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SUMMARY

Objective: To determine the roles of superficial zone protein (SZP), hyaluronan (HA), and surface-active
phospholipids (SAPL) in boundary lubrication of articular cartilage through systematic enzyme digestion
using trypsin, hyaluronidase, and phospolipase-C (PLC) surface treatments.

Methods: The friction coefficient of articular cartilage surfaces was measured with an atomic force
microscope (AFM) before and after enzyme digestion. Surface roughness, adhesion, and stiffness of the
articular surface were also measured to determine the mechanism of friction in the boundary lubrication
regime. Histology and transmission electron microscopy were used to visualize the surface changes of
treatment groups that showed significant friction changes after enzyme digestion.

Results: A significant increase in the friction coefficient of both load-bearing and non load-bearing
regions of the joint was observed after proteolysis by trypsin. Treatment with trypsin, hyaluronidase, or
PLC did not affect the surface roughness. However, trypsin treatment decreased the adhesion signifi-
cantly. Results indicate that the protein component at the articular cartilage surface is the main boundary
lubricant, with SZP being a primary candidate. The prevailing nanoscale deformation processes are likely
plastic and/or viscoelastic in nature, suggesting that plowing is the dominant friction mechanism.
Conclusions: The findings of this study indicate that SZP plays an intrinsic and critical role in boundary
lubrication at the articular surface of cartilage, whereas the effects of HA and SAPL on the tribological

behavior are marginal.

© 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

Introduction

Articular cartilage is essential for load bearing and lubrication in
synovial joints. Normal joint articulation is maintained by mixed
modes of lubrication, including hydrodynamic and boundary
lubrication at the extremes. The thickness of the hydrodynamic film
depends on the fluid viscosity, contact load, and relative velocity of
the surfaces. Boundary lubrication dominates under conditions of
reduced fluid viscosity, low relative velocity, and/or increased
contact load. Because boundary-lubricated surfaces are separated
by a lubricant film of thickness less than the effective surface
roughness, contact between surface asperities is unavoidable.
Prevention of cartilage wear greatly depends on the presence of
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a conformal boundary film that reduces the shear strength at
asperity contact interfaces. Although hydrodynamic lubrication is
essential for low friction in the hydrated cartilage tissue!?, the lack
of an effective boundary lubricant that protects the tissue when
joint movement conditions do not favor the formation of a hydro-
dynamic film can lead to precocious joint degeneration®*,

Several molecules have been proposed as the key boundary
lubricant of articular cartilage, including superficial zone protein
(SZP), hyaluronan (HA), and surface-active phospholipids (SAPL).
SZP, also known as lubricin and PRG4, is expressed by cells in the
superficial zone and synovium and localizes at the cartilage surface.
It contains an extensive mucin-like region substituted by O-linked
oligosaccharides®?, which reduce friction through the develop-
ment of repulsive forces>. HA is a glycosaminoglycan (GAG), which
is a major component of synovial fluid, imparting the fluid viscosity
and elasticity needed to transfer loads across the cartilage—
cartilage interface®’. Although HA is critical for hydrodynamic
lubrication? and may provide boundary lubrication in synovial
fluid®, its intrinsic lubricating efficacy in cartilage has not been
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demonstrated. SAPL is an endogenous component of synovial fluid®
that may act as a hydrophobic surfactant adsorbed onto the artic-
ular surface providing the contact angle and wettability observed in
previous studies®®.

Articular cartilage friction at the nanoscale may be measured
using an atomic force microscope (AFM). Even nominally smooth
surfaces, such as articular cartilage, exhibit frictional resistance
during articulation with other surfaces, resulting from localized
solid—solid interactions at the asperity scale. AFM is particularly
suited for friction measurements in the boundary lubrication
regime because it can simulate interactions at single asperity
contacts under high contact pressures'®!l, Nanoscale friction
behavior depends on the sliding dynamics of interacting asperities
and properties of the surface (boundary) layer'?. Characterizing the
surface roughness, contact forces, and mechanical properties of the
boundary layer is critical to understanding the friction mechanisms
at the tissue surface.

Previous studies have investigated the effects of enzymatic
digestion on the putative boundary lubricants of tendon'3, synovial
fluid'#'®, and synovial fluid co-incubated with full-thickness
articular cartilage'®. Although the latter study minimized fluid
effects on lubrication by providing an equilibration preload time to
depressurize the tissue, the results cannot be interpreted in the
context of articular cartilage boundary lubrication for the following
reasons. First, as noted by others'4, the phospholipase A, used to
digest SAPL contained proteolytic activity. Second, full-thickness
patellar articular cartilage co-incubated with synovial fluid during
enzymatic digestion confounded the effects of both the synovial
fluid lubricating activity and the digestion of extracellular matrix
protein, HA, and phospholipids.

The objective of this study was to elucidate the roles of SZP, HA,
and SAPL in articular cartilage boundary lubrication. Friction coef-
ficient and surface roughness measurements, and topography
images obtained with an AFM before and after surface enzymatic
digestion of SZP, HA, or SAPL were used to examine the roles of
candidate molecules in boundary lubrication. Additionally, stiff-
ness, adhesion, transmission electron microscopy, and histology
data were used to analyze the dominant friction mechanism.
Enzyme treatment of the primary boundary lubricant was
hypothesized to increase the friction coefficient and roughness of
the articular surface.

Materials and methods
Materials

Dulbecco’s Modified Eagle’s Medium (DMEM)/F12 and antibi-
otics were purchased from Invitrogen (Carlsbad, CA). Trypsin
(15400-054, Invitrogen) was diluted to 0.5%'>', hyaluronidase
(LS005475, Worthington, Lakewood, NJ) was diluted to 0.1%
(7500 units/mL)'>'®, and phospholipase C (PLC) (P7633, Sigma—
Aldrich, St. Louis, MO) was diluted to 0.44% (4 units/mL)" in
phosphate buffered saline (PBS). Trypsin inhibitors aprotinin and
leupeptin (Sigma—Aldrich) were added to the PLC solution at
concentrations of 5 pg/mL4,

Tissue acquisition

Osteochondral plugs were harvested from 1—3 week old bovine
joints as previously described'>?° from locations M1 and M4 of the
distal femoral condyles, corresponding to medial anterior and
medial posterior locations, respectively. These locations were
selected for comparison of regions subjected to relatively high and
low contact pressure'®, and hereafter will be referred to as M1 and
M4, respectively. Plugs were stored at 37°C and 5% CO, in culture

medium?® for 24 h, and trimmed to 1.5 mm in height with a custom
cutting jig and razor prior to AFM measurements.

Friction coefficient and surface roughness

Nanoscale friction and surface roughness measurements were
acquired with an AFM (MFP-3D-CF, Asylum Research, Santa Bar-
bara, CA) with triangular silicon nitride (Si3Ny4) tips (MSCT-AUNM,
Veeco Instruments, Santa Barbara, CA) of 10 nm nominal radius and
0.01 N/m spring constant. Surface scanning of 60 x 60 pm? areas
was performed in contact mode using the parameters: matrix
size=128 x 128 pixels, scan frequency=1Hz, and set
point=2.5V, which corresponded to a load of 2.1340.04 nN,
determined by thermal calibration?! performed on glass. Lateral
force calibration performed on silicon grating (TGF11, Mikromasch,
Wilsonville, OR) using the direct force balance method?? showed
that the friction voltage and friction force were related by
a constant of 102.64 nN/V. The friction coefficient u was obtained as
the ratio of the measured friction force to the applied normal load.

Samples (n=6) were affixed with ethyl cyanoacrylate to
a custom sample holder with the articular surface facing upward.
Each control sample was first treated with 20 pL of PBS and scanned
at five different locations while immersed in PBS. Subsequently, the
surface was treated with 20 uL of the respective enzyme for 15 min
(trypsin or hyaluronidase)”® or 1h (PLC)™ and rinsed in PBS.
Treated samples were scanned at five different locations in PBS. The
average friction force was determined as half of the difference
between the mean lateral trace and retrace values'??3, Surface
roughness Rs was measured as the root-mean-square (RMS) devi-
ation from the average surface height at five locations per sample.

Adhesion and stiffness

Because trypsin had the most significant effect on articular
cartilage friction (see Results), further experiments were performed
to investigate the friction mechanisms in the boundary lubrication
regime. Adhesion and stiffness of control and trypsin-digested
cartilage surfaces (n=4) were studied with an AFM. Five force—
displacement curves were obtained from five different locations of
each sample surface (i.e., 25 per sample) using the parameters: set
point=3V (2.56 nN), trigger point=6V (5.12 nN), load/unload
speed = 2 um/s, and dwell time = 0.99 s. The tip displacement ¢ was
calculated as the difference between the z-position of the piezo-
electric transducer and the measured deflection of the cantilever tip
d,ie,o=2z—d.

Stiffness was determined from the slope of the force—
displacement response at the onset of unloading from the
maximum tip displacement!?425, Adhesion force was measured as
the pull-off force upon tip separation from the surface during
unloading. Adhesion hysteresis was calculated as the area enclosed
by the loading and unloading paths of the force—displacement
response?®.

Guanidine extraction and quantification of surface SZP

SZP concentration (pug/mL) at the surface of treated and
untreated samples (n=3) was quantified by enzyme-linked
immunosorbant assay (ELISA). Surfaces were treated with trypsin
as described above, and SZP was extracted from the surface for
15 min at room temperature, using 20 uL of 4 M guanidine-HCl
with 0.05 M Tris, 1 mM protease inhibitor cocktail (PIC), and 1 mM
phenylmethanesulphonylfluoride (PMSF). The extracts were buffer
exchanged with 6 M urea containing 0.05 M Tris'°. Serially diluted
samples of the extracts were reacted with S6.79 (1:5000) (a
generous gift from Tom Schmid, Rush Medical University) as the
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primary antibody!® and anti-mouse horseradish peroxidase-
conjugated goat (1:3000, Vector Laboratories, Burlingame, CA) as
the secondary antibody.

Immunohistochemistry (IHC)

Immunolocalization of SZP by IHC was performed on trypsin-
treated samples (n = 3), the group that showed significant differ-
ences in p following enzymatic digestion. Samples were treated as
described above and fixed in Bouin’s solution overnight, followed
by paraffin embedding and sectioning. Immunostaining was per-
formed using S6.79 (1:5000) as the primary antibody and an ABC
kit (Vector Laboratories) with mouse IgG as secondary antibody.
Images were obtained with an optical microscope (LSM 510, Carl
Zeiss, Jena, Germany) at 100x magnification.

To determine if other surface structures were affected by trypsin,
additional stains were applied to separate sections. Staining was
accomplished using hematoxylin (Vector Laboratories) for 7 min,
light green SF yellowish (L-1886, Sigma—Aldrich) for 5 min, and
safranin O (JT Baker, Pittsburgh, PA) for 5 min. Images were obtained
with an optical microscope at 20x and 40x magnifications.

Transmission electron microscopy

Structural changes at the surface of trypsin-treated samples
were examined with a transmission electron microscope (TEM).
Untreated and trypsin-treated plugs (n=1) were fixed in Karnov-
sky’s fixative (Electron Microscopy Sciences, Hatfield, PA) overnight
at 4°C. A drop of liquefied 2% agarose was added to stabilize the
pellet. Samples were placed in 1% osmium tetroxide in 0.1 M
phosphate buffer for 1 h on ice, and then in 1% tannic acid in water
for 30 min on ice. Samples were stained en bloc with 2% uranyl
acetate for 1h on ice and dehydrated in a series of increasing
concentrations of acetone (30—100%, 10 min each grade). Samples
were embedded in a 50:50 acetone:bojax (epon/araldite) mixture
overnight at room temperature, transferred into 100% resin for 2 h,
then transferred into fresh resin and polymerized at 70°C over-
night. Sections were cut with a diamond knife and stained with
uranyl acetate and lead citrate before viewing with a Philips 120
BioTwin microscope (FEI, Lausanne, Switzerland) at 80 kV. Images
were acquired at 6500x and 15,000x magnifications.

Statistical analysis

Differences in average u and Rs were analyzed (n=G6) using
a one-way nested analysis of variance (ANOVA) with four treatment
levels (M1 control, M1 treatment, and M4 control, M4 treatment as
fixed effects) and sample number and measurement number (five
locations) as subgroups, per enzyme group. Differences in average
adhesion force, adhesion hysteresis, and stiffness between control
and trypsin-treated samples were analyzed (n = 4) using a one-way
nested ANOVA with four treatment levels and sample number and
measurement number (25 force curves) as subgroups. A nested
analysis was used to account for multiple measurements
and explant animals for each treatment. A significance level of
a=0.05, and corresponding P < 0.0083, was used to determine
differences between groups in all the tests. Results are presented as
mean =+ 1.96 x standard error of the mean (s.E.m.).

Results
Friction coefficient and surface roughness

All enzyme treatments showed a general trend of higher friction
compared to both M1 and M4 controls (Fig. 1). Trypsin increased u

of both M1 and M4 samples most significantly (e = 0.23 £0.03 vs
Utreat = 0.52 £ 0.08 for M1 (P<0.0001) and ¢y =0.24+0.04 vs
Htreat = 0.46 + 0.09 for M4 (P < 0.0001)) [Fig. 1(A)]. M1 samples also
showed a significant increase in u after PLC treatment
(el = 0.314+0.05 VS figrear = 0.49 +0.08 (P=0.0145)) [Fig. 1(C)].
All other groups did not show significant differences.

Surface roughness did not demonstrate a consistent trend or
significant change for any enzyme treatment or joint location [Fig. 2
(A—C)]. Topography images did not reveal any discernible differ-
ences between control and corresponding treated M1 and M4
samples for all enzymes [Fig. 2(D—E); images of PLC group not
shown for brevity]. Fibrillated and amorphous surface structures
were observed in the AFM images, in agreement with reports of
previous studies?®?3, Images shown in Fig. 2(D—E) correspond to
a sample group (trypsin or hyaluronidase) of surface roughness
within the range of the average RMS roughness of all samples
measured.

Adhesion and stiffness

Friction results led to additional assays on trypsin-treated
cartilage surfaces to determine the role of SZP/proteins in friction.
Figure 3(A) shows a schematic of the force—distance response.
After trypsin treatment, the contact stiffness of M1 samples
decreased significantly from 28.634+0.10 to 16.53 4+ 0.09 mN/m
(P <0.0001), whereas that of M4 samples increased significantly
from 15.76 4 0.10 to 24.62 + 0.22 mN/m (P < 0.0001) [Fig. 3(B)]. M1
controls exhibited significantly higher stiffness compared to M4
controls (P < 0.0001).

Adhesion force (0.04—1.22 nN) exceeded 50% of the applied load
(2.13 nN) in some cases. Undigested M1 controls also demonstrated
significantly higher adhesion forces than M4 controls (P < 0.0001),
and trypsin treatment resulted in significantly lower adhesion
forces for both M1 (P < 0.0001) and M4 (P < 0.0005) [Fig. 3(C)].
Differences in adhesion between trypsin-treated M1 and M4
samples were insignificant. Adhesion force of M1 and M4 samples
decreased from 1.22 £ 0.11 to 0.04 - 0.01 nN and from 0.24 + 0.04
to 0.16 +0.02 nN, respectively. An adhesion hysteresis, demon-
strating a pattern similar to that of the adhesion force, was also
observed [Fig. 3(E—H)]. Adhesion hysteresis of M1 and M4 samples
decreased from 0.68 + 0.07 to 0.01 4 0.004 nN um (P < 0.0001) and
from 0.08 +0.02 to 0.06 +0.015 nN pm (P < 0.0001), respectively
[Fig. 3(D)].

Quantification and visualization of SZP at the surface

SZP was removed from the cartilage surface following trypsin
treatment. SZP decreased dramatically at the surface of both M1
and M4 samples after trypsin digestion (P = 0.005) [Fig. 4(A)]. The
surface concentration of SZP in M1 and M4 controls was
1.62 £ 0.38 pg/mL (0.0016 + 0.0004 pg/mm?, normalized to the
cross-section area) and 0.89 4+ 0.12 pg/mL (0.0009 + 0.0001 pg/
mm?), respectively. After digestion, SZP surface concentration
decreased below the detection limit of the ELISA system
(0.0625 pg/mL) and was considered to be negligible.

[HC showed a dramatic decrease in depth of staining of SZP for
both M1 and M4 trypsin-treated samples compared to controls
[Fig. 4(B)]. TEM revealed that trypsin disrupted the lamina splen-
dens reported in previous studies?’ 2%, removing most or all of the
cloudy amorphous structures (blue arrows) present in the
untreated samples [Fig. 4(C)]. These structures differ from collagen
fibers (green arrowheads) and may be the proteoglycan content
that provides boundary lubrication of articular cartilage.

Safranin O and light green staining showed a slight decrease in
proteoglycan content after trypsin treatment for both M1 and M4
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Fig. 1. The friction coefficient of articular surfaces measured with an AFM (n = 6) increased significantly after trypsin treatment for both M1 and M4 locations (A), while hyal-
uronidase treatment did not result in significant changes in friction coefficient (B) and PLC treatment caused a significant increase in friction coefficient only for cartilage from M1
joint location (C). Error bars indicate 1.96 x s.e.m. above and below corresponding mean values. Significant differences in the data of each group are indicated by an asterisk

(P<0.0145).

(Fig. 5). Loss of proteoglycans was most distinct in the superficial
zone. Collagen content did not markedly change after trypsin
treatment in either location.

Discussion

This study sought to elucidate the roles of SZP, HA, and SAPL in
boundary lubrication of articular cartilage and determine the
dominant friction mechanism through systematic removal of
candidate molecules in situ. Results showed that (1) trypsin
significantly increased u of cartilage from both load-bearing (M1)
and non load-bearing (M4) locations (Fig. 1) (2) Rs did not change
significantly after enzyme digestion [Fig. 2(A—C)] and did not
correspond to y changes (3) SZP was eliminated from the surface

after trypsin treatment [Fig. 4(A—B)] (4) adhesion force and adhe-
sion hysteresis of M1 and M4 samples decreased significantly after
trypsin treatment [Fig. 3(C—D)]; and (5) proteoglycans in M1 and
M4 samples decreased after trypsin treatment (Fig. 5). These
findings suggest that the proteinaceous component of the articular
cartilage surface contributes most to boundary lubrication of the
tissue and that the effects of roughness and adhesion on friction are
secondary.

The increase in p after trypsin digestion indicates a loss of the
boundary lubricant, with SZP as the strongest candidate. The role of
SZP as a key boundary lubricant of articular cartilage is suggested
by its large central mucin domain®® and localized expression at
synovial joint surfaces>%3, Furthermore, most of the SZP produced
in the joint is secreted from the tissue into the synovial fluid rather
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Fig. 2. The RMS surface roughness of articular cartilage surfaces (n = 6) did not change significantly after treatment with (A) trypsin, (B) hyaluronidase, and (C) PLC. Representative
AFM topography images of articular cartilage surfaces treated with (D) trypsin and (E) hyaluronidase revealed the fibrillar and amorphous structures of the cartilage surface. The
topographies of samples treated with PLC (not shown) generally appeared similar to those treated with hyaluronidase. Error bars in (A—C) indicate 1.96 x s.e.m. above and below

corresponding mean values.
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hysteresis decreased significantly in both M1 and M4 joint regions after trypsin treatment (n = 4). (E, H) Representative force—displacement curves for control and trypsin-treated
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Fig. 5. The proteoglycan content stained with safranin O (red) decreased after trypsin treatment, particularly in the uppermost layer of the superficial zone. The collagen content
stained with light green (blue—green) showed no dramatic changes after trypsin treatment. Bottom row shows high-magnification images of the regions enclosed by a rectangle in

the images of the row above.

than retained within the matrix>°, suggesting a critical function at
the articular surface. SZP has also been found to localize in the
synovial lining of joint cavities®!, meniscus®?, and tendon®3,
providing further evidence of a surface-interacting molecule.
Mutations in the PRG4 gene that encodes SZP have also been
associated with the joint disease camptodactyly-arthopathy-coxa
vara-pericarditis, which may cause premature joint wear as
a consequence of insufficient lubrication®*. Cartilage of PRG4-
deficient mice have also been shown to exhibit higher friction
coefficients than wild type343°. Together with the results of the
present investigation, the evidence strongly supports SZP as the key
boundary lubricant of articular cartilage.

The observed friction behavior was attributed to a plowing
mechanism. Friction coefficient changes did not correspond to
surface roughness changes, consistent with previous reports'%;
however adhesion decreased significantly after trypsin digestion. In
general, friction is due to asperity deformation (roughness effect),
adhesion (surface energy effect), and plowing by asperities and
wear particles (material deformation effect)'®12. Adhesion force
and hysteresis typically scale proportionally with friction force3®,
although an inverse or nonexistent relationship has been shown for
various material coatings and that other mechanisms may domi-
nate the friction behavior’’3®. Therefore, it is likely that the
dominant friction mechanism of articular cartilage, studied at the
nanoscale in buffer solution, is not adhesion. Since the contribu-
tions of surface roughness and adhesion to friction were found to be
secondary, the observed friction behavior may be due to a domi-
nant plowing mechanism. Because Si3zN4 is much harder than
cartilage, it may be inferred that plowing of the cartilage surface by
the AFM tip prevailed under the applied contact pressure
(~1.5MPa), resulting in energy dissipation in the form of irre-
versible deformation and wear. In view of the viscoelastic behavior
of articular cartilage, energy could have also been dissipated in the
form of elastic hysteresis. The plowing mechanism may also explain
the increase in u after trypsin treatment if enzymatic digestion
produced cleaved but still adsorbed fragments of proteins at the
surface. Additional testing showed an increase in friction coefficient
dependence on sliding speed®’, and indicated a dominant effect
from plowing (Fig. S1).

Trypsin is a wide-spectrum protease that degrades proteins at
the carboxy-terminal domains in lysine and arginine residues. SZP
contains an abundance of both, especially lysine found at the start
of each repeat sequence in the mucin region®. This lubricating
region of SZP would therefore be hydrolyzed extensively by trypsin,

as verified in this study [Fig. 4(A—B)] and previously'>. Digestion by
trypsin would also affect other proteins at the surface, such as
albumin, fibronectin, and aggrecan®. Sliding of non-functionalized
AFM tips against aggrecan monolayers yielded higher friction
compared to tips with end-grafted aggrecan and also an increase in
friction with decreasing GAG spacing®, demonstrating that
a decrease in aggrecan and other proteoglycan content at the
articular surface leads to increased friction. Furthermore, because
SZP binds to some of these proteins, there is an additive effect of
trypsin to the boundary lubricating properties of articular cartilage.
While SZP is the most likely proteinaceous boundary lubricant with
the strongest evidence of lubricating efficacy, digestion of other
surface proteins and SZP-binding proteins may affect u. HA binds to
SzP* and, although not directly digested by trypsin, it may be
dissociated from the surface after digestion of SZP or aggrecan.
However, direct digestion of HA by hyaluronidase did not increase u
significantly [Fig. 1(B)].

Hyaluronidase specifically hydrolyzes the endo-N-acetyl-D-
glucosamine bonds in HA, which does not affect SZP lubricity>.
Results showed that HA did not significantly change u after enzy-
matic removal [Fig. 1(B)], consistent with previous findings
showing inferior boundary lubrication by HA and its derivatives
compared to synovial fluid, isolated lubricin®#2, and intact articular
cartilage®. Thus HA likely does not provide boundary lubrication in
the absence of other surface-interacting molecules. Additional
assays of hyaluronidase efficacy using biotinylated HA-binding
protein (b-HABP)'> showed that HA content at the surface was
reduced by enzyme treatment compared to controls at both joint
locations (Fig. S2). Since it appeared that complete removal of HA
was not achieved, with surfaces stained lightly for b-HABP after
enzyme treatment, longer incubation (2—43 h)!>!>!® may have
resulted in complete removal of HA, but would likely have not
increased friction significantly, as demonstrated by others'>'s.
Isolated HA and SZP have been reported to produce similar low u
when tested individually in a cartilage—cartilage system, with
approaching that of synovial fluid® when HA and SZP were
combined. However, the previous studies examined the effects of
synovial fluid constituents on friction in a cartilage—cartilage
sliding system, while the present study examined the effects of
removing surface molecules from cartilage using an AFM. HA is
found in high concentrations in synovial fluid** and much lower
concentrations in the lamina splendens and superficial zone?® of
cartilage and the role of HA in cartilage tissue may not be as
important in joint lubrication as in synovial fluid. A similar
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enhancement of lubrication was observed when combinations of
HA and SZP were incorporated in synovial fluid®, although their
synergistic effects on articular cartilage were not reported. Future
studies should focus on the combined effects of all three putative
boundary lubricants.

Addition of trypsin inhibitors to PLC ensured the specific
degradation of SAPL without proteolysis. Results showed a minor
effect of SAPL digestion on u [Fig. 1(C)], consistent with previous
results demonstrating the lubricity of synovial fluid digested with
PLC'™. An intermediate effect of PLC on tendon friction (between
that of hyaluronidase and trypsin) has also been reported'>. Addi-
tion of SAPL alone or in conjunction with HA and SZP does not
reduce p significantly®. Although SAPL may impart hydrophobic
surface characteristics, this alone cannot explain the excellent
lubrication properties of articular cartilage. Decreased hydropho-
bicity had a significant effect on x of M1 but not M4 samples [Fig. 1
(Q)], indicating a relatively minor role of SAPL in articular cartilage
boundary lubrication.

Differences between M1 and M4 samples in the PLC group
indicate a dependence of molecular composition, enzymatic
susceptibility, and nanomechanical properties of articular cartilage
on anatomical location. SZP distribution depends on both the zone
within the thickness of the tissue and the anatomical regions of the
joint'%46, Similar zonal and regional dependence of GAG and
proteoglycan contents and their different metabolism rates in
different joint regions have been observed!'®4"48. Load-bearing
locations contain more GAG and proteoglycan than non load-
bearing locations. Cartilage from load-bearing locations is also
more susceptible to early proteoglycan synthesis inhibition and
increased expression of catabolic cytokines caused by osteoar-
thritis*®. Higher collagen type I and Il gene expressions have also
been found in load-bearing than non load-bearing regions*%;
however, protein expression was not measured. Although SAPL
distribution across different joint locations has not been investi-
gated, it is reasonable to assume that it varies in a manner similar to
other important cartilage components according to functional
loading. The stiffness response of M1 and M4 samples to trypsin
treatment [Fig. 3(B)] may also be explained by these differences.
Higher initial GAG, proteoglycan, and collagen contents in M1
control samples would impart higher mechanical strength at the
surface compared to M4. Indeed, a higher compressive stiffness was
found for M1 compared to M4 controls [Fig. 3(B)]. After trypsin
treatment, M1 stiffness decreased to that of undigested M4
samples, which would be expected after the removal of proteo-
glycans, as evidenced from histology results (Fig. 5). Cartilage
surfaces of similar low stiffness cartilage and low GAG staining have
been reported for PRG4-knockout mice®*3>. The stiffness increase
of M4 samples after trypsin treatment is unexpected and may be
associated with differences in molecular composition and chem-
ical/mechanical responses to enzymatic degradation between load-
bearing and non load-bearing regions. Any changes in the surface
mechanical strength would likely also affect friction, because of the
interdependence of material properties and friction mechanisms>°.
The increase in nanoscale stiffness with decreasing GAGs reported
in previous studies'"?> has been attributed to tissue dehydration
due to loss of electrostatic repulsive forces and subsequently the
AFM measuring the stiffness of the underlying collagen network
rather than the normally proteoglycan-covered surface'. As was
verified by TEM images, the collagen network was indeed exposed
in trypsin-treated M4 samples; therefore the stiffness measured
with the AFM was that of collagen and not that of the decreased
GAG containing surface.

The proteinaceous content of the articular cartilage surface
exhibited the most significant effect on friction. SZP plays a critical
role in the boundary lubrication of articular cartilage. Loss of SZP by

trypsin surface treatment increased u in both load-bearing and non
load-bearing regions. Although HA and SAPL may enhance SZP
function, the results of this study demonstrate that they play
relatively secondary roles in reducing friction and protecting the
joint against wear.
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