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ABSTRACT

Explicit algebraic formulas for the polar decomposition of a nonsingular real 2<2
matrix A are given, as well as a classification of all integer 2 X2 matrices that admit a
rational polar decomposition. These formulas lead to a functional identity which is
satisfied by all nonsingular real 2X2 matrices A as well as by exactly one type of
exceptional matrix A, for each n>2.

By the polar decomposition theorem, every nonsingular real square matrix
A can be factored uniquely into the product of an orthogonal and a positive
definite real matrix:

A=VP with V'V=I and P=P'>0,

where V', P! denote the transposes of V, P, etc. In standard textbooks on
linear algebra, the proof given for this classical result is constructive: From the
eigenvalues and eigenvectors of A’A one can construct a positive definite P
with P2 =A'A. Then V:=AP ! is orthogonal. This construction was used
here initially to obtain
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Turorem 1 (Explicit 2X2 polar decomposition). Every nonsingular
AER g, has the polar decomposition

A=VP where V'V=I and P=P!'>0

—-1/2
(

P:{det(A+|detA|(At)‘1)] A'A+|det A|T)

and

V=|det A+|det A|(A) )| T2 A+|det A)(A) ).

Proof. Instead of giving the lengthy and rather tedious arithmetic sug-
gested by the constructive proof for the polar decomposition theorem here,
we need only verify that V and P as given above are in fact the polar factors
of any nonsingular

b
A:(Z bR

Clearly P is positive definite as the sum of positive definite matrices, and
Viv=|det( A+|det A|(A") )] V.
x| AA+2ldet A I+(det A%)(44) "]
Now

AtA:(a2+cz ab+cd)
ab+cd b2+d?)

and by Cramer’s rule

b%+d? —(ab+cd)

- 1
AA) =
(44) —(ab+cd) a’+c?

 det A2
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Thus with 8:=|det(A +|det A|(A") ™")|'/% we have

1 {a2+b%2+c2+d? +2/det A 0
Viv=— .
B2 0 a2+b2+02+d2+2|detA|
Since
gl
(4% detA\—-b a /’
we have

decaj(a) ‘== 4 e,

the sign depending on whether det A is positive or negative. If det A>0,
then

1 — a-+d b_C)

det] A-+(det A)(4)) "] det(c_b boe

:(a+d)2+(b~c)2
=a?+b%+c2+d%+2det A

=B2>0.
If det A<<0, then

B2 =|det( A+ |det A|(A")7Y))

- a—d b+c
det(c+b d—a)

=|—(a—d)*—(b+c)]|
=a®+b* +c%+d> +2|det A|.

Thus in either case V!V=].
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It remains to show that A=VP. Let us take the case det A<0Q for
example: Then

V:l(a“d b+c>
Blc+b d—a
and
1{a®+c?—(ad—bc) ab+cd
B ab+cd b*+d®—(ad—bc)
and
— 1 (a—d b+c) a®+c*—(ad—bc) ab+cd
p2\ctb d—a ab+cd b*+d* —(ad—hc)
:_1_(‘111 a12)
B2\ dar ds )’

where

a,y=afa®+c®—(ad—bc)]| —da® —dc? +ad? — bed + ab® + bed + abe + c*d
:a[az+02—(a(l—hc)—ad+d2+b2+hc]
=ala®+b2+c2+d2—2(ad—bc)| =aB

Similarly a,, =bB%, a,, =cB? and ay =dB?, and thus

a=(e Gl=vr

The case det A >0 can be verified analogously. [ |

One can apply Theorem 1 to classify all integer 2 X 2 matrices whose polar
decomposition can be achieved over the rationals:

TreoreMm 2 (Rational polar decomposition for nonsingular integer 22

matrices). A nonsingular matrix
_[a b

A= ( c d ) €Ly
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has a polar decomposition over Q iff

in case det A <<0: a—d and b+ ¢ form a pythagorean pair of integers, and
in case det A>0: a+d and b—c do.

Proof. 1In case det A>0, we have 0<<det[ A +(det A)(A") !]=(a+d)?
+(b—c)? from the previous proof. Thus in this case PEQ,, and VEQ,, iff
B2=(a+d)>+(b—c)? is an integer square. The proof in case det A<<0 is
similar. [ ]

Since A= VP for all nonsingular real 2 X2 matrices, we have

THeoREM 3 (Matrix identity for all nonsingular real 2X2 matrices).
Every nonsingular A ER ,, satisfies the identity

}det[A+|detA|(A' ”A AAA +2|det A| A+ (det A2)(A) ™. (%)

Equation (*,) is a rather peculiar matrix identity. We will study it in the
remainder of this paper.

If we multiply through by A’ from the right and set X: =AA’, then (*,)
becomes

[det] A+[det AJ(A) ]| X=X? +2/det A| X+ (det X1,

or
X2 — {|det] A +|det A](4') ]| —2ldet 4] }x+(det X)1=0.

This last equation must hold for all positive definite 2 X2 real matrices X by
Theorem 3. In fact, this identity coincides with the characteristic polynomial
of such X for n=2:

Lemma 1. For all nonsingular A €R ,, one has
tr A" = |det| A+ [det A(4) || —2(det A].
Proof. Without loss of generality assume

A:(‘Cl Z)ER22 with ad—bec>0.
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Then trAA' =a® +b* +c? +d? while |det[A+|det A|(A") ]| —2|det A|=
(a+d)?+(b—c)*—2(ad—bc) from the proof of Theorem 2. |

Next we want to investigate the nonsingular matrices A €R ,,, that satisfy
(*5) for n2. In fact, we are able to classify all such nXn matrices:

THEOREM 4. A nonsingular matrix AER ,, satisfies (*,) iff either A is
2X2o0r(1/ ja;)A s orthogonal for n>2, where a,, is the unique positive root
of the equation X"/2~Y(1+X"/27 1y =2 - 1=9,

Proof. Assume that AER ,,
satisfies the quadratic polynomial

nonsingular satisfies (*;). Then X:=AA’

x2+{2|detA|—|det[A+1detA|(Af)*1”}x+(detx)zzo, (NCP)

which we will call a near-characteristic polynomial of X for reasons that will
become clear later. Thus X has at most two distinct eigenvalues. And either

Case (a): X is similar to
Al » | o
0 | pl,

with p,g=1, p+q=n, A54u, A, p>0 as eigenvalues of AA' =X, or
Case (b): X is a multiple of the identity, X=al, a ER.

We will show first that case (a) cannot occur unless n=2. In case (a) X
satisfies both its minimum polynomial

(X—=AI)NX—ul)=0
and its “near-characteristic polynomial” (NCP). Thus
X2 = (A+p)X+ApT=X?+{2)det A|—|det| A+ |det a|(4)) ']|}x
+(det X )I=0,
where det X=APud =(det A)2. By a uniqueness argument we conclude that

Ap=det X=APp? (1)
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and
>\+,u’—‘ldet[A+|detA|(A')—l”—2|detA|. (2)
Multiplying (2) by |det A’|, we get
|det A|(A+p)=|det(X+|det A|I)|—2det X. (3)
In further investig;;ing (Cz)) we may without loss of generality assume that X is
P

0 pl,
the determinants involving X in (3). Then (3) can be rewritten as

in fact equal to , since a similarity transform of X does not affect

(A+p)idet A|=(A+|det A|)"(p+|det A[)?—2APp9. (4)
Set w:=|det A|>0. Then w=/Ap from (1) and (4) is equivalent to
A+ w)?(p+w)'—(A+p)w—2Ap=0. (5)

Expanding the pth and gth powers respectively, one gets

[w” +pwP A+ ---+(g)w2>\"‘2+pw>\"*l +>\"}

q

X[w"+qw"_l,u+ ---+(2

)wzu"’z +qupt ! +u"]

—(A+p)w—2Au=0,
or equivalently

wrta +w”+q‘l(qu+}\p)+ N
+w?| [ T )Ape 2+ pgar—tpat 4| P ) ar 2y
9 © rq 14 9 [

+w[p)\”71uq +qgAPu! —(}\+[.L)] +APu? —2Au=0.
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From (1), A?p? =Ap; thus A? 29" =1 and A* 19 =p, APu? 1 =X, while
w? =Au. Thus we get

wPte +w"+‘7*1(q‘u+>\p)+ Ce
+w2[(Z)A"uq72+pq+(g)}\”72uq_l]
+w[(p—Du+(g—1)A]=0. (6)

Unless p=g =1, all terms on the left hand side of (6) are positive, contradict-
ing the fact that their sum is zero. Hence if A satisfies (*,), then X=AA
cannot have two distinct roots A5~ u unless n=2,

There remains case (b): X=AA'=al for a>0. Here we multiply the
“near-characteristic polynomial” (NCP) by |det A*|=|det A| to obtain

det A| X* + [2|det X | — |det(X +|det A|T)|] X +|det A*|I=0. (7)

Now det A®>=det X=a" and w=|det A|=a"/2>0. In case (b), (7) is a
matrix identity for the diagonal matrices I, X, X2 where each diagonal
element satisfies the same equation

a"/2a2+(2a"—(a+a"/2)")a+a3"/2:0. (8)
Equation (8) can be rewritten thus:

01"/2(012 +2a"/2a+(a"/2)2):(a+a"/2)na,

or
a"Ha+ a2 =(a+a"?) a.
And thus
Q™21 :(a+an/z)"*2:an—2(1 _}_an/z—l)"*z’
and

(1+an/2*1)"'2:a7n/2+1‘ (9)
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A matrix AER,, with n>2 will satisfy (*,) iff AA’=a,I where «, >0
satisfies (9).

It remains to find out whether the equation (9) has any positive roots. For
n>2 (9) cannot have a root a, > 1, for then the left side of (9) would exceed
I while the right hand side would be less than one. If a, =1, then (9)
becomes 2" 2 =1, or n=2. Hence we are left to look for solutions a,, of (9)
with 0<a, <1. Set Z:=a"/?"!, where 0<Z<1 and n>2. Then finding
solutions «a,, of (9) is equivalent to finding positive roots for the polynomial

n

P(Z)=Z(1+Z)" *-1. (10)

Since P(0)= —1 and P(1)=2""2—1>0 for n>2, P must have at least one
root Z, between 0 and 1. It can have no more than one root Z_ >0, for
Z=—1is an (n—2)fold root and Z=0 is a simple root of P(Z)+1, and
hence P(Z) must be monotonic for Z>0 (as well as for Z<C —1). Thus for
each n>2 there is exactly one number «, >0 such that all AER ,, with
AA' =a, I satisfy (*;). For n=1, AA'=(a) for a>0 and Eq. (*;) does not
hold, as can readily be seen.

Note that the sequence {a?/>~'} must converge to zero, but slowly
enough so that {(1+a?/271)"~2} diverges to o0, their product being equal to
one for each n>2. ]

ComMENT 1. For the exceptional matrices A ER ,,, that satisfy (*,) for
n>2, |det[ A+ |det A|(A') ~!]|—2|det A| does not equal tr AA".

Proof. We have trAA' =trX=tra,I=na,, while
{]det[A+|det Aj(4) ]|~ 2idet Al}(det &)
=|det(X +|det A|I)|—2|det X |
Z(an +a:/2)n——2a;'.
The question is whether an «,, >0 that satisfies (9) might also satisfy

naa¥?=(a, +a?/?)"—2a". (11)

Equation (11) is equivalent to na,,"/?*! =(1+a"2 !)" —2, and by combin-
ing this with (9) we get

2
na;n/2+l:a;n/2+1(1+a2/2—1) -2,
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or
na, "2+ :a;n/2+1(1+2a2/2—1 +a2_2)—2
=a, "2 2402 -2
Thus
OIa"_“/ZH(l-i-a;'_z—n). (12)

Since a, >0 for all n>>2, (12) implies n=1+a""2 But 0<a, <1, so that
1+a?"2<2<n. Hence no AER,, with AA'=q 1, @, as in Theorem 4,
satisfies (11) if n>2. |

The “scaled orthogonal matrices” A,, from Theorem 4 that satisfy (*,) are
such that X=A_ A’ does not satisfy the 2X2 characteristic polynomial
X2 —(trX)X +(det X)I=0, but instead each X=A_ A, satisfies the “near-
characteristic polynomial”

X2+ (2/det |~ |det| A-+|det A|(4) ]|} X+(det X)I=0. (NCP)

These A, are truly exceptional

CommenT 2. The function |det[A+|det A|(A') ']|—2|det A| acts like
the trace function of AA’ for all nonsingular real 2X 2 matrices A, as shown in
Lemma 1. It also acts like the trace function for various n X n matrices, though
not for the exceptional matrices A, of Theorem 4.

EXAMPLE. If A=BI for >0, n>2, then
[det] 4+ det A4](4") ]| —2idet A]=(B+8" )" ~28"
and tr AA* =nB2. Hence for equality, we have to solve
B *(1+p""2)"—28" "2 —n=0. (13)

With Z:=8""2>0 we need to find a positive solution of

¢(Z)=Z(1+Z)"—2Z—n=0. (14)
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Now g(0)= —n and gV =2" —2—n>0 for n>2. Thus for each n>2 there
is at least one 8, >0 such that for A=, I, the function

[det] A+ det A](4") ]| ~2/det 4|

acts like tr AA".
The complete set of AER,,,, for which

|det] A-+]det A(A) ~']| - 2ldet A] =tr an
is not known.

ComMENT 3. The significance of the “near-characteristic polynomial” or
of (*;) is not fully understood at the moment, and neither is the role of the
exceptional “scaled orthogonal matrices” A, for n>2. It would be of great
interest to obtain explicit algebraic formulas for the polar decomposition ' of
3 X3 matrices and the corresponding “‘near-characteristic polynomial” and
(*;) (or (*,) in general). Amazingly, there seems to be no literature on the
subject thus far, except— of course—for various algorithms, like the singular
value decomposition or the Cholesky decomposition, which can be used for an
approximative polar decomposition of A.

I am grateful to Tom Laffey for his help with the “exceptional” A ,.
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