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ABSTRACT 

Explicit algebraic formulas for the polar decomposition of a nonsingular real 2 X 2 
matrix A are given, as well as a classification of all integer 2 X 2 matrices that admit a 
rational polar decomposition. These formulas lead to a functional identity which is 
satisfied by all nonsingular real 2 X2 matrices A as well as by exactly one type of 
exceptional matrix A 1, for each n >2. 

By the polar decomposition theorem, every nonsingular real square matrix 
A can be factored uniquely into the product of an orthogonal and a positive 
definite real matrix: 

A=VP with VtV=Z and P=P’>O, 

where V’, P’ denote the transposes of V, P, etc. In standard textbooks on 
linear algebra, the proof given for this classical result is constructive: From the 
eigenvalues and eigenvectors of A’A one can construct a positive definite P 
with P2 =A’A. Then V: = AP -’ is orthogonal. This construction was used 
here initially to obtain 
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THEOREM 1 (Explicit 2X2 polar decomposition). Every nonsingular 
A E R 22 has the polar decomposition 

A=VP where V”V=I and P=P’>O 

f Or 

and 

Proof. Instead of giving the lengthy and rather tedious arithmetic sug- 
gested by the constructive proof for the polar decomposition theorem here, 
we need only verify that V and P as given above are in fact the polar factors 
of any nonsingular 

Clearly P is positive definite as the sum of positive definite matrices, and 

VLV=Idet(A+ldetAI(A’)-‘)I-‘. 

X [AA+2ldetAIZ+(det A2)(A’A))‘]. 

Now 

&A = a2 +c2 ab+cd 

1 abfcd b2+d2 ’ 

and by Cramer’s rule 

(AtA)-‘= ’ 
b2 +d2 

det A2 -(ab+cd) 
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Thus with p:=Jdet(A+ ldet AI(A’)-1)1’/2 we have 
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V’V= 1 a2+b2+c2+d2+2~detA~ 0 

P2 0 u2+b2+c2+d2+2(detAI 

Since 

(A’)-‘= &( yb -’ j, 
a 

we have 

ldetAI(A’)-‘= k( -“I, ,c), 

the sign depending on whether det A is positive or negative. If det A>O, 
then 

det[ A+(det A)(A’)-‘1 =det( zyi ,“iE) 

=a2 +b2 +c2+d2 +2det A 

=p2>0. 

If detA<O, then 

P2=/det( A+ldet AI(A’ 

u-d b+c 
c+b d-u 

=I-(a-d)2-(b+c)2j 

=u2+b2+c2+d2+21detAj. 

Thus in either case V’V= I. 
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It remains to show that A = VP. Let us take the case det A t0 for 
example: Then 

v+ ;+;f ;‘; 
( 1 

and 

ah+& 

b2 +d2-(ad-bc) 

and 

VP=1 a-d 
i 

b+c u2+c2-((ad-bc) ub+cd 

P2 c+b d-u ub+cd b2 +d2 -(ad-bc) 

where 

=u[u2+c2-(u&bc)-ud+d2tb2+bc] 

=a[u2+b2+c2+d2-2(ud-bc)]=a/S’. 

Similarly (I r2 = bp2, u 21=c/32, and u2s =dp2, and thus 

A= 

The case det A > 0 can be verified analogously. W 

One can apply Theorem 1 to classify all integer 2 X 2 matrices whose polar 
decomposition can be achieved over the rationals: 

THEOREM 2 (Rational polar decomposition for nonsingular integer 2X2 
matrices). A nonsingular matrix 
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has a polar decomposition over Q iff 

in case det A < 0: a -d and b + c form a Pythagorean pair of integers, and 

in case det A>O: a+d and b-c do. 

Proof. In case det A>O, we have O<det[A+(det A)(A’)-‘]=(a+d)’ 

+ (b-~)~ from the previous proof. Thus in this case PEQ,, and VEQ,, iff 
p2 =(a +d )2 +( b-~)~ is an integer square. The proof in case det A<0 is 
similar. H 

Since A = VP for all nonsingular real 2 X 2 matrices, we have 

THEOREM 3 (Matrix identity for all nonsingular real 2X2 matrices). 
Every nonsingular A E R 22 satisfies the identity 

]det[A+ldetAI(A’))‘]] = A AAtA+21det AIA+(det A2)(Af)-l. (*2) 

Equation (*2) is a rather peculiar matrix identity. We will study it in the 
remainder of this paper. 

If we multiply through by At from the right and set X: =AAt, then (*2) 
becomes 

or 

X2-(]det[A+ldetAl(A’))‘]]-2ldetAl]X+(detX)I-0. 

This last equation must hold for all positive definite 2X2 real matrices X by 
Theorem 3. In fact, this identity coincides with the characteristic polynomial 
of such X for n = 2: 

LEMMA 1. For all nonsingular A E Iw 22 one has 

Proof. Without loss of generality assume 

with ad-bc>O. 
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Then trAA’=a2+b2+c2+d2, while Idet[A+ldetAI(At)-‘]I-2ldetAI= 
(~+d)~+(h-c)~ -2(a&bc) from the proof of Theorem 2. n 

Next we want to investigate the nonsingular matrices A ER nn that satisfy 
( *2) for n# 2. In fact, we are able to classify all such R X n matrices: 

THEOREM 4. A nonsingular matrix A ER nn satisfies (*2) iff either A is 
2X2 or(l/&)A is orthogonal for n > 2, where cx, is the unique positive root 
of the equation X n/2-1(1+X”/2~l)n-2_~=~. 

Proof. Assume that A ER nn nonsingular satisfies (*2). Then X: =AAt 
satisfies the quadratic polynomial 

X2+(2idetAj-~det[A+ldetA/(A’)~‘]~)X+(detX)Z=O, (NCP) 

which we will call a near-characteristic polynomial of X for reasons that will 
become clear later. Thus X has at most two distinct eigenvalues. And either 

Case (a): X is similar to 

hI,I 0 

(+1 0 PZ, 

with p,q>l, p+q=n, h#p, h,p>O as eigenvalues of AAt=X, or 
Case (b): X is a multiple of the identity, X = aZ, LY E R. 

We will show first that case (a) cannot occur unless n=2. In case (a) X 
satisfies both its minimum polynomial 

(X-XZ)(X-pZ)=O 

and its “near-characteristic polynomial” (NCP). Thus 

+(det X)Z=O, 

where det X=AP/YJ =(det A)2. By a uniqueness argument we conclude that 

Ap=det X=hP$J (I) 
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and 
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(2) h+p=]det[A+ldetAI(A’)-‘]I-&IdetAl. 

Multiplying (2) by Idet A’ 1, we get 

ldetAI(X+~)=Idet(X+ldetAII)I-2detX. (3) 

In further investigating (3) we may without loss of generality assume that X is 

in fact equal to 
Xl, 0 

i 1 0 PI, ’ 
since a similarity transform of X does not affect 

the determinants involving X in (3). Then (3) can be rewritten as 

(h+p)ldet Al=(A+jdet AI)P(p+(det A\)‘-2hPp9. (4) 

Set w : = ldet A I > 0. Then w = fi from (1) and (4) is equivalent to 

(X+W)P(~+W)9-(X+~)w-2~~=o. (5) 

Expanding the pth and qth powers respectively, one gets 

wp +pwp-‘At . . . + w2xp-2 +pwr’ +hp 1 
x w~+qw~-1/.k+ . . . + 2 

[ 
9 ( 1 w2/.e+qwE1.9-1+~L’I 1 

or equivalently 

wP’9+wP+~-l(q/_L+fXp)+ . . . 

+w2 
I 1 

; hPg-2 +pqhP-‘pQ-l + 
(;)xP-%“] 
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From (l), XPpq=hp; thus XP~‘~q-‘=I and XPplpq=pL, Xppqpl =A, while 
w2 =hp. Thus we get 

w P+q+WP+qqp+hp)+ . . . 

+w[(1)-I)p+(q-l)X] =O. (6) 

Unless p=q= 1, all terms on the left hand side of (6) are positive, contradict- 
ing the fact that their sum is zero. Hence if A satisfies (*2), then X=AAf 
cannot have two distinct roots h # ZL unless n = 2. 

There remains case (b): X=AA’ =crZ for cu>O. Here we multiply the 
“nearcharacteristic polynomial” (NCP) by ldet At I= Jdet A 1 to obtain 

IdetAlX2+[21detXI-Idet(X+ldetAlZ)I]X +ldetA31Z=0. (7) 

Now det A2 =det X=o” and w=ldet Al =(Y”/~ >O. In case (b), (7) is a 
matrix identity for the diagonal matrices I, X, X2, where each diagonal 
element satisfies the same equation 

&+x2+ 2a” -((Y+cr+)“).+LW2=0. ( (8) 

Equation (8) can be rewritten thus: 

or 

And thus 

and 

(9) 
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‘4 matrix A E R nn with n>2 will satisfy ( *2) iff AA’ = a,1 where (Y, >O 

satisfies (9). 
It remains to find out whether the equation (9) has any positive roots. For 

n >2 (9) camrot have a root (Y, > 1, for then the left side of (9) would exceed 
1 while the right hand side would be less than one. If (Y, = 1, then (9) 
becomes 2”-’ = 1, or n=2. Hence we are left to look for solutions LY,, of (9) 
with O<(Y,, tl. Set Z:=o”/‘-i, where 0< Z < 1 and n>2. Then finding 

solutions (Y,, of (9) is equivalent to finding positive roots for the polynomial 

P(z)=z(1+z)“~2-l. (10) 

Since P(O)= - 1 and P(1)=2”-’ - 1 >O for n>2, P must have at least one 
root Z, between 0 and 1. It can have no more than one root Z, >O, for 
Z= -1 is an (n-2>fold root and Z=O is a simple root of P(Z)+l, and 
hence P(Z) must be monotonic for Z>O (as well as for Z< - 1). Thus for 
each n>2 there is exactly one number (Y, >O such that all A ER nn with 
AA’ =(Y,Z satisfy (*2). For n=l, AA’=(a) for a>0 and Eq. (*2) does not 
hold, as can readily be seen. 

Note that the sequence {~~/2-‘} must converge to zero, but slowly 
enough so that { (1-t (Y z/2_ ’ )n-2} diverges to cc, their product being equal to 
one for each n > 2. n 

COMMENT 1. For the exceptional matrices A E R nn that satisfy (*2) for 
n>2, ]det[A+]det AI(‘]I--2ldet A] does not equal trAA’. 

Proof. We have trAAt=trX=trcu,Z=ncu,, while 

=]det(X+]detA]Z)]-2]detX] 

= (y, +a;/2)“-2a::. ( 

The question is whether an (Y, >O that satisfies (9) might also satisfy 

na,ay2 = a, + ay2 ( )“-2”;. (11) 

Equation (11) is equivalent to n,~n/2+1 =(l+a~/2P’)” -2, and by combin- 
ing this with (9) we get 

n(y-“/2+1 - 
” 

_Ly,n/2+l(l+Ly~i2-l)2_2, 
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or 

na-“/2+l ,a-“/2+1 1+&p/2-’ fan-2 
n n ( n ” j-2 

Thus 

=CX 
--n/2+1 +2+(p/2-1-2. 
n n 

o=a,“/s+i(1+0(;--2-n). (12) 

Since a,>0 for aU n>2, (12) implies n=l+cuz-2. But O<a,<l, so that 
l+aEp2<2tn. Hence no AEIR,,,, with AAt =(r*Z, (Y, as in Theorem 4, 
satisfies (11) if n>2. n 

The “scaled orthogonal matrices” A, from Theorem 4 that satisfy (*2) are 
such that X=A, Ai does not satisfy the 2 X2 characteristic polynomial 
X2 -(trX)X+(det X)Z=O, but instead each X=A,Ai satisfies the “near- 
characteristic polynomial” 

X2+[21detAl--Idet[A+/detAI(A’)-‘]I)X+(detX)Z=O. (NCP) 

These A, are truly exceptional 

COMMENT 2. The function Idet[A+ ldet AI(‘]I -2ldet Al acts like 
the trace function of AA’ for aII nonsingular real 2 X 2 matrices A, as shown in 
Lemma 1. It also acts like the trace function for various n X n matrices, though 
not for the exceptional matrices A,, of Theorem 4. 

EXAMPLE. If A = /3Z for p > 0, n > 2, then 

and tr AA’ =np2. Hence for equality, we have to solve 

p”-yl+py52pn-2 -n=(). 

With Z: =pnp2 >0 we need to find a positive solution of 

(13) 

(14 
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Now 9(O)= --n and 9 w =2” -2-n>O for n>2. Thus for each n>2 there 
is at least one p, >O such that for A = &I, the function 

acts like trAA”. 
The complete set of A E Iw nn for which 

is not known. 

COMMENT 3. The significance of the “near-characteristic polynomial” or 
of (*s) is not fully understood at the moment, and neither is the role of the 
exceptional “scaled orthogonal matrices” A, for n>2. It would be of great 
interest to obtain explicit algebraic formulas for the polar decompositionof 
3 X 3 matrices and the corresponding “near-characteristic polynomial” and 
(*3) (or (*,) in general). Amazingly, there seems to be no literature on the 
subject thus far, except-of course-for various algorithms, like the singular 
value decomposition or the Cholesky decomposition, which can be used for an 
approximative polar decomposition of A. 

1 am grateful to Tom Laffey for his help with the “exceptional” An. 
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