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a b s t r a c t

We give a characterization of a current assignment on the bipartite Möbius ladder graph
with 2n + 1 rungs. Such an assignment yields an index one current graph with current
group Z12n+7 that generates an orientable face 2-colorable triangular embedding of the
complete graph K12n+7 or, equivalently, an orientable biembedding of two cyclic Steiner
triple systems of order 12n+7.We use our characterization to construct Skolem sequences
that give rise to such current assignments. These produce many nonisomorphic orientable
biembeddings of cyclic Steiner triple systems of order 12n+ 7.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A Steiner triple system of order m, briefly STS(m), is an ordered pair (V ,B), where V is an m-element set (the points)
andB is a set of 3-element subsets of V (the blocks) such that each 2-element subset of V appears in precisely one block. A
necessary and sufficient condition for the existence of an STS(m) is that m ≡ 1 or 3(mod 6). In this paper, without loss of
generality, by a cyclic STS(m) we mean a system whose point set is Zm, and which has the property that if {x, y, z} is a block
then, for each τ ∈ Zm, {x+ τ , y+ τ , z + τ } is also a block. A cyclic STS(m) exists form ≡ 1 or 3(mod 6) except form = 9.
In a triangular embedding of a graph, a face may be described by specifying the triple (x, y, z) of vertices incident with

that face. Given a face 2-colorable triangular embedding of the complete graph Km in an orientable or nonorientable surface,
the triangular faces in each of the two color classes form the blocks of two STS(m)s. Conversely, given two STS(m)s, say S1
and S2, one may ask whether there is a face 2-colorable triangular embedding of Km in which the color classes correspond
to isomorphic copies of S1 and S2. Such an embedding is called a biembedding of S1 and S2 and is described as orientable or
nonorientable according to the nature of the surface. Euler’s formula shows that an orientable biembedding of STS(m)s is
only possible ifm ≡ 3 or 7(mod 12).
Recent computational results [2,3,7] show that there is a reasonable evidence to support the following two deep

conjectures:

(a) Every pair of STS(m)s,m ≡ 1 or 3(mod 6) andm ≥ 9, can be biembedded in a nonorientable surface.
(b) Each STS(m),m ≡ 3 or 7(mod 12) andm ≥ 3, has a biembedding in an orientable surface.
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In the present paper, bearing in mind conjecture (b), we study how to generate orientable biembeddings of cyclic
STS(12n+ 7)s.
Given two triangular embeddings f and f ′ of Kn, if ψ is a bijection between the vertices of Kn such that (x, y, z) is a face

of f if and only if (ψ(x), ψ(y), ψ(z)) is a face of f ′, thenψ is said to be an isomorphism from f to f ′, and the two embeddings
are said to be isomorphic. If f = f ′ then such a mapping ψ is called an automorphism of the embedding.
Many of the results on orientable biembeddings of STS(12n + 7)s are results for small values of n, and were obtained

by computer searches. The only known ways to obtain orientable face 2-colorable triangular embeddings of K12n+7 for
unboundedly large n are to use recursive constructions [8–10], or to construct bipartite index one current graphs with
the current group Z12n+7. This latter method, as described by Youngs in [14], gives orientable biembeddings of cyclic
STS(12n+ 7)s, and the biembeddings themselves have a cyclic automorphism of order 12n+ 7. However, the construction
of such current graphs is difficult and there has been no real progress since Youngs’ paper. We also remark that any cyclic
STS(12n+ 3) has a short orbit generated by the triple {0, 4n+ 1, 8n+ 2}, and this precludes a similar construction using a
bipartite index one current graph. This is because the biembedded systems would then have common blocks and so could
not form an embedding in a surface. For this reason we concentrate here on biembeddings of STS(12n+ 7)s.
By a (12n+7)-current assignmentwemean a current assignmentwith current groupZ12n+7 on the bipartiteMöbius ladder

graph with 2n + 1 rungs such that by choosing a suitable rotation of the graph we can obtain an index one current graph
with current group Z12n+7 generating an orientable face 2-colorable triangular embedding of K12n+7. Youngs constructed a
(12n+7)-current assignment for every n ≥ 1, thereby establishing the existence of an orientable biembedding of two cyclic
STS(12n+ 7)s for every n ≥ 1.
The aimof the present paper is to characterize (12n+7)-current assignments and to use this characterization to construct

many different (12n+7)-current assignments. It is then possible to constructmany nonisomorphic orientable biembeddings
of cyclic STS(12n+7)s. Each of the biembeddings produced by thismethod has itself a cyclic automorphism of order 12n+7.
The characterization gives some insight into why it has been so difficult to construct (12n+ 7)-current assignments: each
(12n + 7)-current assignment is associated with a partition of Z12n+7 that has a property, which we call skewness, that
seems to be hard to satisfy.
In Section 2 we describe how a bipartite index one current graph with current group Z12n+7 determines an orientable

biembedding of two cyclic STS(12n + 7)s. A characterization of (12n + 7)-current assignments is given in Section 3. The
characterization has the following form. We define a class of the so-called skew centered systems of order 12n + 7, each
of which is a collection of ordered triples of elements of Z12n+7. We show in Theorem 2 that every skew centered system
determines a (12n+7)-current assignment and that every (12n+7)-current assignment is determined by a skew centered
system. This enables us in Theorem 3 to describe all orientable biembeddings of cyclic STS(12n+7)s which can be obtained
from (12n+ 7)-current assignments.
In Section 4 we show how some (12n + 7)-current assignments are generated by a class of Skolem sequences that we

call skew. A Skolem sequence of order n, n ≡ 0 or 1 (mod 4), is a sequence {s1, s2, . . . , s2n} of 2n integers satisfying the
following two conditions.

(i) For each k ∈ {1, 2, . . . , n} there are precisely two elements of the sequence, say si and sj, such that si = sj = k.
(ii) If si = sj = k and i < j then j− i = k.

There are several equivalent definitions of Skolem sequences and we use a pictorial representation that is appropriate for
our purposes in Section 4. It was shown by Abrham [1] that the number of Skolem sequences of order n is at least 2bn/3c,
and computational evidence [4] suggests that for sufficiently large n there are at least Abn Skolem sequences of order n,
where A > 0 and b > 6. We prove in Theorem 4 that, for a certain infinite set of values of n, there is a positive constant B

such that the number of skew Skolem sequences of order n is at least Bn
1

log2 9 , although we suspect that, for large values of
n ≡ 1 (mod 4), a substantial proportion of Skolem sequences of order n are in fact skew. Finally, in Theorem 5 these skew

Skolem sequences are used to show that for certain values of n there are at least C24nn
1
log29
−1 (where C > 0 is a constant)

nonisomorphic orientable biembeddings of cyclic STS(24n + 7)s. We also observe that, by using Youngs’ construction and
employing results from [12], it can be shown that for every n ≥ 1, there are at least 1

4n+12
4n−2 nonisomorphic orientable

biembeddings of cyclic STS(24n+ 7)s.

2. Current graphs and orientable biembeddings of cyclic STS(12n + 7)s

In this section we describe how a bipartite index one current graph with current group Z12n+7 determines an orientable
biembedding of two cyclic STS(12n+ 7)s.
By a generic triple on Zm we mean a cyclically ordered triple (β, γ , δ) of distinct nonzero elements of Zm such that

β + γ + δ = 0. Generic triples are closely related to Heffter difference triples; see for example [6]. A generic triple (β, γ , δ)
on Zm induces an orbit ofm blocks {{x, x+β, x+β+γ } : x = 0, 1, . . . ,m−1}. It is easy to see that the orbit is well defined
in that it does not depend on the choice of two consecutive elements β, γ in the cyclic triple (β, γ , δ), that the 2-element
subsets contained in the m blocks are exactly all the 2-element subsets {y, z} such that y − z ∈ {±β,±γ ,±δ}, and that
each of these subsets appears in the blocks exactly once. Generic triples (β, γ , δ) and (−δ,−γ ,−β) induce the same orbit.
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By a generic triple system of order 12n+7, GTS(12n+7) for short, wemean a collection {(βi, γi, δi) : i = 1, 2, . . . , 2n+1}
of generic triples on Z12n+7 such that the sets {βi, γi, δi} are pairwise disjoint and their union contains exactly one element
from every pair of inverse nonzero elements of Z12n+7. It is easy to see that the blocks induced by all generic triples of a
GTS(12n+ 7) form a cyclic STS(12n+ 7). This cyclic STS is said to be induced by the GTS. Indeed, for every two elements x
and y of Z12n+7, exactly one of the two elements x− y and y− x appears in some generic triple of the GTS(12n+ 7) and this
generic triple induces exactly one block containing the two elements.
Two GTS(12n+7)s, F1 and F2, are switch equivalent if for every generic triple (β, γ , δ) of F1, F2 contains either (β, γ , δ) or

(−δ,−γ ,−β). To find a generic triple (β, γ , δ) inducing blocks {x+ τ , y+ τ , z+ τ }, τ = 0, 1, . . . , 12n+ 6, of a cyclic STS
wemust represent the block {x, y, z} as {c, c+β, c+β+γ }. There are exactly two different cyclic orderings of the elements
of {x, y, z}, namely (x, y, z) and (x, z, y). Hence there are exactly two different generic triples inducing the blocks, namely
(β ′, γ ′, δ′) and (−δ′,−γ ′,−β ′), where β ′ = y− x, γ ′ = z − y and δ′ = x− z. Consequently, every cyclic STS(12n+ 7) is
induced by exactly one GTS(12n+ 7) up to switch equivalence.
Nowwe briefly review somematerial about index one current graphs in the formused in the paper. The reader is referred

to [11,13] for a more detailed development of the material sketched herein. We assume that the reader is familiar with
current graphs, derived graphs and the derived embeddings generated by current graphs.
Let G be a connected trivalent graph with vertex set V (G) and edge set E(G). Each edge e ∈ E(G) gives rise to two reverse

arcs e+ and e−, and the set of all arcs, A(G), is called the arc set of the graph G. By a current assignment λ on G with current
group Z12s+7, we mean a function λ : A(G)→ Z12n+7 \ {0} such that λ(e−) = −λ(e+) for every edge e. A vertex rotation Dv ,
v ∈ V (G), is a cyclic permutation of the three arcs directed from the vertex v. A set of such rotations D = {Dv : v ∈ V (G)} is
called a rotation of G. A triple 〈G, λ,D〉 is called a current graph. It may be represented in a diagram of Gwith vertex rotations
indicated by coloring the vertices so that black vertices denote a clockwise rotation, and white vertices an anticlockwise
rotation. Each pair of reverse arcs is represented by one of the arcs with the current indicated.
Alternately applying D and the arc-reversing involution, we obtain a cycle (consisting of arcs of A(G)) called a circuit

induced by the rotation of D. A current graph 〈G, λ,D〉 is said to be index one if D induces a single circuit containing all the
arcs in A(G). If (a1, a2, a3) is the rotation of some vertex v ∈ V (G) and λ(ai) = εi for i = 1, 2, 3, then the cyclically ordered
triple (ε1, ε2, ε3) is called the current rotation at the vertex v. If ε1 + ε2 + ε3 = 0, then we say that Kirchhoff’s Current Law
(KCL) is satisfied at v.
Consider an index one current graph 〈G, λ,D〉 with current group Z12n+7 that satisfies the following conditions

(A1 and A2).

(A1) The currents on the arcs of the current graph are pairwise distinct and form the set of all nonzero elements of the
current group Z12n+7.

(A2) KCL is satisfied at each vertex.

It is shown in [11,13] that such a current graph generates an orientable triangular embedding of K12n+7. The elements of
Z12n+7 give the vertices of the embedding. The rotation at 0 in the embedding is obtained from the single circuit induced
by D by listing the currents assigned to the arcs in the order in which they appear in the circuit. The rotation at x ∈ Z12n+7
is then obtained by adding x (modulo 12n + 7) to all the entries in the rotation at 0. A vertex in the current graph with
current rotation (ε1, ε2, ε3) induces 12n+ 7 triangular faces of the embedding with vertex sets {x, x+ ε1, x+ ε1 + ε2} for
x = 0, 1, . . . , 12n+ 6.
For every two vertices v and w of the current graph, some face induced by v shares a common edge with some face

induced byw if and only if v andw are adjacent vertices. Hence, if the current graph is bipartite, then the derived embedding
is face 2-colorable and the faces induced by the vertices of one vertex partition class all lie in the same color class.
If we consider the current rotation of a vertex as a generic triple, then the vertex sets of the faces induced by the vertex

are exactly the blocks generated by the generic triple. Hence we have the following result.

(B) LetV andV ′ be the twovertex partition classes of a bipartite index one current graphwith current groupZ12n+7 satisfying
(A1) and (A2). Then the set of current rotations of the vertices of V is a GTS(12n+ 7) inducing a cyclic STS(12n+ 7) that
is orientably biembeddable with a cyclic STS(12n+ 7) induced by the current rotations of the vertices from V ′.

For a current rotation (ε1, ε2, ε3), the reverse current rotation is (ε1, ε3, ε2); a current rotation and the reverse current
rotation considered as generic triples induce different blocks. Given a vertex with a current rotation, reversing the rotation
of the vertex yields the reverse current rotation. In the proof of Theorem 3, given a bipartite index one current graph
with two vertex partition classes V and V ′, the set of current rotations of the vertices of each vertex partition class is a
GTS(12n + 7) inducing an orientably embedded cyclic STS(12n + 7). We will show that if we reverse the rotations of
arbitrarily chosen vertices of V , then the rotations of the vertices of V ′ can be chosen in such a way that the resulting
rotation of the graph induces exactly one circuit. As a consequence, if we reverse arbitrarily chosen generic triples of the
GTS(12n + 7) corresponding to the current rotations of the vertices of V , we obtain a new GTS(12n + 7) also inducing an
orientably embedded cyclic STS(12n+ 7). Here we will need Lemma 1.
Consider the bipartite graph with 2n+ 1 vertical edges shown in Fig. 1 with the ends labeled by the same letter, A or B,

identified. This graph is called theMöbius ladder graphwith 2n+1 rungs and is denoted byML(2n+1). The circled vertices
form one of the two vertex partition classes of this graph. For a circled vertex, the opposite vertex is an uncircled vertex such
that both the vertices are the end vertices of the same vertical edge.
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Fig. 1. The graph ML(2n+ 1)with 2n+ 1 vertical edges.

Lemma 1. For every choice of rotations of the circled vertices in Fig. 1, there are rotations of the uncircled vertices such that the
resulting rotation of the graph induces exactly one circuit.

Proof. Suppose that the rotations of the circled vertices are given. Then for each circled vertex, if the rotation of that vertex
is clockwise (respectively, anticlockwise), choose the rotation of the opposite vertex to be anticlockwise (respectively,
clockwise). It is easy to check the following: the resulting rotation of the graph induces exactly three circuits; there is a
vertical edge e traversed by two different circuits; each of the end vertices of e lies in all three circuits. Now reverse the
rotation of the uncircled vertex incident with e. As a result, the three circuits are ‘‘sewed’’ into one circuit. �

3. Skew centered systems and orientable biembeddings of cyclic STS(12n + 7)s

In this sectionwedefine a class of skew centered systems of order 12n+7 each ofwhich is a collection of ordered triples of
elements of Z12n+7. We show in Theorem 2 that every skew centered system determines a current assignment on the graph
ML(2n+ 1) satisfying (A1) and (A2), and that every such current assignment is determined by a skew centered system. The
elements of the ordered triples of a skew centered system A of order 12n + 7 form 3-element subsets T1, T2, . . . , T2n+1 of
Z12n+7. In the current assignment determined by A there is a vertex partition class of the graphML(2n+1)with the property
that for every Ti = {β, γ , δ}, there is a vertex of the partition class such that the set of currents on the arcs directed from
the vertex is either {β, γ , δ} or {−β,−γ ,−δ}. Taking into account Lemma 1, we establish Theorem 3 that describes all
orientable biembeddings of cyclic STS(12n + 7)s that can be obtained from current assignments on the graph ML(2n + 1)
satisfying (A1) and (A2).
By a centered system of order 12n+ 7, denoted by CS(12n+ 7), we mean a collection {〈βi, γi, δi〉 : i = 1, 2, . . . , 2n+ 1}

of ordered triples of elements of Z12n+7 such that:

(1) The sets {βi, γi, δi} are pairwise disjoint and their union contains exactly one element from each pair of inverse nonzero
elements of Z12n+7.

(2) βi + γi + δi = 0 for every i.
(3) There is an elementΩ ∈ Z12n+7 with the property that the set {γ1,−δ1, γ2,−δ2, . . . , γ2n+1,−δ2n+1} can be partitioned
into pairs {x, y} such that x+ y = Ω .

The sets {β1, β2, . . . , β2n+1} and {γ1,−δ1, γ2,−δ2, . . . , γ2n+1,−δ2n+1} are called the label set and the base set,
respectively, of the CS(12n+ 7). The elementΩ is called the pair sum of the CS(12n+ 7).
A CS(12n+ 7) can be represented as a diagram in the following way. Let c1, c2, . . . , c4n+2 be the elements of the base set

arranged in ascending order (in accordance with the linear order 0 < 1 < 2 < · · · < 12n + 6). Place 4n + 2 vertices on
a vertical line and label these vertices from top to bottom by the elements c1, c2, . . . , c4n+2, in that order. For every triple
〈β, γ , δ〉 of the CS, draw a diagram curve with label β joining the vertices γ and −δ (note that β + γ = −δ); the diagram
curve represents the triple. When we say that a subset of diagram curves covers a subset A of the base set, we mean that
A consists of all end vertices of the curves; such a nonempty subsetA is called a covered subset. Fig. 2(a), (b), and (c) show
three different CS(55)s; in each case the pair sum is 37 and the base set is {10, 11, . . . , 27}.
For each element x of the base set H denote by x∗ the element from H such that x + x∗ equals the pair sum. For

convenience, we will write x∗i instead of (xi)
∗. By the definition of a CS(12n+ 7), the base set does not contain two inverse

elements of Z12n+7, hence x 6= x∗. A proper subsetM ⊂ H is symmetrical if x ∈M implies x∗ ∈M.
A CS(12n + 7) is skew if the base set does not contain a symmetrical covered proper subset; in other words, no proper

subset of the set of the diagram curves covers a symmetrical subset. The CS(55)s in Fig. 2(a) and (b) are skew. The CS(55) in
Fig. 2(c) is not skew; the end vertices of the thick curves form a symmetrical subset.
Starting with the diagram of a CS(12n+ 7), we construct two new pictorial representations that will enable us easily to

recognizewhether or not the system is skew. Firstly, the double diagram of the CS(12n+7) is formed by taking each diagram
curve with end vertices, say v andw, and adding a new curve joining the vertices v∗ andw∗. Note that if 〈β, γ , δ〉 is a triple
of the CS(12s+ 7) then the corresponding new curve joins the vertices γ ∗ and (−δ)∗. Secondly, the auxiliary diagram of the
CS(12n + 7) is formed by taking each pair of vertices x and x∗, and adding a new curve joining these two vertices. In each
of these diagrams (double or auxiliary) there are exactly 4n + 2 curves joining vertices of the base set, and every vertex of
the base set is incident with exactly two curves. Hence, the curves form diagram cycles of even length in the corresponding
diagram. In what follows, when we speak about a diagram cycle, it will be clear from the context which diagram, double or
auxiliary, is meant. Fig. 3(a) (respectively, (b)) shows the cycles of the double (respectively, auxiliary) diagram constructed
for the CS(55) shown at the left of Fig. 2. A diagram cyclemay be described by the cyclic sequence (x1, x2, . . . , x2t) of vertices
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Fig. 2. The diagrams of three different CS(55)s.

obtained by listing the incident vertices when traversing the cycle in some chosen direction. The sequences (x1, x2, . . . , x2t)
and (x2t , . . . , x2, x1) designate the same diagram cycle.
Subsequently, when speaking about curves of the double or auxiliary diagram Γ of a CS(12n + 7), only the diagram

curves of the CS(12n+ 7) entering into Γ will be referred to as diagram curves.

Theorem 1. (a) A CS(12n+ 7) is skew if and only if the double diagram of the CS(12n+ 7) has exactly one cycle.
(b) A CS(12n+ 7) is skew if and only if the auxiliary diagram of the CS(12n+ 7) has exactly one cycle.

Proof. Taking into account the definition of a skew CS(12n+ 7), it suffices to show that given a diagram of a CS(12n+ 7),
the base setH contains a symmetrical covered proper subset if and only if the double (respectively, auxiliary) diagram has
at least two cycles.
Suppose that A is a symmetrical covered proper subset ofH . Then, in the double (respectively, auxiliary) diagram, for

every curve incident with a vertex ofA, both end vertices of the curve are inA. Hence the curves incident with vertices of
A form cycles. SinceA andH \A are symmetrical covered proper subsets ofH , the diagram has at least two cycles.
Nowwe show that if the double (respectively, auxiliary) diagram has at least two cycles, thenH contains a symmetrical

covered proper subset. It is easy to see that if (x1, x2, . . . , x2t) is a cycle of the double (respectively, auxiliary) diagram, then
{x1, x2, . . . , x2t} is a covered subset.
Suppose that the double diagram has at least two cycles. By the construction of the double diagram, if vertices y

and z are joined by a curve, then the vertices y∗ and z∗ are joined by a curve as well. Hence, if (x1, x2, . . . , x2t) is a
diagram cycle, then (x∗1, x

∗

2, . . . , x
∗

2t) is also a diagram cycle. The sets K = {x1, x2, . . . , x2t} and K∗ = {x∗1, x
∗

2, . . . , x
∗

2t}

either are disjoint or are the same set. The symmetrical set F = K
⋃

K∗ is covered. If K and K∗ are disjoint, then
|F | = |K| + |K∗| = 4t < 4n + 2 = |H |, hence F is a proper subset of H . If K and K∗ are the same set, then,
since there are at least two cycles, we have |F | = |K| < |H |, hence F is a proper subset ofH .
Suppose that the auxiliary diagram has at least two cycles. Every cycle of the diagram is of the form

(y1, y∗1, y2, y
∗

2, . . . , yt , y
∗
t ), hence the vertices of every cycle form a symmetrical covered proper subset ofH . �

The double diagram of a skew CS(12n+ 7) will be used to obtain a current assignment on the graph ML(2n+ 1) based
on the CS(12n+ 7). The auxiliary diagrams will be used to construct many skew CS(12n+ 7)s.

Lemma 2. The single cycle

(x1, x2, . . . , x4n+2) (1)

of the double diagram of a skew CS(12n+ 7) is necessarily of the form

(x1, x2, . . . , x2n+1, x∗1, x
∗

2, . . . , x
∗

2n+1).
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Fig. 3. The cycles of the double and auxiliary diagrams (and the corresponding current assignment on the graph ML(9)) for the skew CS(55) in Fig. 2(a).

Proof. Each two vertices of the diagram cycle are connected by two different subpaths of this cycle. Considering (1), there
must be xt+1 = x∗1 for some t ∈ {0, 1, . . . , 4n+ 1}. Then x1, x2, . . . , xt , xt+1 (xt+1 = x

∗

1) and x
∗

1, x
∗

2, . . . , x
∗
t , x
∗

t+1 (x
∗

t+1 = x1)
are two subpaths of the diagram cycle joining the vertices x1 and x∗1 = xt+1. If the two subpaths are different, then
(x1, x2, . . . , xt , x∗1, x

∗

2, . . . , x
∗
t ) is the diagram cycle and t = 2n + 1. If the two subpaths are the same subpath (traversed

in opposite directions), we have x∗i = xt+2−i for i = 1, 2 . . . , t + 1. Then either xj = x
∗

j for some j (a contradiction) or
xj+1 = x∗j (a contradiction, since the CS(12n+ 7) is skew and, thus, there is no curve joining vertices xj and xj+1 = x

∗

j ). �

Given a current assignment on the graph ML(2n + 1) and a vertex partition class, we say that the currents on the arcs
directed from the vertices of the class are based on a CS(12n + 7) if for every triple 〈β, γ , δ〉 of the CS(12n + 7), there is a
vertex of the class such that the currents on the arcs directed from the vertex are either β, γ , δ or−β,−γ ,−δ.
A skew CS(12n+ 7) determines a current assignment on the graph ML(2n+ 1). Suppose that

(x1, x2, . . . , x2n+1, x∗1, x
∗

2, . . . , x
∗

2n+1) (2)

is the cycle of the double diagram of the CS(12n + 7), then the current assignment is given in Fig. 4. For example, Fig. 3(c)
shows such a current assignment constructed from the diagram cycle in Fig. 3(a); ignore for now the circles on some of the
vertices.
The cycle given by (2) is the same as that given by (y1, y2, . . . , y2n+1, y∗1, y

∗

2, . . . , y
∗

2n+1) = (x
∗

2n+1, . . . , x
∗

2, x
∗

1, x2n+1, . . . ,
x2, x1). However, the current assignment on ML(2n + 1) that results from writing the cycle in this form looks slightly
different. It can be obtained from that in Fig. 4 by reversing all currents. So, whenwe say that a skew CS(12n+7) determines
a current assignment on the graph ML(2n+ 1), we mean that it does so up to such a reversal of the currents.
Since xj+1 − xj = −(x∗j+1 − x

∗

j ) for every j = 1, 2, . . . , 2n + 1 (with x2n+2 = x1), KCL holds at every vertex. The set of
currents on the 2n+ 1 vertical arcs of Fig. 4 contains exactly one element from every pair {β,−β}, where β belongs to the
label set of the CS(12n+ 7). The set of currents on the horizontal arcs is the base set of the CS(12n+ 7). Hence, the current
assignment in Fig. 4 satisfies (A1) and (A2).
The cycle (2) can be written as (y1, z1, y2, z2, . . . , y2n+1, z2n+1), where for i = 1, 2, . . . , 2n+ 1, the vertices yi and zi are

connected by a diagram curve of the CS(12n+7), that is, either 〈zi−yi, yi,−zi〉 or 〈yi−zi, zi,−yi〉 is a triple of the CS(12n+7).
By ‘‘a vertex of the graph in Fig. 4 corresponding to the pair {yi, zi}’’ we mean a vertex incident with horizontal arcs carrying
currents yi and zi; the currents on the arcs directed from the vertex are zi,−yi, and yi − zi. The vertices corresponding to all
the pairs {yj, zj}, j = 1, 2, . . . , 2n + 1, form a vertex partition class of the bipartite graph. Hence, we obtain the following
result.
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Fig. 4. A current assignment on the graph ML(2n+ 1) obtained from the double diagram cycle (2).

Fig. 5. A current assignment satisfying (A1) and (A2).

(C) Given a current assignment on the graphML(2n+1) determined by a skew CS(12n+7), there is a vertex partition class
such that the currents on the arcs directed from the vertices of the class are based on the CS(12n + 7). The partition
class is said to be associatedwith the CS(12n+ 7).

Theorem 2. A current assignment on the graph ML(2n + 1) satisfies (A1) and (A2) if and only if the current assignment is
determined by a skew CS(12n+ 7).

Proof. It was shown above that every skewCS(12n+7) determines a current assignment on the graphML(2n+1) satisfying
(A1) and (A2). Now, to prove the theorem, it suffices to prove the following statement.

(D) Given a current assignment on the graph ML(2n+ 1) satisfying (A1) and (A2), for each vertex partition class, there is a
skew CS(12n+ 7) determining the current assignment such that the currents on the arcs directed from the vertices of
the class are based on the CS(12n+ 7).

The statement asserts slightly more than we really need to prove the theorem, but we give the statement in such a form
for later use.
Consider the current assignment given in Fig. 5 and satisfying (A1) and (A2). SinceKCLholds at every vertex, xi+yi = xj+yj

for every i and j. Choose a vertex partition class (the vertices of the class are circled in the figure). Consider any vertex v of
this partition class. If in Fig. 5 the arcs incident with v carry currents β, δ, δ′, where β is the current on the vertical arc and
is such that β + δ = δ′, then the triple 〈β, δ,−δ′〉 is associated with v. Consider the triples 〈β1, x1,−x2〉, 〈β2, y3,−y2〉,
〈β3, x3,−x4〉, 〈β4, y5,−y4〉, 〈β5, x5,−x6〉, . . . , 〈β2n, y2n+1,−y2n〉, 〈β2n+1, x2n+1,−y1〉 associated with the vertices of the
partition class. It is easy to see that the triples form a CS(12n + 7) with label set {β1, β2, . . . , β2n+1}, the base set
{x1, x2, . . . , x2n+1, y1, y2, . . . , y2n+1}, and the pair sum x1 + y1 (hence, xi = y∗i for i = 1, 2, . . . , 2n + 1). The currents
on the arcs directed from the vertices of the partition class are based on the CS(12n + 7). Now we want to show that the
cyclic sequence

(x1, x2, . . . , x2n+1, y1, y2, . . . , y2n+1) (3)

of the currents on the horizontal arcs in Fig. 5 is the cycle of the double diagramof the CS(12n+7). Let every two neighboring
vertices of the cycle (3) be joined by a curve. The diagram of the CS(12n + 7) consists of curves joining the following pairs
of vertices: {x1, x2}, {y2, y3}, {x3, x4}, {y4, y5}, {x5, x6}, . . . , {y2n, y2n+1}, {x2n+1, y1}. So we see that the cycle (3) contains all
curves of the diagram of the CS(12n+ 7), and for every curve of the cycle, if the curve joins vertices v andw, then the cycle
contains a curve joining the vertices v∗ andw∗. Hence, the cycle (3) is the only cycle of the double diagramof the CS(12n+7).
By Theorem 1, the CS(12n+ 7) is skew. �

The twoCS(12n+7)s given byA = {〈βi, γi, δi〉 : i = 1, 2, . . . , 2n+1} andA′ = {〈βi, (−δi)∗,−γ ∗i , 〉 : i = 1, 2, . . . , 2n+1}
will be said to be equivalent. Note that the curve with label βi joins the vertices γi and −δi in the diagram of A and joins
the vertices (−δi)∗ = Ω + δi and γ ∗i = −(−γ

∗

i ) in the diagram of A
′, where Ω denotes the pair sum. It follows that

βi + (−δi)
∗
+ (−γ ∗i ) = βi + (Ω + δi) − (Ω − γi) = 0, and the double diagram of A consists of all diagram curves of the

diagrams of A and A′. Considering how a current assignment on ML(2n+ 1) is determined by a CS(12n+ 7), and taking into
account the proof of Theorem 2, we obtain the following statement.

(E) Two different CS(12n+ 7)s determine the same current assignment on ML(2n+ 1) if and only if the CS(12n+ 7)s are
equivalent.



2854 M.J. Grannell, V.P. Korzhik / Discrete Mathematics 309 (2009) 2847–2860

Fig. 6. A skew SK(4n+ 1) for every n ≥ 1.

By a skewGTS(12n+7)wemean a GTS(12n+7)with an associated skew CS(12n+7), for every triple 〈β, γ , δ〉 of which,
the GTS has exactly one of the following generic triples: (β, γ , δ), (−δ,−γ ,−β), (β, δ, γ ), (−γ ,−δ,−β). We say that the
skew GTS(12n+ 7) is based on the skew CS(12n+ 7).

Theorem 3. For every nonnegative integer n, every cyclic STS(12n + 7) induced by every skew GTS(12n + 7) is orientably
biembeddable with a cyclic STS(12n+ 7) induced by a skew GTS(12n+ 7).

Proof. Take X to be an arbitrary skew CS(12n+7). Consider the current assignment on the graphML(2n+1) determined by
X . By (C), there is a vertex partition {V , V ′} of the bipartite graph, where V is associatedwith X . Now, given an arbitrary skew
GTS(12n+7) based on X , taking into account (C), we can choose the rotations of the vertices of V and then, by Lemma 1, the
rotations of the vertices of V ′ such that the resulting rotation of the graph ML(2n + 1) induces exactly one circuit and for
each generic triple (β, γ , δ) of the GTS, there is a vertex of V with current rotation (β, γ , δ) or (−δ,−γ ,−β). Since generic
triples (β, γ , δ) and (−δ,−γ ,−β) induce the same blocks, then by (B), the resulting current graph shows that the cyclic
STS(12n + 7) induced by the skew GTS(12n + 7) is orientably biembedded with a cyclic STS(12n + 7)X ′ induced by the
current rotations of the vertices of V ′. Taking (D) into account, we see that X ′ is itself induced by a skew GTS(12n+ 7). �

4. Constructing skew centered systems

In this section we show how to use Theorem 1(b) to construct many skew CS(12n + 7)s for some values of n. The
inequivalent skew CS(12n + 7)s obtained give different index one current graphs which yield mutually nonisomorphic
orientable biembeddings of cyclic STS(12n+ 7)s (Theorem 5).
We will consider CS(12n+ 7)s with the label set {1, 2, . . . , 2n+ 1} and the base set {2n+ 2, 2n+ 3, . . . , 6n+ 3}. Such

CS(12n+ 7)s are called Skolem sequences of order 2n+ 1 (SK(2n+ 1), for short) in the literature and exist only for even n,
see [5]. The CS(55)s in Fig. 2 are examples of SK(9)s.
The only known example of a current assignment on the graph ML(4n+ 1) satisfying (A1) and (A2) is given in [14]. The

current assignment is constructed for all n ≥ 1 and is given in terms of zigzags. One can check that the current assignment
is determined by the skew SK(4n + 1), n ≥ 1, given in Fig. 6. This figure demonstrates the existence of a skew SK(4n + 1)
for every n ≥ 1; it is easy enough to check that the double diagram of the SK(4n + 1) has exactly one cycle. In Fig. 6, and
subsequently, we represent the fragment with k+ 1 curves shown in Fig. 7(a) by the picture given in Fig. 7(b).
In what follows, for positive integers a ≤ b, by the interval [a, b] of order b− a+ 1 we mean a set of b− a+ 1 vertices

on a vertical line labeled by integers a, a + 1, a + 2 . . . , b − 1, b in this order. For a ≤ a′ ≤ b′ ≤ b, the interval [a′, b′] of
vertices is a subinterval of the interval [a, b].
We will construct a skew SK(4n + 1) in the form of the diagram of the SK(4n + 1). To prove skewness we will use

Theorem 1(b) by showing that the auxiliary diagram has exactly one cycle. The diagram is composed of some fragments:
the fragments P(s + 1, 3s + 1) and Q (s + 1, 3s + 1), and fragments representing skew SK(s)s. Each of the fragments is a
family of curves covering some interval of vertices on a vertical line. The curves are labeled by positive integers; if a curve
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Fig. 7. Representation of a fragment.

Fig. 8. The family of curves P(s, 3s− 2).

has label δ, then the curve joins vertices x and x+ δ. The labeled curves are taken to be the diagram curves of the resulting
skew SK(4n+ 1). The fragments are combined in such a way that the auxiliary diagram has exactly one cycle.
Given an interval of vertices on a vertical line, a set of curves joining pairs of the vertices is called a normal set of curves

if the following conditions hold:
(1) for every vertex, the number of curves incident with the vertex is either one or two;
(2) the curves do not form cycles.

The curves of a normal set of curves form paths of the normal set; the end vertices of these paths are vertices incident with
exactly one curve. In our pictorial representations of a normal set of curves, we indicate the two end vertices of each path
by connecting them with a dashed curve
We define P(s, 3s − 2) to be the family of curves shown in Fig. 8(a) that covers the interval [a, a + 4s − 3]. This family

has exactly 2s− 1 curves which have labels s, s+ 1, . . . , 3s− 2, respectively. Fig. 8(b) is a schematic representation of the
family P(s, 3s− 2), and Fig. 8(c) shows P(5, 13) for the case a = 1.

Claim 1. Consider the family P(s, 3s− 2) covering the subinterval [a+ 2s− 1, a+ 6s− 4] of the interval [a+ 1, a+ 6s− 4]
(see Fig. 9(a)). For every i = 0, 1, . . . , 3s−3 add a new curve joining the vertices a+1+ i and a+6s−4− i. Then the resulting
set of curves is normal and there are exactly s− 1 paths: one path joins the end vertices a+ 2s− 3 and a+ 2s− 2, and for every
j = 0, 1, . . . , s− 3, a path joins the end vertices a+ 1+ j and a+ 2s− 4− j (see Fig. 9(a)).

Proof. It suffices to show that the set of curves in Fig. 9(b) is normal and that there are exactly s − 1 paths of the normal
set: one path joins the end vertices a + 4s − 1 and a + 4s, and for every j = 0, 1, . . . , s − 3, a path joins the end vertices
a+ 4s+ 1+ j and a+ 6s− 4− j.
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Fig. 9. A curve set including the family P(s, 3s− 2).

Fig. 10. Paths of the curve set in Fig. 9(b).

Now consider Fig. 10(a). The figure is obtained from Fig. 9(b) if we put a = 0 (for convenience), draw the curves of the
family P(s, 3s − 2), and depict in thick lines all the curves that are not part of the family P(s, 3s − 2). We see (Fig. 10(b))
that the thick curve joining vertices 2s − 1 + t and 4s − 2 − t , t = 1, 2, . . . , s − 2, enters into the path of length three
joining the end vertices 4s + 2t − 1 and 6s − 2t − 2. Taking into account that (4s + 2t − 1) + (6s − 2t − 2) = 10s − 3,
it is easy to check that the set of unordered pairs {4s + 2t − 1, 6s − 2t − 2}, t = 1, 2, . . . , s − 2, is the set of unordered
pairs {4s+ 1+ j, 6s− 4− j}, j = 0, 1, . . . , s− 3. All curves not entering into the s− 2 paths of length three are shown in
Fig. 10(c); these curves form a path joining the end vertices 4s− 1 and 4s. �
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Fig. 11. The family Q (s, 3s− 2) of curves.

We define Q (s, 3s− 2) to be the family of curves shown in Fig. 11(a) that covers the interval [a, a+ 4s− 3]. This family
has exactly 2s− 1 curves which have labels s, s+ 1, . . . , 3s− 2, respectively. Fig. 11(b) is a schematic representation of the
family Q (s, 3s− 2), and Fig. 11(c) shows Q (5, 13) for the case a = 1.

Claim 2. Consider the family Q (s, 3s− 2) covering the subinterval [a+ 2s− 1, a+ 6s− 4] of the interval [a+ 1, a+ 6s− 4]
(see Fig. 12(a)). Add a new curve joining the vertices a+ 6s− 5 and a+ 6s− 4, and for every i = 0, 1, . . . , 3s− 4 add a new
curve joining the vertices a+ 1+ i and a+ 6s− 6− i. Then the resulting set of curves is normal and there are exactly s− 1 paths:
for every j = 0, 1, . . . , s− 2, a path joins the end vertices a+ 1+ j and a+ 2s− 2− j (see Fig. 12(a)).

Proof. It suffices to show that the set of curves in Fig. 12(b) is normal and that there are exactly s − 1 paths of the normal
set: for every j = 0, 1, . . . , s− 2, a path joins the end vertices a+ 4s− 3+ j and a+ 6s− 6− j.
Now consider Fig. 13(a). The figure is obtained from Fig. 12(b) if we put a = 0 (for convenience), draw the curves of the

family Q (s, 3s−2), and depict in thick lines all curves that are not part of the family Q (s, 3s−2). We see (Fig. 13(b)) that the
thick curve joining vertices 2s−1+ t and 4s−4− t , t = 0, 1, . . . , s−3, enters into the path of length three joining the end
vertices 4s+2t−2 and 6s−2t−7. Taking into account that (4s+2t−2)+ (6s−2t−7) = 10s−9, it is easy to check that
the set of unordered pairs {4s+2t−2, 6s−2t−7}, t = 0, 1, . . . , s−3, is the set of unordered pairs {4s−3+ j, 6s−6− j},
j = 1, 2, . . . , s− 2. All curves not entering into the s− 2 paths of length three are shown in Fig. 13(c); these curves form a
path joining the end vertices 4s− 3 and 6s− 6. �

The diagram curves of an SK(n) cover the interval [n+ 1, 3n]. Consider an interval [a, b] such that b− a = 2n− 1. When
we say that we cover the interval [a, b] by the curves of the SK(n), we mean the following: for each diagram curve of the
SK(n), if the curve has label i and joins vertices n + 1 + v(i) and n + 1 + w(i) (where i + v(i) = w(i)), then we join by a
curve with label i the vertices a+ v(i) and a+ w(i) of the interval [a, b].
Let F and F ′ be two sets of curves joining vertices of an interval [a, b] of odd order. For each x ∈ [a, b], denote by x∗ the

element of the interval such that x+ x∗ = a+ b. The sets F and F ′ are equivalent if F ′ is obtained from F in the following
way: for every curve ofF , if the curve joins vertices v andw, replace the curve by a curve joining vertices v∗ andw∗. Roughly
speaking, F ′ is obtained from F by rotating F through 180◦ about a horizontal axis bisecting the interval [a, b]. This usage
of the term ‘‘equivalent’’ is consistent with the earlier usage of the same term amongst CS(12n+ 7)s: two CS(12s+ 7)s are
equivalent if and only if their sets of diagram curves are equivalent.

Lemma 3. If there are h different skew SK(n)s, then there are 2h different skew SK(9n+ 4)s.

Proof. Consider the setF of curves shown in Fig. 14with a = 9n+4. Taking into account Claims 1 and 2, we see that the set
F is normal, the end vertices form the subinterval [9n+5, 11n+4] and the paths of the set connect the end vertices as shown
in the figure. The setF ′ of curves equivalent toF is also normal, the end vertices form the subinterval [25n+13, 27n+12],
and for every i = 0, 1, . . . , n− 1, a path of F ′ joins the end vertices 25n+ 13+ i and 27n+ 12− i.
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Fig. 12. A curve set including the family Q (s, 3s− 2).

Fig. 13. Paths of the curve set in Fig. 12(b).

Now, for each of the h different skew SK(n)s, cover by the curves of the SK(n) the subinterval [9n + 5, 11n + 4] in the
case of F , or the subinterval [25n+ 13, 27n+ 12] in the case of F ′. We obtain the auxiliary diagrams of two SK(9n+ 4)s;
each of the diagrams has exactly one cycle. It is easy to see that the 2hSK(9n+ 4)s obtained are all different. �

Note that if n ≡ 1(mod 4), then it is also the case that 9n+ 4 ≡ 1(mod 4).

Theorem 4. For ` = 1, 2, . . . , there are at least 6( 2t+111 )
1/ log2 9 different skew SK(t)s, where t = 1

2 (11 · 9
`−1
− 1).

Proof. Fig. 15 shows three mutually inequivalent skew SK(5)s. For each of these SK(5)s, take the equivalent SK(5), thereby
obtaining six different skew SK(5)s.
Define a function f (`), ` = 1, 2, . . . , as follows:

f (`+ 1) = 9f (`)+ 4, f (1) = 5. (4)
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Fig. 14. A recursive construction for obtaining a skew SK(t).

Fig. 15. Mutually inequivalent SK(5)s.

If we consider f (`) as the order of a skew SK then, by Lemma 3, for ` = 1, 2, . . . , there are at least 6 · 2`−1 = 3 · 2` different
skew SK(f (`))s. The recurrence given by Eq. (4) has solution

f (`) = 9`−1f (1)+
9`−1 − 1
2

=
11 · 9`−1 − 1

2

for ` = 1, 2, . . .. Put t = f (`) so that 9`−1 = 2t+1
11 . Then ` = 1 +

1
log2 9

log2(
2t+1
11 ) and we obtain 3 · 2

`
= 6 · ( 2t+111 )

1/ log2 9.
�

We will use the SK(4n+ 1)s constructed above to expand the set of known nonisomorphic orientable biembeddings of
cyclic STS(24n + 7)s. To do this we apply some results from [12]. These results relate to digraphs and when we apply the
results to the graph G = ML(2n + 1), we consider G to be the digraph obtained from ML(2n + 1) by replacing each edge e
by two reverse arcs e+ and e−, and any current assignment on the graph G becomes a current assignment on the digraph G.
Considering G = ML(2n+ 1) as a digraph, let λ and λ′ be current assignments on G determined by two SK(2n+ 1)s. The

pairs 〈G, λ〉 and 〈G, λ′〉 are said to be isomorphic if there is an automorphism ω : V (G)→ V (G) of G and an automorphism
ϕ of Z12n+7 such that λ′[ω(v), ω(w)] = ϕλ[v,w] for every arc [v,w] of G (here [x, y] denotes an arc directed from vertex x
to vertex y). The automorphism ω is called an isomorphism of 〈G, λ〉 onto 〈G, λ′〉 and the automorphism ϕ of Z12n+7 is said
to be associated with this isomorphism.

Lemma 4. Let λ and λ′ be current assignments on the graph G = ML(2n + 1) determined by two inequivalent SK(2n + 1) s.
Let 〈G, λ,D〉 and 〈G, λ′,D′〉 be two index one current graphs generating orientable triangular embeddings Φ and Φ ′ of K12n+7,
respectively. Then the embeddingsΦ andΦ ′ are not isomorphic.

Proof. Theorems 1 and 2 of [12] establish that for the embeddingsΦ andΦ ′ to be isomorphic, the current graphs 〈G, λ,D〉
and 〈G, λ′,D′〉must be isomorphic, and this requires that the pairs 〈G, λ〉 and 〈G, λ′〉 be isomorphic as well. Hence, to prove
the lemma, it suffices to show that 〈G, λ〉 and 〈G, λ′〉 are not isomorphic.
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Suppose that 〈G, λ〉 and 〈G, λ′〉 are isomorphic with an associated automorphism ϕ of Z12n+7. In each of the current
assignments λ and λ′, the currents on the rungs of G form the subset E = {±1,±2, . . . ,±(2n+ 1)} of elements of Z12n+7.
Every automorphism of G takes the set of the rungs onto itself, hence ϕ takes E onto itself. It is well known (and easily
proved) that the set of all automorphisms of Z12n+7 is the set {ϕk : k ∈ Z12n+7, (k, 12n + 7) = 1}, where ϕk(x) = k · x
for all x ∈ Z12n+7, (k,m) is the greatest common divisor of k and m, and arithmetic is performed in the ring Z12n+7.
Hence ϕ = ϕk for some k ∈ Z12n+7. Since k · 1 ∈ E , we have k ∈ E . For every h ∈ {2, 3, . . . , 2n + 1} ⊂ Z we have
2n+ 2 ≤ hd 2n+2h e ≤ 2n+ 2+ h ≤ 4n+ 3 < 10n+ 5. Therefore, if k 6= ±1, there is x ∈ E , namely x = d 2n+2

|k| e, such that
k · x 6∈ E , a contradiction. If ϕ ∈ {ϕ1, ϕ−1}, then λ and λ′ are the same current assignment (up to reversing all the currents)
determined by equivalent SK(2n+ 1)s (see (E)), and again this is a contradiction. �

Theorem 5. (a) For every n ≥ 1, there are at least 1
4n+12

4n−2 nonisomorphic orientable biembeddings of cyclic STS(24n+ 7)s.
(b) For ` = 1, 2, . . . there are at least 1

4n+12
4n−2
·3( 8n+311 )

1/ log2 9 nonisomorphic orientable biembeddings of cyclic STS(24n+7)s,
where 4n+ 1 = 1

2 (11 · 9
`−1
− 1).

Proof. Lemma 1 implies the following:

(i) The graph ML(4n+ 1) has at least 24n+1 different rotations inducing exactly one circuit.

Suppose that there is a (24n + 7)-current assignment λ on the graph G = ML(4n + 1). Theorem 4 of [12] states that if
the automorphism group of G has order m, and if there are h different rotations D of G inducing exactly one circuit, then
among the h current graphs 〈G, λ,D〉 there are at least h2m current graphs generating nonisomorphic embeddings. The graph
ML(4n+1) can be considered as a cyclewith 8n+2 vertices where every two antipodal vertices are joined by an edge, hence
the automorphism group of ML(4n + 1) is the automorphism group of a regular (8n + 2)-gon, that is, the dihedral group
D8n+2 of order 16n + 4. Now, taking (i) into account, it follows that there are at least 1

4n+12
4n−2 nonisomorphic orientable

biembeddings of cyclic STS(24n+ 7)s.
As remarked earlier, a skew SK(4n + 1) was constructed for every n ≥ 1 by Youngs and is shown in Fig. 6. Hence, for

every n ≥ 1 there is a (24n+ 7)-current assignment λ on the graph G = ML(4n+ 1) and we obtain (a).
By putting t = 4n + 1 in Theorem 4, we see that for ` = 1, 2, . . ., there are at least 3( 8n+311 )

1/ log2 9 inequivalent skew
SK(4n+ 1)s, where 4n+ 1 = 1

2 (11 · 9
`−1
− 1). Each of the skew SK(4n+ 1)s determines a (24n+ 7)-current assignment λ

on the graph G = ML(4n+ 1) and there are at least 1
4n+12

4n−2 different current graphs 〈G, λ,D〉 generating nonisomorphic
embeddings. By applying Lemma 4, we obtain (b). �
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