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Abstract 

Our research focusses on improving the quality and accuracy of the common operating picture of a tactical scenario
through the efficient allocation of bandwidth in the tactical data networks among self-interested actors, who may 
resort to strategic behaviour dictated by self-interest. We propose a two-stage bandwidth allocation mechanism 
based on modified strictly-proper scoring rules, whereby multiple agents can provide track data estimates of limited 
precisions and the centre does not have to rely on knowledge of the true state of the world when calculating 
payments. In particular, our work emphasizes the importance of applying robust optimization techniques to deal 
with the data uncertainty in the operating environment. We apply our robust optimization – based scoring rules 
mechanism to an agent-based model framework of the tactical defence scenario, and analyse the results obtained. 
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1. Introduction 

The defense sector is undergoing a phase of rapid technological advancement, in the pursuit of its goal of 
information superiority. This goal depends on a large network of complex interconnected systems – sensors, 
weapons, soldiers – linked by heterogeneous tactical data networks. Our research focusses on improving the quality 
and accuracy of the common operating picture through the efficient allocation of bandwidth in the tactical data links. 
The problem of bandwidth allocation is compounded by the self-interested behavior exhibited by the military 
commanders of each platform, who are more concerned with the well-being of their own platforms over others. 
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Individual platforms benefit from receiving data from other platforms but have no incentive for sharing it. Thus, we 
can expect a tendency for platforms to under-represent the quality of their data so that the bandwidth is allocated to 
the transmission of data by others (Rogers et al.1, Klein et al.2).  Against this background, we propose a mechanism 
that efficiently allocates the flow of data within the tactical data network to ensure that the resulting global 
performance maximizes information gain of the entire system, despite the self-interested actions of individual actors. 

 
In this paper, we consider a multi-flag, multi-platform military scenario where a number of military platforms 

have been tasked with the goal of detecting and tracking targets. The platforms must share and exchange tactical 
data from their onboard sensors in order to establish and maintain a common operating picture (COP) of the tactical 
situation. The track data exchanged among sensor platforms encapsulates the sensor’s own position as well as 
estimates of the position and dynamics of the observed targets. The exchange of tactical data among the platforms is 
facilitated over a standardized radio network, known as a TActical Data Information Link (TADIL). The sensors 
onboard the military platform have a partial and inaccurate view of the COP and need to make use of data 
transmitted from neighboring sensors over the bandwidth-constrained TADIL to improve the accuracy of their own 
measurements. The mission outcome can be significantly affected by decisions made in real time about which data 
to share. Ad-hoc bandwidth allocation can have serious repercussions and can even jeopardize a mission. 

 
Reporting Responsibility (R2) rules is a minimal precedence based mechanism which permits only the unit with 

the best quality data (position, velocity, etc.) to report a surveillance track on the data link. This strategy prevents 
multiple track reports on the link for a single object, thus minimizing the data latency. However, it precludes any 
possibility of collaboration in building the COP by disallowing the redundant reporting of a single object. In our 
work we consider the R2 minimalist approach as our point of departure. We start with the premise that additional 
communication per network cycle can significantly improve the quality of the combined data and by enough to 
warrant the additional latency that comes from a longer cycle time. Thus, we seek to design a mechanism which can 
efficiently allocate a finite bandwidth, beyond what is used in the R2approach, to enhance the quality of the common 
operating picture. We encapsulate the desired features of the mechanism in Figure 1. 

  
 

 
 
 
 
 
 
 
 
 
 
 
 

The heart of the mechanism, which we need to design, resembles a portfolio optimization problem. The portfolio 
problem assumes that a portfolio needs to be constructed consisting of a set of stocks. Each of the stocks has a return 
and a risk value associated with it and the objective is to determine the fraction of wealth to be invested in each 
stock to maximize the portfolio value. In reference to our problem scenario, the stocks represent the observations 
made by the sensors. The return value of the stock can be regarded as the information content of each observation; 
the risk indicates the uncertainty in the reported data while the total wealth represents the bandwidth to be allocated 
on the tactical data link. Thus the objective is to determine which track information to select for transmission, given 
the fixed bandwidth available to maximize the total information content. The challenges of interdependency of the 
reported data, selfish behavior, constrained resources and dynamic uncertain environments dictate that our 
mechanism needs to go beyond a simple portfolio optimization. We highlight these challenges below:  

 
 Voluntary Participation – Since sensor platforms are individually owned by different stakeholders, the 

mechanism must ensure that platforms participate voluntarily in lieu of some incentive of participation.  

Figure 1 Framework for Bandwidth Allocation in Tactical Data Networks 
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 Honest Reports (Incentive Compatibility) – The sensor platforms may resort to self-interested behavior 
and optimize their own gain from the network at a cost to the overall network performance. Hence the 
mechanism has to incentivize the platforms to truthfully reveal their private information (track data).  

 
 Interdependency - In tactical sensor networks, since the observations made by the sensors are polluted 

by uncertainty and noise, the information content of a sensor’s observation will be affected by the 
observations made by other sensor platforms. The mechanism must account for this information 
interdependency in the reported observations. 
 

 Lack of access to the state of world – The mechanism should work even when the center has no access 
to the true state of world. The dynamic and uncertain nature of the operating environment means that the 
track data evolves between the time the information is reported and the time when it can be observed. 
Thus the center needs to evaluate the received reports without any knowledge of the true outcome. 
 

 Optimization under uncertainty - The mechanism needs to account for the possibility that given the 
dynamic operating environment, there might be some uncertainty in the reported data.  
 

 Implementation - The mechanism has to ensure that once the sensor platforms have been allocated to 
their respective targets, the selected platforms invest all their resources to track their assigned targets.  

2. Literature Review 

In order to address the requirements of private information and selfish behavior, mechanism design has been used 
in literature for achieving globally optimal behavior. The field of mechanism design lies at the intersection of 
economics and game theory and is concerned with designing protocols, and institutions that are mathematically 
proven to satisfy certain system-wide objectives under the assumption that individuals interacting through such 
institutions act in a self-interested manner and may hold private information that is relevant to a required decision. 
Mechanism design finds application in problems involving the allocation of scarce resources where both human and 
computational entities are inclined to resort to strategic behavior dictated by guile and self-interest; examples of this 
includes allocation of network bandwidth, storage capacity and power. Rogers et al.1 have studied the use of tools 
and techniques from computational mechanism design for information fusion within Sensor Networks. Klein et al.2 
proposed an interdependent value mechanism design for bandwidth allocation in Tactical Data Networks. Both these 
bodies of literature use a modified version of the Vickrey-Clarke-Groves (VCG) mechanism to achieve efficient 
bandwidth allocation and ensure truthful reporting by conditioning payments on the realized value for data shared 
between agents. The VCG mechanism is a sealed-bid second-price auction in which all bidders submit sealed bids 
individually but the winner pays the second-highest bid rather than their highest winning bid. The VCG mechanism 
suffers from well-documented vulnerabilities of bidder collusion and spiteful bidding and doesn’t address our 
requirements of optimization under uncertainty, lack of access to the state of world and implementation. Given the 
shortcomings of auction-based mechanism we shift our focus from the realms of auction based models, to another 
promising alternative approach within the Mechanism Design research domain, in the form of scoring rules. 

3. Scoring Rules 

   Scoring Rules have been proposed as a methodology to address the shortcomings of auction-based mechanism 
design for expected value maximization. Scoring Rules are used to assess the accuracy of probabilistic forecasts, by 
awarding a score based on the forecast and the event that materializes. Scoring rules provide a framework wherein 
the agents are incentivized to invest their resources in making accurate, high-quality assessments and reporting them 
truthfully. In our work, we are interested in strictly proper scoring rules. A strictly proper scoring rule is the one in 
which an actor can maximize his score by reporting exactly his or her true beliefs about the event. We shall restrict 
our discussion to the four most popular strictly proper scoring rules – quadratic, spherical, logarithmic and 
parametric – as we can analytically derive and express their expected values in closed forms. 

One of the drawbacks of the auction-based Mechanism Design was that it did not account for agents not investing 
all their available resources in generating the observations. Miller et al.3 combat this issue through the introduction 
of scaling parameters. They show that the affine transformation of the scoring rules, does not affect the inherent 
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properties of the scoring rules, like, incentive compatibility. We model an agent’s noisy private measurement, , as 
Gaussian random variable, where,  is the true state of the observable and  is the information 
content of the observation. If we denote the scoring rule by the function  and the expected score as  
then we can formulate the expected payment and utility as 

 
  (1)  

 
where  and  are the scaling parameters and  is the cost of generating an observation with precision .  
 
We can now compare the four different scoring rules – quadratic, spherical, logarithmic and parametric – for 

Gaussian probability density function . An important property of the strictly proper scoring rules is the 
concavity of the expected scoring rules to incentivize an agent to produce truthful observations. Hence the parameter 

 for the parametric scoring rule family is restricted to the space  to ensure concavity. We also calculate the 
expected values along with the parameter expressions for the strictly proper scoring rules in Table 1. 

 
Table 1 Scoring Rules for Gaussian distributions 

  Quadratic Spherical Logarithmic Parametric 

 2     

     

α     

β 
  

 

 
 

 
Papakonstantinou et al.4 extended the concept of modified scaled strictly proper scoring rules to handle the lack 

of knowledge of the outcome while preserving the property of incentive compatibility. In modified strictly proper 
scoring rules, the trusted center fuses the observations from all the other agents and excludes the agent whose 
reported observation is being evaluated.  In the absence of access to the true outcome, the center uses this fused set 
of observations to evaluate the agent’s reported observations. Thus, based on the modified strictly proper scoring 
rule, an agent can maximize its expected score and by extension, their expected payments by truthfully reporting its 
observations, assuming that other agents in the system also honestly report their observations. This makes truthful 
revelation a Nash equilibrium and the optimal strategy for all agents in the system. 

4. Interdependent Valuation 

In tactical sensor networks, individual sensors have a limited and partial view of the common operating picture 
and produce uncertain and noisy observations. The value of one sensor platform for an allocation of bandwidth 
depends on private information held by other platforms, namely on the quality of their observed track data. The 
resulting information structure is one of interdependent valuations. A naïve extension of the VCG mechanism is 
known not to work in the case of interdependent valuations. Jehiel & Moldovanu5 have showed that, in an 
interdependent valuation setting, no standard one-stage mechanism can achieve both efficiency and incentive 
compatibility for procurement of estimates from multiple sources. Mezzetti6 addressed this challenge to a certain 
extent and showed that an efficient allocation with multidimensional types is possible, if two-stage mechanisms can 
be adopted in which the payments are made contingent on realized values reported in a second stage. Mezzetti 
designed a two-stage mechanism: in the first stage the agents would submit their reports to the center, which would 
in turn, determine the allocation of the items among the bidding agents. In the second stage, the agents report their 
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observations and receive the final payments from the center. Accordingly, we design a two-stage mechanism based 
on modified strictly proper scoring rules. 

5. Robust Optimization 

A two-stage mechanism can be constructed based on modified scaled strictly proper scoring rules, which selects a 
set of sensor agents to provide observations for a target. Since there are numerous targets in the system, we end up 
with different sets of sensor – target pairs. However we can only allocate a limited bandwidth for transmitting 
information over the tactical data network. Hence, we need a methodology to decide which sensor-target pairs to 
select for transmission to ensure the recovery of the highest gain in information for a given quantum of bandwidth. 
The problem is compounded by the inherent uncertainty in the information content of the observations. 
Deterministic optimization techniques that rely on nominal data, no longer work in these settings. Robust techniques 
provide an attractive choice in addressing the feasibility and optimality of the optimization solution, given the 
uncertainty in the data. We formulate our problem as a robust portfolio optimization problem.  

 

 

 

 

(2)  

where,  
 Set of targets in the system 

 :  Set of agents selected through the proper-scoring rules algorithm for target  
  Quantification of covariance (information content) of the reported observation made by agent  of target  

 The total number of agent-target pairs that can selected for transmission 
 Binary decision variable corresponding to which sensor-target pair is selected 

 
The information content which is a calculated using the covariance of the reported observation is assumed to be 

uncertain. In other words, we model the information content as a random variable that has a symmetric 
distribution in the interval .  is the expected information gain, while is the measure of 
the uncertainty of the information content. We adopt the robust linear framework proposed by Bertsimas & Sim7 to 
solve the portfolio problem. The Bertsimas-Sim framework is based on the premise that given a set of uncertain dara 
elements, only a small subset of the elements takes their worst-case values at the same time. The formulation 
provides a protection-level Γ to control the degree of robustness of the solution. The parameter Γ guarantees a 
feasible solution for instances in which fewer than Γ parameters take their worst-case values. The approach even 
provides a probabilistic guarantee, that if more than Γ parameters change, the robust solution will still be feasible to 
a high degree of probability. The linear nature of the problem makes it extensible to discrete optimization problems. 

 

 

 

 

 

(3)  

6. Algorithm 

We design a two-stage mechanism based on the modified strictly proper scoring rules and robust optimization. 
In the first stage, the center preselects  of the  available agents based on the reported cost functions through a 
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single  sub-auction. In the second stage, the center announces the modified scaled strictly proper scoring 
rules and asks the  preselected agents to produce their observations. Each of the preselected agents produce and 
report their observations to the center, which in turn, calculates their payments based on the announced scoring rule. 
The center then selects the final sensor-target pairs based on the robust portfolio optimization and the selected sensor 
platforms report the observations on their allocated targets on the data link. 

 
1. First Stage 

1.1. The trusted centre asks sensor agents to report their cost functions ) and their maximum 
information content ,  

1.2. The centre selects  sensor agents with the lowest costs, associates them with the 
 cost and discards the rest of the sensor agents. 

 
2. Second Stage 

2.1. The centre asks sensor agent , selected in Step 1.2, to generate the observations and presents it with a 
modified strictly proper scoring rule with parameters and  

2.2. Each of these sensor agents will produce an estimate with information content  and report 
( to the centre which, in turn, issues the payments to all the sensor agents. 

2.3. The center solves the robust portfolio optimization to select target-sensor pairs for transmission. The 
selected sensors are asked to broadcast the observations on their allocated targets. 

7. Results 

In order to study the application of mechanism design in a practical context, we need a surrogate model for the 
real-world operation which exhibits the necessary fidelity and complexity. To this end, we leverage the Discrete – 
Agent Framework (DAF) developed at Purdue University to design an Agent-Based Model (ABM). We conduct 
multiple runs of the ABM by changing the starting positions and dynamics of the targets in the scenario and analyse 
the results of applying our modified scaled strictly proper scoring rules based mechanism to the simulation model.  

 
7.1 Maximum Number of Preselected Sensor Platforms (M) 

 
In the first stage of the proposed mechanism, the trusted centre preselects  sensor platforms from the  

available sensor platforms with the lowest cost functions through one single reverse auction. In our 
simulation scenario, since we consider four sensor platforms and the R2 tracks have already been pre-assigned, there 
are only  sensor platforms available for selection for transmitting non – R2 track data. Thus  
dictates the maximum number of sensor platforms that can track any one target. For example,  indicates that 
a maximum of 3 platforms can be assigned to one target; one for R2-track data and two for non-R2 track information. 
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Figure 2(a) and (b) represents the variation of the transmitted information and the net cycle time as the maximum 
number of pre-selected platforms ( ) is varied from 1 to 3. The x-axis represents the diverse simulation scenarios 
(runs) with different starting positions and dynamics of the targets. The baseline case of R2 reporting is represented 
as  and corresponds to the lowest information flow with the minimum Network Cycle Time. As the value of 

 increases from 1 to 3, more platforms are selected to transmit non – R2 track data and the information flow in the 
network increases. However this increased situational awareness comes at the cost of information latency, as the 
Network Cycle Time (NCT) increases with . This represents an intuitive result of the tradeoff between information 
content and information latency. Increasing the value of  allows additional track data to be transmitted over the 
tactical data network, though it also results in increased latency between successive track updates. 
 

7.2 Scoring Rules  
 
In order to facilitate the discussion on the comparison of the four strictly proper scoring rules – Quadratic, 

Spherical, Logarithmic and Parametric - we generate the plots of the total expected payment and the minimum 
payment made by the center for the parameter space of . We present these results in Figure 3 

 

 

Figure 3(a) illustrates that the payment scheme based on the logarithmic scoring rule and the parametric scoring 
rule for  results in the center making the lowest expected payments to the sensor platforms. Another 
distinctive trait is that the expected payment resulting from the logarithmic, spherical and quadratic scoring rules is 
the same as those based on the parametric scoring rule, for values of the parameter    
respectively. This result serves as a validation for the analytical derivation where the parametric scoring rule takes 
the same expression for the expected payments as the logarithmic, spherical and quadratic scoring rules, for values 
of the parameter   respectively.Figure 3(b) plots the lower bounds of the payment of the 
parametric scoring rule for the parameter space  against the spherical and quadratic scoring rule. The 
logarithmic scoring rule and the limiting case of the parameter scoring rule family  results in large negative 
payments when the sensor platforms produce imprecise observations and hence are omitted from the figure. The 
effect of the platform’s imprecise estimate can be minimized for the parametric family by choosing the parameter 
carefully. From Figure 3 it appears that a value of  is a judicious compromise between the different 
factors. This set of parameter values produces low expected payments close to the ones obtained from the 
logarithmic scoring rule, and at the same time, imposes a finite lower bound on the minimum payments.   

 
7.3 Protection Level (Γ) 
  
Next, we solve the robust portfolio optimization problem in the second stage by using the Bertsimas - Sim 

formulation for different values of the protection level (Γ). Figure 4(a) shows the decrease in the expected 
information flow and the uncertainty-adjusted information flow in the mechanism as the value of Γ increases. The 
uncertainty-adjusted information value represents the difference between the expected information flow and the risk 
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function (uncertainty) when at most Γ variables are allowed to take their worst values. The figure illustrates the 
phase transitions that occur as the value of Γ increase and the transition points for the expected information flow 
coincides with the protection levels where the composition of the portfolio changes. The Bertsimas-Sim framework 
provides probabilistic bounds of constraint violation, i.e. a theoretical bound on the fraction of portfolios with 
information values which fall below the threshold value of the uncertainty adjusted information. We plot this 
probability of underperforming as a function of the protection level Γ in Figure 4(b). For low protection levels, the 
probability of the portfolio solution falling below the optimal solution is quite high. As the protection levels 
increase, probability of underperforming decreases by several orders of magnitude. 

 

  

8. Conclusion and Future Work 

In conclusion, we have successfully applied our proposed robust-optimization based scoring rules algorithm to 
the MAS simulation model.  The algorithm provides a unique insight into the role of computational mechanism 
design, especially strictly proper scoring rules, in decision making. The applicability of the proposed mechanism 
goes beyond tactical data links and is amenable to any settings which involve exchange of information or services 
between buyers and sellers. Ensuring trust in the auctioneer, handling the correlation in data uncertainty and 
preventing bidder collusion represent some of the potential avenues for extending the scope of this research work.   
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