
Using the properties of the Γ (z) function it follows that for (q′

o − 1) → 0

Zq(Vo, T ) → bΓ (a + 1)


1
β − βo

a+1

. (36)

Therefore we can make the two expressions for Zq to converge if

a + 1 = α =
γ Vo

2π2β3/2
. (37)

One immediate consequence of Eq. (36) is the existence of a limiting temperature To = 1/βo. This result is equivalent to
the important result obtained by Hagedorn, and it was already obtained for the case of non-extensive statistics by Biro and
Peshier [12].

The existence of such a limiting temperature can be investigated through the fitting to experimental data of the transverse
momentum (p⊥) distribution [2,3]

1
σ

dσ
dp⊥

= c[2(q − 1)]−1/2B

1
2
,

q
q − 1

−
1
2


u3/2

[1 + (q − 1)u]−
q

q−1 +
1
2 , (38)

where u = βop⊥, and B(x, y) is the Beta-function. According to the analysis performed in Ref. [2], the effective temperature
obtained for center ofmass energy in the range from 35GeV up to 160 GeV is approximately constant around To ∼ 110MeV.
Therefore, the constant temperature obtained here is in accordance with experiments. Also the entropic parameter q is
approximately constant around q ∼ 1.2 in the energy range analyzed.

In Ref. [13] the authors argue that there would not be a relativistic ideal gas in non-extensive thermodynamics because
the partition function presents a singularity for β → ∞. The result obtained here shows that this limit is never achieved,
and therefore the multiplicity distribution derived in Ref. [13] could be used to determine the hadron multiplicity in high
energy strong interactions.

Finally, it is important to note that the average occupation number which is used in Refs. [2,3] and implicitly used in the
present work, is consistent with the thermodynamical relations in the sense discussed in Ref. [14] at the limitsm → ∞ and
E → ∞.

After the present work was completed the author was informed about a recent analysis of the effective temperature and
of the entropic parameter in pp collision at 900 GeV [15]. In this work the authors analyzed the transversal momentum
distributions for many different particles produced in the collision, and showed that all distributions can be well described
with T ≈ 70 MeV and q ≈ 1.15, confirming the findings obtained with the self-consistency study performed here. The
different values obtained by Bediaga et al. [2] and by Cleymans and Worku [15] can be attributed to the slightly different
formulas used in each of these works. In the last one the authors used an occupation number formula which is consistent
with the thermodynamical relations, as discussed above. It is important to emphasize that here T refers to the effective
temperature and can only be compared to Hagedorn’s temperature through a linear relation, as described in Refs. [8,9].

The existence of a constant temperature, To, and a constant entropic factor, qo, imposes strong constraints on the
applicability of the non-extensive statistics to ultra-relativistic collisions. In this way, the present work gives an interesting
tool to investigate the role of non-extensive statistics in strongly interacting systems.

Concluding, in this work we have shown that
1. It is possible to generalize the self-consistency principle using the non-extensive statistics.
2. When substituting exp{−βE} by [1 + (q − 1)E]

−q/(q−1) in the partition function we have to adopt

ρ(m) → γm−5/2
[1 + (q′

o − 1)m]

βo
q′o−1 (39)
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and

σ(E) → bEa 
1 + (q′

o − 1)E
 βo
q′o−1 (40)

in order to get a self-consistent theory.
3. With these choices we get the following asymptotic form for the partition function:

Zq(Vo, T ) →


1

β − βo

a+1

. (41)

4. From here it follows that there is an inferior limit for β corresponding to a limiting effective temperature To = 1/βo.
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