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Abstract

In the present work, the authors determine coefficient bounds for functions in certain subclasses of starlike and convex functions
of complex order, which are introduced here by means of a family of nonhomogeneous Cauchy–Euler differential equations. Several
corollaries and consequences of the main results are also considered.
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1. Introduction and definitions

Let A denote the class of functions f (z) normalized by

f (z) = z +

∞∑
k=2

ak zk, (1.1)

which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1}.

A function f (z) ∈ A is said to be in the class S∗(γ ) if it also satisfies the following inequality:

R

[
1 +

1
γ

(
z f ′(z)
f (z)

− 1
)]

> 0 (z ∈ U; γ ∈ C∗
:= C \ {0}). (1.2)
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Furthermore, a function f (z) ∈ A is said to be in the class C(γ ), if it also satisfies the following inequality:

R

(
1 +

1
γ

z f ′′(z)
f ′(z)

)
> 0 (z ∈ U; γ ∈ C∗). (1.3)

The function classes S∗(γ ) and C(γ ) were considered earlier by Nasr and Aouf [10–12] and Wiatrowski [15],
respectively (see also [8,9,14]).

We also let SC(γ, λ, β) denote the subclass ofA consisting of functions f (z) which satisfy the following condition:

R

[
1 +

1
γ

(
z[λz f ′(z) + (1 − λ) f (z)]′

λz f ′(z) + (1 − λ) f (z)
− 1

)]
> β

(
f (z) ∈ A; 0 5 λ 5 1; 0 5 β < 1; γ ∈ C∗

; z ∈ U
)
.

(1.4)

Clearly, we have the following relationships:

SC(γ, 0, 0) ≡ S∗(γ ) and SC(γ, 1, 0) ≡ C(γ ).

Recently, the function class satisfying the inequality (1.4) was considered by Altıntaş et al. [4]. For other special
cases of the function class SC(γ, λ, β), we refer the reader to the investigations by (for example) Altıntaş et al. [1–3,
5–7]. The main object of the present investigation is to derive some coefficient bounds for functions in the subclass
B(γ, λ, β; µ) of A, which consists of functions f (z) ∈ A satisfying the following nonhomogeneous Cauchy–Euler
differential equation:

z2 d2w

dz2 + 2(1 + µ)z
dw

dz
+ µ(1 + µ)w = (1 + µ)(2 + µ)g(z)

(w := f (z) ∈ A; g(z) ∈ SC(γ, λ, β); µ ∈ R \ (−∞, −1]) . (1.5)

2. Coefficient estimates for the function class SC(γ, λ, β)

For functions in the class SC(γ, λ, β), we first establish the following result.

Theorem 1. Let the function f (z) ∈ A be defined by (1.1). If the function f (z) is in the class SC(γ, λ, β), then

|an| 5

n−2∏
j=0

[ j + 2|γ |(1 − β)]

(n − 1)![1 + λ(n − 1)]
(n ∈ N∗

:= N \ {1} = {2, 3, 4, . . .}). (2.1)

Proof. Let the function f (z) ∈ A be given by (1.1) and let the function F(z) be defined by

F(z) := λz f ′(z) + (1 − λ) f (z)
(

f (z) ∈ A; 0 5 λ 5 1; z ∈ U
)
.

Then, from (1.4) and the definition of the function F(z) above, it is easily seen that

R

[
1 +

1
γ

(
zF ′(z)
F(z)

− 1
)]

> β

with

F(z) = z +

∞∑
k=2

Ak zk
∈ A

(
Ak := [1 + λ(k − 1)]ak; k ∈ N∗

)
.

Thus, by setting

1 +
1
γ

(
zF ′(z)
F(z) − 1

)
− β

1 − β
= h(z)

or, equivalently,

zF ′(z) = [1 + γ (1 − β) (h(z) − 1)]F(z), (2.2)
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we get

h(z) = 1 + c1z + c2z2
+ · · · (z ∈ U). (2.3)

Since

R (h(z)) > 0 (0 5 β < 1; γ ∈ C∗),

we conclude that

|cn| 5 2 (n ∈ N).

We also find from (2.2) and (2.3) that

(n − 1)An = 2γ (1 − β)[1 + A2 + A3 + · · · + An−1].

In particular, for n = 2, 3, 4, we have

A2 = 2γ (1 − β) ⇒ |A2| 5 2|γ |(1 − β),

2A3 = 1 + A2 ⇒ |A3| 5
2|γ |(1 − β)[1 + 2|γ |(1 − β)]

2!
,

and

3A4 = 1 + A2 + A3 ⇒ |A4| 5
2|γ |(1 − β)[1 + 2|γ |(1 − β)][2 + 2|γ |(1 − β)]

3!
,

respectively. Using the principle of mathematical induction, we obtain

|An| 5

n−2∏
j=0

[ j + 2|γ |(1 − β)]

(n − 1)!
(n ∈ N∗). (2.4)

Moreover, by the relationship between the functions f (z) and F(z), it is clear that

An = [1 + λ(n − 1)]an (n ∈ N∗), (2.5)

just as we indicated above.
The inequality (2.1) now follows from (2.4) and (2.5). This evidently completes the proof of Theorem 1. �

By choosing suitable values of the admissible parameters β, λ, and γ in Theorem 1 above, we deduce the following
corollaries.

Corollary 1. If a function f (z) ∈ A is in the class SC(γ, λ, 0), then

|an| 5

n−2∏
j=0

( j + 2|γ |)

(n − 1)![1 + λ(n − 1)]
(n ∈ N∗).

Corollary 2 (cf., e.g., Nasr and Aouf [10]). If a function f (z) ∈ A is in the class S∗(γ ), then

|an| 5

n−2∏
j=0

( j + 2|γ |)

(n − 1)!
(n ∈ N∗).

Corollary 3 (cf., e.g., Nasr and Aouf [10]). If a function f (z) ∈ A is in the class C(γ ), then

|an| 5

n−2∏
j=0

( j + 2|γ |)

n!
(n ∈ N∗).
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Corollary 4. If a function f (z) ∈ A is in the class SC(1 − α, λ, β), then

|an| 5

n−2∏
j=0

[ j + 2(1 − α)(1 − β)]

(n − 1)![1 + λ(n − 1)]
(n ∈ N∗).

Corollary 5 (cf. Robertson [13]). If a function f (z) ∈ A is in the class S∗(1 − α), then

|an| 5

n−2∏
j=0

[ j + 2(1 − α)]

(n − 1)!
(n ∈ N∗).

Corollary 6 (cf. Robertson [13]). If a function f (z) ∈ A is in the class C(1 − α), then

|an| 5

n−2∏
j=0

[ j + 2(1 − α)]

n!
(n ∈ N∗).

3. Coefficient bounds for the function class B(γ, λ, β; µ)

Our main coefficient bounds for functions in the class B(γ, λ, β; µ) are given by Theorem 2 below.

Theorem 2. Let the function f (z) ∈ A be defined by (1.1). If the function f (z) is in the class B(γ, λ, β; µ), then

|an| 5

(1 + µ)(2 + µ)
n−2∏
j=0

[ j + 2|γ |(1 − β)]

(n − 1)!(n + µ)(n + 1 + µ)[1 + λ(n − 1)]
(n ∈ N∗). (3.1)

Proof. Let f (z) ∈ A be given by (1.1). Also let

g(z) = z +

∞∑
k=2

bk zk
∈ SC(γ, λ, β), (3.2)

so that

an =
(1 + µ)(2 + µ)

(n + µ)(n + 1 + µ)
bn

(
n ∈ N∗

; µ ∈ R \ (−∞, −1]
)
. (3.3)

Thus, by using Theorem 1, we readily obtain

|an| 5

(1 + µ)(2 + µ)
n−2∏
j=0

[ j + 2|γ |(1 − β)]

(n − 1)!(n + µ)(n + 1 + µ)[1 + λ(n − 1)]
(n ∈ N∗),

which is precisely the assertion (3.1) of Theorem 2. �

Acknowledgements

The first- and the second-named authors were supported by Başkent University (Ankara, Turkey). They would also
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