Topology and its Applications 35 (1990) 71-73 North-Holland 71

A FIBRATION THAT DOES NOT ACCEPT TWO DISJOINT MANY-VALUED SECTIONS

A.N. DRANISHNIKOV

Steklov Mathematical Institute, Moscow 117333, USSR

Received 8 August 1988 Revised 27 January 1989

The fibration $\eta:\prod_{i=0}^{\infty} S^{(2^i)} \rightarrow \prod_{i=1}^{\infty} RP^{(2^i)}$ does not accept two disjoint many-valued sections.

AMS (MOS) Subj. Class.: Primary 54C10, 54C60; secondary 55R25	
open map	many-valued section
fibration	1-soft map

In the Lewis list of problems [2, 3] there is the following:

Problem 166 (Bula). Suppose $f: X \to Y$ is an open map, with each of X and Y compact metric and each $f^{-1}(y)$ infinite. Do there exist disjoint closed subsets F and H of X such that f(F) = f(H) = Y?

The same question was formulated to the author by E. V. Shchepin in the late 1970s. It is well known that the problem has an affirmative answer if dim $Y < \infty$. Nevertheless it turns out that in general the answer is negative.

Every compact set $F \subset X$ with the property f(F) = Y defines a many-valued upper semicontinuous section $s: Y \to X$ of the map $f: X \to Y$ by the formula $s(y) = F \cap f^{-1}(y)$. The reverse statement is also true: Every many-valued upper semicontinuous section s of f defines a compact set $F_s = \bigcup_{y \in Y} s(y)$ such that f(F) = Y. Now we can reformulate the problem:

Does an arbitrary coen mapping f between compact metric spaces with infinite fibers have two disjoint many-valued sections?

In [1] the following map was considered

$$\eta:\prod_{i=0}^{\infty}S^{(2^i)}\to\prod_{i=0}^{\infty}\mathrm{RP}^{(2^i)},$$

where $\eta = \prod_{i=0}^{\infty} \nu_{2^i}$ and the map $\nu_k : S^k \to \mathbb{RP}^k$ is a 2-fold covering map of the *k*-dimensional sphere onto real projective *k*-space. The fibration η as well as every open mapping between compacta has a section in probability measures. The main result of [1] claims that the fibration η does not accept two disjoint such sections. 72 A.N. Dranishnikov / A fibration that does not accept two disjoint many-valued sections

Theorem 1. The fibration η does not accept two disjoint many-valued upper semicontinuous sections.

P(X) denotes the space of all regular Borel probability measures on X in the weak *-topology and $P(f): P(X) \rightarrow P(Y)$ denotes the map which is generated by the map $f: X \rightarrow Y$. There is a natural embedding $Y \rightarrow P(Y)$ of which every point $y \in Y$ carries in the Dirac measure δ_y . Let $f_P: P(f)^{-1}(Y) \rightarrow Y$ denote the restriction of the map P(f) onto the set $P(f)^{-1}(Y)$ and let $f: X \rightarrow Y$ be an *n*-fold covering map. The map f_P is a locally trivial fibration with the (n-1)-dimensional simplex as a fiber. Thus the map f_P is naturally included in an (n-1)-dimensional vector bundle $vf: vX \rightarrow Y$. The quotient space of all real-valued functions on the set $f^{-1}(y)$ by the subspace of all constant functions may be regarded as a fiber $(vf)^{-1}(y)$. Then the space $P(f^{-1}(y))$ is equal to the image under the quotient map of the set of all nonnegative functions g with the property $\sum_{z \in f^{-1}(y)} g(z) = 1$. It is easy to check that the map f_P has two disjoint sections if and only if the vector bundle vf has everywhere nonzero sections.

We denote by η_k the product $\prod_{i=0}^k \nu_{2^i}$ of covering maps.

Lemma 2. The map $(\eta_k)_P$ does not accept two disjoint sections for any k.

Proof. Every two disjoint sections s_1 , s_2 of the map $(\eta_k)_P$ generate everywhere nonzero sections of the vector bundle $v\eta_k$ by the formula $s(y) = s_1(y) - s_2(y)$. In this case the top Stiefel-Whitney class is equal to zero [5]. The contradiction with calculation in [1] proves the lemma. \Box

Proof of Theorem 1. Assume the contrary: There exist two disjoint many-valued upper semicontinuous sections u_1 , u_2 of the map η . We denote by π_k^{∞} the projection of the product $\prod_{i=0}^{\infty} S^{(2')}$ onto its subproduct $\prod_{i=0}^{k} S^{(2')}$. One can choose a number k such that $\pi_k^{\infty}(F_{u_1}) \cap \pi_k^{\infty}(F_{u_2}) = \emptyset$. Let ρ be a metric on the manifold $M = \prod_{i=0}^{k} S^{(2')}$ and let W_1 , W_2 be open disjoint neighbourhoods of the sets $\pi_k^{\infty}(F_{u_1})$ and $\pi_k^{\infty}(F_{u_2})$. We define sections s_1 , s_2 of the map $(\eta_k)_P$ in the following way. For an arbitrary $x \in \prod_{i=0}^{k} RP^{(2')}$ we define

$$s_{1}(x) = \sum_{y \in \eta_{k}^{-1}(x)} \frac{\rho(y, M \setminus W_{1})}{\sum_{z \in \eta_{k}^{-1}(x)} \rho(z, M \setminus W_{1})} \cdot \delta_{y},$$
$$s_{2}(x) = \sum_{y \in \eta_{k}^{-1}(x)} \frac{\rho(y, M \setminus W_{2})}{\sum_{z \in \eta_{k}^{-1}(x)} \rho(z, M \setminus W_{2})} \cdot \delta_{y}.$$

$$\sum_{y \in \eta_k^{-1}(x)} \sum_{z \in \eta_k^{-1}(x)} \rho(z, M \setminus W_2)$$

The measures $s_1(x)$ and $s_2(x)$ are different because they have different supports: supp $s_1(x) \subseteq W_1$ and supp $s_2(x) \subseteq W_2$. It is easy to check that the maps s_2 , s_1 are continuous.

The contradiction with Lemma 2 proves the theorem. \Box

Remark. The proof of Theorem 1 implies that any two many-valued upper semicontinuous sections of η coincide in some point.

We recall that a map $f: X \rightarrow Y$ is called 1-soft if there exists a solution of the following lifting problem

for an arbitrary closed couple (Z, A) with dim $Z \le 1$ and arbitrary continuous maps ϕ, ψ with $f \circ \phi = \psi|_A$.

Michael's theorem [4] claims that a map $f: X \to Y$ is 1-soft if and only if f is monotone-open and the family of fibers $\{f^{-1}(y)\}_{y \in Y}$ is equi-LC⁰.

Question. Let $f: X \rightarrow Y$ be a 1-soft mapping of compact metric spaces with infinite fibers. Is it true that:

(1) f has two disjoint many-valued upper semicontinuous sections?

(2) f has two disjoint many-valued continuous sections?

(3) f has two many-valued continuous sections which are distinguished in any point $y \in Y$?

(4) The map $f_{exp}:(exp f)^{-1}(Y) \rightarrow Y$ is a trivial fibration with the Hilbert cube as a fiber?

Here exp X denotes the space of all nonempty closed subsets of X in the Vietoris topology (another symbol for this space is 2^{X}). any continuous map between compacta $f: X \to Y$ induces a map $\exp f: \exp X \to \exp Y$. By f_{\exp} we denote the restriction of $\exp f$ onto $(\exp f)^{-1}(Y)$.

References

- [1] A.N. Dranishnikov, On Q-fibrations which don't accept of disjoint sections, Funktsional. Anal. i Prilozhen. 22(2) (1988) 79-80 (in Russian).
- [2] W. Lewis, Continuum theory problems, Topology Proc. 8 (1983) 361-402.
- [3] W. Lewis, Continuum theory problems-update, Topology Proc. 6 (1984) 375-382.
- [4] E. Michel, Continuous selections II, Ann. of Math. (2) 67(3) (1956) 562-580.
- [5] J.W. Milnor and J.D. Stasheff, Characteristic Classes (Princeton Univ. Press. Princeton, NJ, 1974).