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For tridiagonals T replace T with LDLt
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Abstract

The same number of parameters determine a tridiagonal matrix T and its triangular factors L, D and U . The mapping
T → LDU is not well de�ned for all tridiagonals but, in �nite precision arithmetic, L, D and U determine the entries of
T to more than working precision. For the solution of linear equations LDUx=b the advantages of factorization are clear.
Recent work has shown that LDU is also preferable for the eigenproblem, particularly in the symmetric case. This essay
describes two of the ideas needed to compute eigenvectors that are orthogonal without recourse to the Gram–Schmidt
procedure when some of the eigenvalues are tightly clustered. In the symmetric case we must replace T , or a translate of
T , by its triangular factors LDLt . c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction and representations

This essay needs justi�cation because it examines a problem that has been considered as solved
for several decades: the symmetric eigenproblem for dense matrices. Section 2 describes the methods
that have been used with satisfaction for a long time. However in 1995 there was a little trouble
in Paradise. A team of computational chemists at Paci�c Northwest Laboratories found that certain
problems of order 1000–2000 were taking much longer than expected using the best available
software. On investigation it turned out that in a three-stage process the middle part, which should
have been negligible, was consuming 80% of the time. Further probing showed that 95% of the
eigenvalues were judged by the program to be in a tight cluster (they all agreed to four or more
decimals) and so the Gram–Schmidt orthonormalizing process was invoked to make sure that the
computed eigenvectors were indeed orthonormal to working accuracy. Because the cluster was so
large what is normally an O(n2) process, for n × n matrices, turned into an O(n3) marathon, see
[11,8]. This incident provoked some interesting lines of thought. The conservative view would cite
the inherent limitations of working in �xed precision arithmetic and would argue that very di�cult
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calculations should take more e�ort. This conservative view could be ampli�ed and made quite
persuasive. One central fact is that when the matrix elements are known to working precision, say 8
or 16 decimal places, then the eigenvalues and eigenvectors inherit a level of uncertainty that sets a
limit on how accurately they can be computed. Indeed the closer some eigenvalues cluster together
the less well determined are their eigenvectors. In the limit, for a multiple eigenvalue, it is only
the eigenspace that is de�ned, there is no distinguished basis of eigenvectors. Consequently, extra
measures, such as the Gram–Schmidt process, must be invoked to ensure that the program returns
orthogonal eigenvectors for tight clusters of eigenvalues.
A di�erent reaction to the 1995 revelation is to wonder whether there is a way to wriggle out

of these di�cult situations and to attain the following ambitious goal: given a n× n real symmetric
tridiagonal matrix T compute its eigenvalues and then send each eigenvalue, with a copy of T , to
its own processor. Each processor computes its eigenvector, all at the same time, and the outputs
turn out to be orthogonal to working precision without the need to check. That would be nice!
When the eigenvalues are nearly uniformly spaced in the spectrum then current methods can

realize the goal. What might we do when several eigenvalues agree to 4 or 8 or 12 decimals?
There is a method, developed by Dhillon and me from 1996 to 1999, and software to implement it,

but several new ideas are needed to justify the whole procedure and only one or two themes will be
described in this essay. Section 4 shows the method in action on a 4× 4 example. Before launching
into more detail it is helpful to recall two key facts. First, eigenvectors are invariant under translation
(or shifting) T → T − �I . Second, there is no loss in assuming that the next-to-diagonal entries
(i; i+1) and (i+1; i) do not vanish, i=1; 2; : : : ; n−1. In that case the true eigenvalues are distinct and
the eigenvectors are well de�ned even though some eigenvalues may be equal to working precision.
This is a subtle property of the tridiagonal form. Thus, there is a basis of eigenvectors even when
some eigenvalues appear multiple to working precision. We can aim to compute extremely accurate
eigenvectors and then orthogonality would follow automatically since the ‘true’ eigenvectors have
this property.
We now describe the �rst of the new themes. The radical new goal is to compute an approximate

eigenvector x; ||x||= 1, for a given approximate eigenvalue �̂ with the relative residual property
||Tx− x�̂||=O(n�)|�̂|; not just O(n�||T ||); (1)

where � is the roundo� unit and we regard two normalized vectors u and C as orthogonal to working
precision if

|utC|=O(n�): (2)

We use big O notation to hide some modest constant between 1 and 100. Unfortunately (1) is not
achievable for the simple reason that � is not always de�ned to high relative accuracy by T . Here
� is the eigenvalue of T closest to �̂. This means that small relative uncertainty in T ’s entries may
cause large relative uncertainties in tiny eigenvalues. A simple but mild example of this phenomenon
is a Toeplitz matrix a+ b(N +N t) where N is the n× n Jordan block with eigenvalue 0. For n=4,

N =



0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0


 :
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When b=1, a=−2 we obtain the second di�erence matrix whose eigenvalues lie in (−4; 0). The one
closest 0 is −4 sin2 (�=4n) ≈ −(�=2n)2. Take n=103 and change a from −2 to −2(1−10−8) to �nd
that �min changes to �min(1− 4

510
−2+O(10−4)), a large relative change. The example is mild because

the eigenvalues are not severely clustered. More complicated examples show this phenomenon
of large relative changes in the smallest eigenvalues for small values of n, say n = 4, see [7] and
Section 4.
In order to achieve (1) it is not only necessary that each small eigenvalue, such as �, be determined

to high relative accuracy (by T ) but we must �nd an algorithm that will approximate � by �̂ to high
relative accuracy. If, for example, |�| = 10n� then the residual norm in (1) must achieve the very
small value O(n2�2).
Although there are special classes of tridiagonals that do de�ne their small eigenvalues to high

relative accuracy, see [2], the property fails most of the time.
In conclusion (1) seems to be an unattainable goal. At this low point we must emphasize, briey,

why (1) is so desirable. There is a well-known error bound that is, in addition, a fairly realistic
estimate of the error (angle) between the x achieving (1) and the true eigenvector s for �, the
eigenvalue closest to �̂. This result is not restricted to tridiagonals, see [18] for a proof.

Theorem 1. Let T be real symmetric; T s = s�; where � is the eigenvalue closest to �̂. For any
x; ||x||= 1; and any �̂;

sin|“(x; s)|6 ||Tx− x�̂||
gap (�̂)

;

gap (�̂) = |� − �̂|; � is the eigenvalue (6= �) closest to �̂:

If (1) holds then the theorem assures us that

sin|“(x; s)|6O(n�)|�̂||� − �̂| ≈ O(n�)

relgap(�̂)
;

where

relgap (�) =
|�− �|
|�| :

If (1) holds then

|�̂− �|
|�̂| ≈ |�− �|

|�| :

For example, if ||T || = 1, � = 10−18 and � = 10−19 then relgap (�) = 0:9 and x is a very accurate
approximation to s. For more details see [16].
The message here is that if (1) can be achieved then very accurate eigenvectors can be produced for

all eigenvalues with large relative gaps. The next link in the chain of ideas is the simple observation
that relative gaps may be increased by a suitable shift of origin whereas absolute separation between
eigenvalues is invariant since |(�− �)− (� + �)|= |�− �|.
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Now we return to (1). The big new idea is to get rid of T ! To convey the idea in a simple way
consider the case when T is positive de�nite and so T permits a Cholesky decomposition

T = LLt; (3)

where L is lower bidiagonal. In 1967 Kahan proved that all the eigenvalues of LLt are determined
to high relative accuracy by the entries of L, not those of T . Today there are easy proofs of this
result, see [9,10], and there is more than one way to compute the eigenvalues to this high accuracy.
Of itself this result does not guarantee (1) but it is an essential element. That is the �rst theme. A
method we shall not describe here, see [15], permits (1) to be achieved with LLT replacing T .
Now we turn to a di�erent theme. As suggested by the earlier remarks on relative gaps in the

spectrum it may be necessary to shift the origin and use triangular factorization

T − �I = LLt − �I = L(1)D+L(1)t ; (4)

where L(1) is a unit lower bidiagonal matrix containing the multipliers and D+ is a diagonal matrix
holding the ‘pivots’. There is no general statement on how well the entries of L(1) and D+ determine
the eigenvalues of L(1)D+L(1)

t
but the results in [17] show that for most values of � these factors

L(1) and D+ do give high relative accuracy for the small eigenvalues. There is nothing sacred in
factoring from top to bottom. We can use as well a factorization from bottom to top:

T − �I = LLt − �I = U (1)D−U (1)t ; (5)

where U (1) is a unit upper bidiagonal matrix and D− is diagonal. In fact, there is a whole family of
n twisted factorization of T − �I and they all use the same number of parameters, namely 2n − 1,
see [17].
The implication of the preceding remarks is that we can compute very accurate eigenvectors if

we can �nd representations, such as L(1)D+L(1)
t
, that de�ne their small eigenvalues to high relative

accuracy. Recall that each shift changes the eigenvalues. However, one new representation will not
(usually) su�ce. We will need several representations, such as in (4), for di�erent values of �. We
will compute a subset of eigenvectors for each representation. This raises a new di�culty. When we
change from one representation to another, say

◦
L

◦
D

◦
Lt =LDLt−�I , we wonder whether the inevitable

roundo� errors in computing
◦
L and

◦
D from L, D, and � will break the link between the eigenvectors

computed from L and D to those computed from
◦
L and

◦
D. Fortunately, the recently discovered

di�erential stationary qd algorithms, see [12], give a way to switch between representations and
preserve high relative accuracy. That is the second theme and extends to nonsymmetric tridiagonals
and is the topic of Section 3. Section 4 shows the new method in action on a di�cult 4×4 example
and Section 5 shows what extends to the nonsymmetric case and what still needs to be done.

2. The classical methods

As soon as digital computers became available to scientists around 1950 the search was begun for
eigenvalue algorithms that were robust when executed in �nite precision arithmetic. In 1954, very
early in the game, Wallace Givens came up with a method for a symmetric matrix A that has stood
with little change for over 40 years. The defects of using the characteristic polynomial were quickly
grasped. No one would like to meet a polynomial of degree 1000 on a dark night. It is extremely
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volatile and prone to blow up under the slightest provocation. A promising alternative is to employ
explicit similarity transformations until A turns into � diagonal. In principle, an in�nite sequence of
similarities is needed to reach � and that brings on tricky questions of when to stop.
Givens proposed a compromise between the two approaches (explicit similarities and the charac-

teristic polynomial) given above. The method has three distinct stages.
Phase 1: Reduce A to tridiagonal T by a �nite sequence of plane rotations designed to eliminate

one nontridiagonal entry at a time and preserve all previously created zero entries. Thus,

T = G∗
s · · ·G∗

1AG1 · · ·Gs = F∗AF (6)

where

s=
(
n− 2
2

)

and G alters only two columns. The G’s are accumulated into F and this phase costs O(n3) opera-
tions.
Phase 2: Apply ‘bisection’ to any given interval to �nd all, or some eigenvalues of T to full

precision (relative to ||T ||) or less. The tool is Sylvester’s Inertia theorem applied to Gaussian
elimination without interchanges. Let T − �I = LDLt . Sylvester’s Inertia theorem says the number
of eigenvalues less than � equals the number of negative entries on D’s diagonal. Once an interval
contains a single eigenvalue bisection may be continued until a designated number of correct digits is
obtained. The cost of each factorization is 2n operations, and so the cost of computing k eigenvalues
is O(kn).
In his original technical report Givens did not invoke Sylvester’s Inertia theorem nor triangular

factorization. Instead he used a more complicated mechanism with a three-term recurrence and Sturm
sequences but the two approaches are equivalent in exact arithmetic but Givens had to worry about
over=underow.
In order to compute the eigenvector belonging to a computed eigenvalue �̂ Givens solved (T −

�̂I)x= en, where ej is the jth column of the identity matrix I . This was the least successful feature
of his method. Any �xed right-hand side will lead to trouble on some matrices. We now know that
it is important to choose the right-hand side carefully, see [15] for more details. Again the cost for
x is O(n) so Phase 2 is an O(kn) process for k eigenpairs. As indicated in Section 1 numerical
orthogonality depends on the separation of the eigenvalues and a Gram–Schmidt post-processing has
to be available.
Phase 3: Let T=S�S t . If the eigenvectors Z of A are wanted then S is mapped into Z via Z=FS.

This is an O(n3) process. F need not be found explicitly but can be represented by the sequence of
G’s given in (6). If only k eigenvectors are wanted the cost reduces to O(kn2).
Finally, Givens produced an error analysis in �xed-point arithmetic showing that the computed

eigenvalues were the exact eigenvalues of a matrix close to T or A. This was one of the earliest
instances of a ‘backward’ error analysis: the computed quantities solve exactly a nearby problem. It
is worth emphasizing that a backward error analysis is not possible for all algorithms.
There is little to add for the task of computing a subset of eigenpairs. There is an alternative to

Phase 2 when all eigenvalues are wanted. The QR algorithm, see [13,5], is applied to T yielding
�=R∗

p · · ·R∗
1TR1 · · ·Rp where each Ri is a plane rotation G and p is the number of iterations used in

the QR algorithm. Then S =R1 · · ·Rp and this accumulation of plane rotations produces an S that is
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orthogonal to working accuracy however close the eigenvalues may be. The price for this desirable
property is an O(n3) algorithm for the spectral factorization of T . Since Phases 1 and 3 are O(n3)
what is wrong with having Phase 2 also O(n3)? Answer: the constant behind O is too big.

3. Changing representations

In this section we consider tridiagonals that are not necessarily symmetric. Instead of T−�I=LDLt
we will have T − �I = LU . We normalize our matrices in a way that would destroy symmetry. Any
tridiagonal with nonzero o�-diagonal entries is said to be unreduced. Any unreduced tridiagonal is
diagonally similar to one with all super-diagonal entries equal to 1; �T�−1 = J . We designate such
matrices by J and note that the number of free parameters in J is 2n − 1 for n × n cases. If J
permits triangular factorization, J = LU , then we write

L=bidiag
(
1 1 1 : 1 1
e1 e2 : : en−1

)
;

U =bidiag
(

1 1 : 1 1
q1 q2 : : qn−1 qn

)
:

An attractive feature of this notation is that UL is also a J -matrix and that feature is exploited later
in the section.
Section 1 emphasized the advantages of exploiting the shift invariance of eigenvectors. Suppose

that L and U determine well the eigenvalues of J . When we need a new representation, for J − �I
say, we must compute

◦
L and

◦
U satisfying

◦
L

◦
U =J − �I = LU − �I:

There are (at least) two ways to compute
◦
L and

◦
U from L, U , and �. The �rst is called the

stationary qd-algorithm stqds by Rutishauser, see [22].
The algorithm can be derived by equating entries on each side of

◦
L

◦
U =LU−�I in the appropriate

order.

stqds(�):
◦
q1 =q1 − �
for i = 1; n− 1 do

◦
ei=eiqi=

◦
qi

◦
qi+1 = ei + qi+1 − � − ◦

ei
end for

Unfortunately, when executed in �nite precision arithmetic, this algorithm is not accurate enough to
connect one representation to the other by making small relative changes to the parameters q and
e. There is more discussion of this point later in this section. Fortunately, there is an alternative
implementation. It is easy to miss and Rutishauser never published it and seems to have discovered
it only in the last two years of his life. The alternative was found independently of Rutishauser by
Fernando and Parlett as recently as 1991 and in another context, see [12]. It is called the di�erential
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stationary qd algorithm and so the old name is pre�xed with a little d.

dstqds(�): s1 =−�
for i = 1; n− 1 do

◦
qi=si + qi
◦
ei=eiqi=

◦
qi

si+1 = siqi=
◦
qi−�

end for
◦
qn=sn + qn

The auxiliary variable is called si and the new value si+1 may be written over the old si. The essential
property of the new algorithm is that it enjoys mixed relative stability. What does this mean?
Let

◦
L and

◦
U now denote the bidiagonal matrices actually computed by dstqds(�) in the computer.

Then there exist special tiny end-�gure changes to the entries of L, U ,
◦
L,

◦
U giving new matrices

�L, �U , L̃, Ũ , respectively, such that

L̃Ũ = �L �U − �I

exactly. The necessary change in most of the entries is two units (bits) in the last place held (i.e.
in the last digit) and none exceeds four. Thus, the eigenvectors of L̃Ũ are identical to those of �L �U

and we only have to make sure that
◦
L,

◦
U determine the (small) eigenvalues of

◦
L

◦
U together with

the associated eigenvectors to high relative accuracy. In addition L, U must also determine those
same eigenvectors to high relative accuracy. Symmetry is not essential.
It should be mentioned that when the original matrix is symmetric then there is a minor variation

of dstqds that uses, not L and U but L and D where LDLt is the matrix in question. The same
stability results hold with minor variations in the details, see [7,16]. That relative stability property
of dstqds is the second ingredient in the method for computing accurate eigenvectors. It permits us
to relate the eigenvectors computed from di�erent representations to the eigenvectors of one single
matrix LLt or LDLt .
There is an essential component of the new method that has not been discussed so far. How

can one calculate the eigenvalues of LLt or LDLt to high relative accuracy? In the symmetric case
there is a variant of the well-known bisection algorithm, see [5], that may be used. This technique
is e�ective for re�ning eigenvalues already known to good accuracy but is slow as a general tool.
There is a much faster method, discovered in 1991=1992 by Fernando and Parlett, see [12], that
computes the eigenvalues of LLt using the ideas in this section.
If J = LU then the LR transform of J is Ĵ = UL. When shifts are incorporated we obtain

LR(�) : factor J − �I = LU;
form Ĵ = UL+ �I:

Thus Ĵ = L−1(J − �I)L+ �I = L−1JL.
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The LR algorithm consists of iterating the LR transform with well chosen shifts. It was presented
by Rutishauser in 1957, see [21], along with a proof of its surprising convergence property. For
simplicity take all shifts to be zero. Then if J has eigenvalues with distinct absolute values and if
the factorization does not fail then, very slowly, the q-values tend to the eigenvalues in monotonic
decreasing order, i.e., qn tends to the eigenvalue closest to 0. The e-values tend to zero.
Rutishauser implemented the LR transform so that Ĵ overwrote J with no explicit reference to L

and U . Today the LR algorithm is remembered, if at all, as the algorithm that led to the celebrated
QR algorithm which is a little slower than LR but never breaks down and is backward stable.
With our preference for L, U over J we let Ĵ = L̂Û and want to compute L̂ and Û , without

reference to J from L̂Û = UL − �I . This may be accomplished by the qds algorithm that was
discovered by Rutishauser in 1953=54, see [20], some years before he saw that qds was equivalent
to LR in exact arithmetic.

qds(�): q̂1 = q1 + e1 − �
for i = 1; n− 1 do
ê i = ei ∗ qi+1=q̂i
q̂i+1 = qi+1 + ei+1 − �− ê i

end for

This is not the most accurate implementation. There is a di�erential form of qds(�) that was dis-
covered by Fernando and Parlett as late as 1991, see [12].

dqds(�): p1 = q1 − �
for i = 1; n− 1 do

q̂i = pi + ei
ê i = ei ∗ qi+1=q̂i
pi+1 = pi ∗ qi+1=q̂i − �

end for
q̂n = pn

An examination of both algorithms shows that the shift is not restored; Ĵ = L̂Û = UL − �I . Thus
all eigenvalues have been reduced by �. This feature has advantages although it is troublesome to
people familiar with the QR algorithm. It becomes necessary to keep a running sum � of all shifts
used in order to recover the original eigenvalues. In practice, with dqds, the program checks when
en−1 and qn are both negligible and then records � as an eigenvalue and reduces the order n by 1.
The advantage of dqds over qds is that it enjoys high mixed relative stability even in the presence

of element growth. Small end-�gure changes to the input L, U and to the output L̂, Û give an exact
transformation and this feature permits all the eigenvalues to be computed to high relative accuracy
in the positive case. When the original J comes from a positive de�nite symmetric matrix T , via
J =�T�−1, then all q’s and e’s will be positive. The shifts must be chosen carefully and details
can be found in [12,19]. The latest implementation is in LAPACK, see [1], and is almost as fast as
the root free QR method that computes eigenvalues with errors O(�||T ||), not O(�|�|).
Apart from its use in computing eigenvalues the dqds(�) transform plays a role in computing

‘twisted’ factorizations of tridiagonals that are needed in the course of computing eigenvectors. We
omit this material and refer the reader to [15,16].
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4. A small example

The ideas sketched in Section 1 may be illustrated on a 4 × 4 matrix. This matrix is similar to
one used by Dhillon in his dissertation [7]. It is contrived to produce an intermediate representation
(LDLt) that looks bad because it su�ers severe element growth, ||L|| = 107||T ||. Nevertheless the
representation is good enough for its special purpose.
Let � denote the roundo� unit for Matlab (=2×10−16) and let �:=√�. The tridiagonal T is given

by

diagonal = (1 + �; 1− 2�; 1 + 3�; 1 + 2�);
o�-diagonal = (

√
2=2;

√
2=2; �):

The eigenvalues are, approximately,

−�; 1 + 4
3�; 1 + 8

3�; 2 + �;

O�-diag Diag Eigenvalues

7:071067811865476e− 01 1:000000014901161e + 00 2:000000000000001e + 00
7:071067811865476e− 01 9:999999701976776e− 01 1:000000040339034e + 00
1:490116119384766e− 08 1:000000044703484e + 00 1:000000019265610e + 00

0 1:000000029802322e + 00 −6:890205972143757e− 16

Matlab has no trouble computing an orthonormal set of eigenvectors because it uses the QR
algorithm. We ignore the extreme eigenvalues and focus on the pair close to 1 whose separation is
4
3�=O(

√
�).

First we performed standard inverse iteration using a good starting vector. Each computed vector
x has an excellent residual norm; ||Tx− x�||=O(�). The dot product between them is

O(
√
�) =

O(�)
gap

=
O(�)
4=3�

as expected by standard theory, see Section 1. This is not good enough.
Next, we pursued a simple variation of inverse iteration. Since our two eigenvalues agree to

eight decimals we may translate T to T − I and �nd that the shifted eigenvalues have no digits in
common. We try inverse iteration again, using T − I , and �nd an improvement. The dot product is
10−10 instead of 10−8. This is not good enough. The calculations are shown in Fig 1.
Before proceeding to the central idea of new representations we discuss the starting vector for

inverse iteration. The last entry in the two eigenvectors we seek is dominant and, in order to keep
the example simple, we choose a special multiple of e4:=(0; 0; 0; 1)t as the starting vector in all
cases.
This special multiple simpli�es the calculations. In each case we factor a nearly singular matrix

◦
L

◦
D

◦
Lt − �I = LDLt

and the approximate eigenvector x is computed from

LDLtx= e4�:
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Fig. 1. Inverse iteration.

We chose � = D4;4. Since L is unit lower triangular Le4 = e4 and our choice of � yields Ltx = e4.
Backsolving yields

x=



−‘1‘2‘3
+‘2‘3
−‘3
1


 ;

where ‘i = L(i+1; i), i=1; 2; 3. Thus ||x||2¿ 1 and the accuracy of x is completely determined by
the accuracy of L. In exact arithmetic

||(◦L ◦
D

◦
Lt − �I)x||= ||LDLtx||= |D4;4|

and, when � is very accurate, then D4;4 can be O(�|�|). The roundo� errors in computing (‘2‘3)
and ‘1(‘2‘3) make negligible di�erence. We ignore them here and refer to [16] for the way those
roundo� errors may be dealt with in general.
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In the �gures that follow we exhibit the nontrivial entries in L, D, and x for various cases.
First, we compared inverse iteration on T and T − I , see Fig. 1. The computed vectors are not

orthogonal to working accuracy.
Next, we abandon T and T − I and take as our representation L1D1Lt1 = T − I . This looks bad

because of element growth.

Lower part of L1 Diagonal of D1

4:745313281212578e + 07 1:490116119384766e− 08
−2:107342425544699e− 08 −3:355443200000004e + 07
2:500000000000001e− 01 5:960464477539061e− 08

0 2:607703208923340e− 08

||(T − I)− L1D1Lt1||= 0:
The computed product L1D1Lt1 turned out to equal T − I exactly.
We computed the eigenvalues � of L1D1Lt1 by bisection but never formed the product L1D1L

t
1.

For each sample � we computed L1D1Lt1− �I = LDLt using the di�erential form of the stationary qd
algorithm (Section 3) and counted the number of negative diagonal entries in D.
The eigenvalues �2, �3 di�er from the �2, �3 computed by Matlab from T − I in their last eight

digits. This is because L1D1Lt1 de�nes its two tiny eigenvalues to high relative accuracy despite
the element growth. The large eigenvalues are not so well represented. There is a precise ‘relative
condition number’, greater than or equal to one, that measures the relative change in an eigenvalue
due to tiny relative changes in the parameters in L1 and D1. The condition numbers of our two
eigenvalues �2 and �3 are less than 3 whereas the condition for the two extreme eigenvalues, near
−1 and +1, are about 108.
Fig. 2 shows the di�erence made by using �2 and �3 instead of �2 and �3 to obtain new factor-

izations. Notice how the last pivot changes from 10−16 to 10−23. The improved eigenvalues coupled
with the high accuracy of the di�erential stationary qd algorithm combine to correct the lower halves
of the entries of the L factors and so give fully accurate eigenvectors of L1D1Lt1. The computations
are shown in Fig. 2.
We must mention that in this example T − I also de�nes its two small eigenvalues to high

relative accuracy. If we discard Matlab’s eigenvalues �2 and �3 and use bisection we get �2 and
�3 instead. If we then use these eigenvalues in inverse iteration starting from e4 we get the same
excellent eigenvectors as in the new method. In this case the diagonal entries of T − I have the
same exponent as the two small eigenvalues and the subtraction in the shift is done exactly. The
point is that in general the standard representation does not de�ne the small eigenvalues to this high
relative accuracy. This example shows that element growth in the factorization does not stop the
small eigenvalues being well determined by the triangular factors.

5. Unsymmetric case

This case needs more attention. Real matrices may have complex eigenvalues and, of more concern,
some eigenvalues may be extremely sensitive to small changes in the matrix while others may be
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Fig. 2. New method.

robust. Unsymmetric tridiagonal matrices arise as output from the (two-sided) Lanczos algorithm
applied to a large sparse general matrix. The lack of a good tridiagonal eigensolver to complete
the calculation has hindered the acceptance of the unsymmetric Lanczos algorithms for large sparse
problems.
It is not easy to �nd an algorithm that preserves both the eigenvalues and the tridiagonal form.

None of the current methods is, in addition, backward stable. A method is backward stable if the
computed eigenvalues are exact for some matrix close to the original one.
One of the earliest methods was the LR algorithm described Section 3. In 1978 came the HR

algorithm of Bunse–Gerstner, see [3,4]. In 1992 came XHR from Parlett and Liu, see [14]. In 1996
and 1998 came two related methods by Uhlig called DQR and IQR PWK, see [24,23]. All of these
methods work with a tridiagonal matrix.
The ideas described in Sections 1 and 3 suggest that the triangular factors might be a preferable

representation to their product even in the unsymmetric case. If this is so, at least in important
special cases, then we are fortunate that we have an algorithm at hand, namely dqds, that avoids
the loss of information inherent in explicitly forming the product of bidiagonals.
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The nice high mixed relative stability property mentioned in Section 3 extends without change
to this case. Two practical lessons have been learned in working with the LR algorithm. First,
by doubling the storage (from 2n to 4n cells) a transformation may be computed and then either
accepted or rejected. Thus, unsatisfactory transformations merely waste a little time. They may be
discarded and a better shift invoked. Second, the standard simple shift strategies based on asymptotic
properties need to be supplemented with sophisticated choices in the early stages of the process.
The motivation for the method described in Sections 1 and 3 was to compute orthogonal eigen-

vectors. Of course, this is out of the question in the unsymmetric case because the eigenvectors
need not be orthogonal. Recall that in the symmetric case we achieved orthogonality indirectly by
attempting to compute accurate eigenvectors. This goal we can retain. The reason for hope is that the
high relative accuracy property of dstqds and dqds is independent of symmetry. When LU de�nes
its small eigenvalues to high relative accuracy then we should achieve (1), the small relative residual
property.
A prototype implementation of dqds algorithm for eigenvalues entirely in complex arithmetic has

been used with excellent results by David Day in building a nonsymmetric Lanczos algorithm for
large sparse matrices. See [6].
There is room for more investigation on this topic.
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