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a b s t r a c t

A sufficient and necessary condition for the existence of a Hamilton cycle in a graph bundle
with a cycle as a base and a tree as a fibre is obtained.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In 1982, Batagelj and Pisanski [2] proved that the cartesian product of a tree T and a cycle Cn has a Hamilton cycle if and
only if n ≥ ∆(T ), where∆(T ) denotes the maximum valence of T . Let D(G) denote the minimum of∆(T ) over all spanning
trees T of G. They introduced the cyclic Hamiltonicity cH(G) of G as the smallest integer n for which the cartesian product
G�Cn is Hamiltonian. They also conjectured that cH(G) ≤ D(G) ≤ cH(G)+ 1. Later the conjecture was proved in [4]. In this
note it is shown that the original result extends in a certain way to graph bundles.
The notion of graph bundlewas first introduced in 1982 by Pisanski and Vrabec in [8]. Unfortunately, the paper remained

in the form of an 80-page preprint inwhich the basic theory of graph bundleswas developed. Over the years about 30 papers
devoted to the study of graph bundles emerged.
The Hamiltonian properties of the graph bundle Cn�aT with the base Cn and tree fibre T depend only on the structure

of the automorphism a of the tree T . We are able to give a complete generalization of the cartesian product result to the
graph bundle case in terms of the structure of the automorphism a. Let T/a be the quotient tree of T with respect to a. We
prove that the graph bundle Cn�aT has a Hamilton cycle if and only if n ≥ h(T , a) where h(T , a) is the maximum value
of dd(v, a)/o(v, a)e over all vertices v ∈ V (T ) and o(v, a) denotes the number of elements in the orbit of v under the
automorphism awhile d(v, a) is the valence of the vertex corresponding to the orbit of v in the tree T/a.
In this paper we are interested mostly in simple or simplicial graphs with no loops or parallel edges. However, in the

construction of such graphs we have to use more general graphs with loops and parallel edges or even pending-edges
(or semi-edges) permitted. We introduce a structure that we call a pre-graph; see also [6]. A pre-graph G is is quadruple
G = (V , S, i, r) where V is the set of vertices, S is the set of arcs (also known as semi-edges, darts, sides, etc.), i is the initial
mapping i : S → V , specifying the origin or the initial vertex for each arc, while r is the reversal involution: r : S → S, r2 = 1.
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We may also define the terminal mapping t : S → V as t(s) := i(r(s)), specifying the terminal vertex for each arc. An arc
s with r(s) 6= s forms an edge e = {s, r(s)}, which is called proper if |e| = 2 and is called a half-edge if |e| = 1. Define
∂(e) = {i(s), t(s)}. A pre-graph without half-edges is called a (general) graph. Note that G is a graph if and only if the
involution has no fixed points. A proper edge ewith |∂(e)| = 1 is called a loop and two edges e, e′ are parallel if ∂(e) = ∂(e′).
A graph without loops and parallel edges is called simple. The valence of a vertex v is defined as val(v) = |{s ∈ S|i(s) = v}|.
Nowwe shall briefly introduce voltage graphs. Voltage graphs are obtained frompre-graphs by assigning group elements

to arcs. More precisely, a permutation voltage graph X is a 7-tuple X = (V , S, i, r,Γ ,M, a)where (V , S, i, r) is the underlying
pre-graph called the base pre-graph, Γ is a permutation group acting on the set M and a is a mapping a : S → Γ , called
permutation voltage assignment satisfying the following axiom: For each s ∈ S we have a(r(s)) = a−1(s).
Any voltage graph X defines the so-called permutation derived graph or covering graph Y as follows:

V (Y ) := V ×M, S(Y ) := S ×M,
i(s,m) := (i(s),m), for any (s,m) ∈ S(Y ),
r(s,m) := (r(s), a(s)[m]), for any (s,m) ∈ S(Y ).

If s ∈ S is a half-edge, i.e. if r(s) = s its voltage a(s) must satisfy the condition: a(s) = a−1(s). Hence a = a−1 or
equivalently, it is of order at most two: a2 = id. If a has any fixed points then the derived structure Y has half-edges and
remains a pre-graph.
IfM = V (F) is a vertex set of a graph F , then the permutation voltage graph X gives rise to another graph Z as follows:

V (Z) := V (X)× V (F), S(Z) := S(X)× V (F) ∪ V (X)× S(F),
i(s,m) := (i(s),m), for any (s,m) ∈ S(X)× V (F),
r(s,m) := (r(s), a(s)[m]), for any (s,m) ∈ S(X)× V (F),
i(v, s) := (v, i(s)), for any (v, s) ∈ V (X)× S(F),
r(v, s) := (v, r(s)), for any (v, s) ∈ V (X)× S(F),

This graph Z is called a pre-bundlewith base X and fibre F . If Γ is a subgroup of the automorphism group Aut F then Z is
called a graph bundle. The bundle over X with fibre F is denoted by X�aF .
Recall that a denotes the voltage assignment on X . There are two special cases: If F is empty graph mK1, the resulting

bundle is a covering graph over X . If a is trivial, then the graph X�F is simply the well-known cartesian product of graphs.
Intuitively, on the pre-image of each vertex v ∈ V in the covering graph we have drawn a copy of the graph F to obtain

the graph bundle. The edges of copies of F are called degenerate edges. Other edges are called non-degenerate.
Note that voltage graphs enable us to develop a combinatorial analog of the theory of covering spaces and bundles in

algebraic topology. The reader may find more on the theory of voltage graphs and covering graphs in [3,5,7].
It is well-known [8] that for any spanning tree T of X , the cartesian product T�F is a spanning graph of X�aF .

2. Trees and their automorphisms

Let T be a tree. Consider a graph bundle Cn�aT , i.e. a bundle with base Cn and fibre a tree T . Let us label the vertices of Cn
consecutively from 0 to n − 1. Let the voltages be identity on the path from 0 to n − 1 and let the voltage on the arc from
n− 1 to 0 be a ∈ Aut(T ).
Before studying such bundles let us recall some basic properties of trees and their automorphisms. Let T be a tree and

let L0 denote its set of leaves, i.e. the vertices of valence 1. For i > 0 define Li to be the set of vertices of T at distance i from
leaves. Let L∗ denote the set of vertices that are farthest from the leaves. Then L∗ consists either of a single vertex or of a pair
of adjacent vertices and is called the center or the centroid of the tree, respectively. The proofs of these lemmas are included
for completeness.

Lemma 2.1. Any automorphism a of the tree T stabilizes each set Li set-wise.
Proof. By induction on i. Since each automorphism maps a vertex of valence 1 to a vertex of valence 1, the claim is true for
L0. As it maps adjacent vertices to adjacent vertices, and maps Li to itself, it must map Li+1 to itself. �

Lemma 2.2. Let a be an automorphism of the tree T and let v be any vertex of T . The orbit of v with respect to a is either:
1. a set of independent vertices
2. a set of two adjacent vertices
Furthermore, the last option is possible if and only if the two vertices constitute the centroid of the tree and there are no fixed
vertices under a.

Proof. By previous Lemma each orbit is contained in some Li. Each set except possibly L∗ consists of independent vertices,
therefore the result follows. If T has a center, then it is a fixed vertex of any automorphism of a tree. If T has a centroid, then
it is either fixed point-wise by a or a interchanges the two vertices of the centroid. If the edge belonging to the centroid
is removed from T , the tree breaks up into two isomorphic subtrees and a maps one to another. Hence there are no fixed
vertices in this case. �
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Let a ∈ Aut T be an arbitrary automorphism of T . It induces a cyclic subgroup that partitions the vertex set V (T ) into
disjoint orbits. For a given vertex v ∈ V (T ) let O(v, a) denote such an orbit whose size is denoted by o(v, a).
Let T/a denote the quotient graph obtained from the tree T by vertex identification of each vertex orbit O(v, a) and with

two orbits O(u, a) and O(v, a) being adjacent in T/a if and only if there are two representatives u ∈ O(u, a) and v ∈ O(v, a)
that are adjacent in T .

Theorem 2.3. The quotient graph T/a is a tree.

Proof. Each set Li is partitioned into equivalence classes and each class from Li is adjacent to exactly one class from Li+1.
Finally, either the class L∗ consists of a single vertex or two adjacent fixed vertices. �

Lemma 2.4. Let v be a vertex in T , such that O(v, a) is a set of k independent vertices. Then the subgraph of Cn�aT induced on
the vertex set V (Cn)× O(v, a) is isomorphic to a cycle Cnk. However, if O(v, a) consists of two adjacent vertices, then the graph
on V (Cn)× O(v, a) is a Möbius ladder Mn, which, in turn, contains a spanning cycle C2n.

Proof. The orbit O(v, a) can be written as O(v, a) = {v, a(v), a2(v), . . . , ak−1(v)}. The graph induced on V (Cn) × O(v, a)
can be viewed as k copies of the path Pn such that each copy Pn(i) corresponds to the vertex ai(v) and the last vertex of Pn(i)
is joined with the first vertex of Pn(i+1) thus forming a single cycle. If the orbit O(v, a) is not composed of isolated vertices,
it is an edge and the resulting cycle C2n has main diagonals, making it a Möbius ladderMn. �

3. An edge-coloring problem

Let us consider a general question. Let G be a graph and let o : V (G)→ {1, 2, . . .} be a mapping. Let h(G, o) denote the
least number of colors needed in an edge-coloring of G in such a way that each color appears at vertex v at most o(v) times.
Any admissible coloring is called an o-edge-coloring.

Theorem 3.1. For general graphs G and general function o the computation of h(G, o) is NP-hard.

Proof. Take o(v) = 1 and the problem reduces to the computation of the edge-chromatic number, which in turn, is known
to be NP-hard. �

For bipartite graphs there exists a closed form solution.

Theorem 3.2. For a bipartite graph G the value of h(G, o) is given by

h(G, o) = max{dval(v)/o(v)e|v ∈ V (G)}.

Proof. Essentiallywe repeat the argument in the Claimof Theorem3.1. froma recent paper byNogaAlon, [1]. For each vertex
v of valence val(v) define the integer r(v) as r(v) = dval(v)/o(v)e. Split each vertex v into o(v) vertices v1, v2, . . . vo(v) in
such a way that each of the new vertices is adjacent either to r(v) or r(v) − 1 original vertices and the disjoint neighbor
sets cover the original neighbor set of v. The resulting graph G′ is bipartite of maximal valence h(G, o). By König’s theorem
it is h(G, o)-edge-colorable. Any optimal edge-coloring of G′ induces the corresponding o-edge-coloring of G that satisfies
the condition of the theorem. �

The above proof gives also a construction that enables one to label each edge e = uv of the original graph by a triple
(e, ui, vj) and thus refine the edge-coloring.

4. Results

Before we turn to graph bundles we will give an alternative construction of the Hamilton cycle in the cartesian product
of a tree T and a cycle Cn for n ≥ ∆(T ). Essentially it is the same as given in [2] and then explained in more algorithmic way
in [4]. Think of edges of copies of Cn in Cn�T to be non-degenerate. They define a spanning subgraph of Cn�T composed of
m copies of Cn, wherem = |V (T )|. We will use each edge e of T in order to join two cycles into a larger cycle. After allm− 1
edges of T are used, them cycles will be fused into a single, Hamilton cycle. Since T is a bipartite graph it can be edge-colored
by ∆(T ) colors. We may choose the colors to be (some) of the edges of a Cn. Each vertex of Cn�T can be labeled as a pair
(i, t) = i(t), where i is an integer mod n and t a vertex from T . Let Cn(t) denote the copy of the cycle at vertex t from T . For
any edge e = st of T with t as the endpoint with color i = c(e) we remove edges (i, i + 1) from copies t and s and replace
them by the edges (i(t), i(s)) and (i+ 1(t), i+ 1(s)). This completely defines the Hamilton cycle.
A similar construction is carried out in more general case of graph bundles. The situation is more complicated, since the

number of initial cycles is given by the number of orbits of the automorphism a. The lengths of these cycles are not uniform
and attachments are more intricate.

Theorem 4.1. Let X and F be Hamiltonian graphs. Then any graph bundle X�aF with base X and fibre F is Hamiltonian.
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Fig. 1. The tree T1 from [4].

Fig. 2. The second tree T2 .

Fig. 3. Fibre edges in C3�aT2 form five cycles: one isomorphic to C3 and four isomorphic to C6 . The quotient graph T2/a is isomorphic to K1,5 . We color the
five edges of K1,5 with colors α, β, γ so that two edges are colored by β and two by γ .

Proof. Restrict attention to the two spanning cycles Cn ⊆ X and Cm ⊆ F . The bundle Cn�aCm contains a spanning subgraph
Pn�Cm which is Hamiltonian for anym ≥ 2 by the result of Batagelj and Pisanski [2]. �

Here is the main result, a complete analog of the result of Batagelj and Pisanski. Only bundles of the form X = Cn�aT are
considered. Namely, the bundle X = T�aCn has a tree T as the base and is therefore isomorphic to the trivial bundle, the
Cartesian product T�Cn, and the result from [2] applies directly.

Theorem 4.2. Let T be a tree and a one of its automorphisms. Let T/a denote the quotient tree of T with respect to a. Let
o(v, a) denote the number of elements in the orbit of v with respect to a and let d(v, a) denote the valence of the orbit
of v with respect to a in T/a. The graph bundle X = Cn�aT has a Hamilton cycle if and only if n ≥ h(T/a, o), where
h(T/a, o) = max{dd(v, a)/o(v, a)e | v ∈ V (T )}.

Proof. The proof has two steps.
(⇐). In case n ≥ h(T/a, o) we construct a Hamilton cycle in X . Each vertex of T/a represents a cycle in X that passes

through each layer, defined by the vertices of T . The existence of such cycles is provided by Lemma 2.4. The only case not
covered by this Lemma is the casewhen the orbit is determined by the centroid of T , but in this case the appropriate spanning
cycle has to be taken. The improper edge-coloring of T/a as defined by o determines a collection of edges of type (e, ui, vj)
colored, say k. This means that the edge e passing from the ith element of orbit of u connects to the jth element of the orbit of
v in T . The connection passes from the kth layer and (k+ 1)th layer. From the collection of edges in an orbit of a containing
e ∈ T/a choose one edge ẽ = uivj ∈ T . Now each edge e of T/a together with its color k determines one 4-cycle Ce in the
bundle X with two parallel edges shared by two disjoint cycles whose existence was established by Lemma 2.4. Replacing
the two edges by the other pair of parallel edges in the 4-cycles we get a cycle covering all the vertices of X covered by
the two original cycles. We employ this operation repeatedly for all the edges of T/a. The edge-coloring of T/a forces the
4-cycles Ce to be mutually disjoint.
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(⇒). In case n < h(T/a, o) there exists a vertex v in T such that n < d(v, a)/o(v, a). By removing the n copies of all
vertices of the orbit of v (no(v) vertices in total) from X the graph will be partitioned into d(v, a) components, therefore, it
cannot be Hamiltonian. �

Example 1. Our first example has a tree T1 from [4] p. 52 (Fig. 1). Since ∆(T1) = 1 the Hamilton cycle in the presence of
the trivial automorphism exists if and only if n ≥ 4. However, if we take α = (7, 8) the quotient tree has maximal valence
3 and there exists a Hamilton cycle in bundle with n = 3. In this example we have h(T/a, o) = ∆(T/a) and the problem
reduces to the computation of maximal valence in the quotient tree.

Example 2. Our second example involves a tree T2 from Fig. 2. Let us assume that the automorphism a is an involution
a = (2, 3)(4, 8)(5, 9)(6, 10)(7, 11). In this case ∆(T2) = ∆(T2/a) = 5, however, since h(T/a, o) = 3 we may construct a
Hamilton cycle already in C3�aT2 (Fig. 3).

As an analog of the cyclic Hamiltonicity cH(G) of Batagelj and Pisanski [2] let us define cyclic bundle Hamiltonicity cbH(G)
of the graph G as the min{n| such that there exists a ∈ Aut (G) and Cn�aG has a Hamilton cycle}. Clearly, cbH(G) ≤ cH(G).
However, it would be interesting to formulate and prove a theorem that would hold for cyclic bundle Hamiltonicity and
would be similar to the one that was formulated in [2] and proved in [4] for cyclic Hamiltonicity. Graph bundles remain an
interesting class of graphs having a number of challenging properties.
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