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Abstract

The dynamical discrete web (DyDW), introduced in the recent work of Howitt and Warren, is a system
of coalescing simple symmetric one-dimensional random walks which evolve in an extra continuous
dynamical time parameter τ . The evolution is by independent updating of the underlying Bernoulli variables
indexed by discrete space–time that define the discrete web at any fixed τ . In this paper, we study the
existence of exceptional (random) values of τ where the paths of the web do not behave like usual random
walks and the Hausdorff dimension of the set of such exceptional τ . Our results are motivated by those
about exceptional times for dynamical percolation in high dimension by Häggstrom, Peres and Steif, and
in dimension two by Schramm and Steif. The exceptional behavior of the walks in the DyDW is rather
different from the situation for the dynamical random walks of Benjamini, Häggstrom, Peres and Steif. For
example, we prove that the walk from the origin Sτ0 violates the law of the iterated logarithm (LIL) on
a set of τ of Hausdorff dimension one. We also discuss how these and other results should extend to the
dynamical Brownian web, the natural scaling limit of the DyDW.
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1. Introduction

In this paper, we present a number of results concerning a dynamical version of coalescing
random walks, which was recently introduced in [1]. Our results concern sets of dynamical
times of Hausdorff dimension less than or equal to one (and of zero Lebesgue measure) where
the system of coalescing walks behaves exceptionally. The results are analogous to and were
motivated by the model of dynamical percolation and its exceptional times [2,3]. In this section,
we define the basic model treated in this paper, which we call the dynamical discrete web
(DyDW), recall some facts about dynamical percolation, and then briefly describe our main
results. The justification for calling this model a discrete web is that there is a natural scaling
limit, the dynamical Brownian web (DyBW), which was proposed by Howitt and Warren in [1]
and completely constructed in [4]. As we shall explain (see Section 6), the exceptional times
results for the DyDW should extend to the continuum DyBW.

Before defining the specific models treated in this paper, we comment on the study of
exceptional values of dynamical time, or analogous parameters, in a variety of models. In [2],
one motivation given for studying exceptional times in dynamical percolation is to understand
the (lack of) stability of “critical infinite clusters”; here the corresponding objects are simple
symmetric random walks that exceptionally are slightly subdiffusive. Beyond that, since both the
DyDW and some dynamical extensions have been used as models of hydrological drainage and
erosion (see, e.g., [5,6]), dynamical times where exceptional behavior occurs can potentially be
relevant for modeling time-sporadic phenomena in particular physical settings that correspond
to individual ω’s in the underlying probability space of the model. An intriguing speculative
possibility of that type has been raised in the rather different physical context of spin glasses (see
Sec. 4.2 of [7]), where ω corresponds to a realization of the microscopic disorder of a particular
sample of the material being modeled, and dynamical time is replaced by the temperature
parameter.

Returning to the dynamical time setting, we note that exceptional times for other dynamical
versions of random walks in various spatial dimensions have been studied in [8–10] and
elsewhere, but, as we shall see, these are quite different from the dynamical random walks of
the DyDW.

1.1. The discrete web

The discrete web (DW) is a collection of coalescing one-dimensional simple random walks
starting from every point in the discrete space–time domain Z2

even = {(x, t) ∈ Z2
: x+t is even}.

The Bernoulli-percolation-like structure is highlighted by defining ξx,t for (x, t) ∈ Z2
even to be

the increment of the random walk at location x at time t . These Bernoulli variables are symmetric
and independent and the paths of all the coalescing random walks can be reconstructed by
assigning to each point (x, t) an arrow from (x, t) to {x + ξx,t , t + 1} and considering all the
paths starting from arbitrary points in Z2

even that follow the arrow configuration ℵ.

1.2. The dynamical discrete web

In the DyDW, there is, in addition to the random walk discrete time parameter, an additional
(continuous) dynamical time parameter τ . The system starts at τ = 0 as an ordinary DW and then
evolves in τ by randomly switching the direction of each arrow at a fixed rate independently of all
other arrows. We will generally do the switching by having at each (x, t) ∈ Z2

even a Poisson clock
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ring at rate one and then reset the direction of the arrow at random; thus the rate of switching will
be 1/2. This amounts to extending the percolation substructure ξ0

z to time varying functions ξ τz
defining a (right-continuous) dynamical arrow configuration τ  ℵ(τ ) and W (τ ), the dynamical
discrete web at time τ , is defined as the web constructed from ℵ(τ ).

If one follows the arrows starting from the (space–time) origin (0, 0), the dynamical path Sτ0
begins at τ = 0 as a simple symmetric random walk and then evolves dynamically in τ . At any
fixed time τ , Sτ0 has the same law as at time τ = 0. As a consequence, if µ is the probability
distribution of a simple symmetric random walk starting from the origin and A is any event with
µ(A) = 1, we have for any deterministic τ that P(Sτ0 ∈ A) = 1. By a straightforward application
of Fubini’s theorem, this implies that

P(Sτ0 ∈ A for Lebesgue a.e. τ) = 1. (1.1)

Following [8], for any event such that (1.1) holds, a natural question is whether (1.1) can be
strengthened to

P(Sτ ∈ A for all τ ≥ 0) = 1, (1.2)

i.e., do there exist some exceptional times τ at which Sτ0 violates some almost sure properties of
the standard random walk? or stated differently, is the random walk sensitive to the dynamics
introduced on the DW?

1.3. Analogies with dynamical percolation

Similar questions have been investigated in percolation. Static (site) percolation models are
defined also in terms of independent Bernoulli variables ξ0

z , indexed by points z in some d-
dimensional lattice, which in general are asymmetric with parameter p. There is a critical value
pc when the system has a transition from having an infinite cluster (connected component)
with probability zero to having one with probability one. It is expected that at p = pc there
are no infinite clusters and this is proved for d = 2 and for high d (see, e.g., [11]). In
dynamical percolation, one extends ξ0

z to time varying functions ξ τz , as in the case of coalescing
walks, except that the transition rates for the jump processes ξ τz are chosen to have the critical
asymmetric (pc, 1 − pc) distribution to be invariant. The question raised in [2] was whether
there are exceptional times when an infinite cluster (say, one containing the origin) occurs, even
though this does not occur at deterministic times. This was answered negatively in [2] for large
d and, more remarkably, was answered positively by Schramm and Steif for d = 2 in [3], where
they further obtained upper and lower bounds on the Hausdorff dimension (as a subset of the
dynamical time axis) of these exceptional times. In [12], the exact Hausdorff dimension was
obtained.

1.4. Main results

We apply in this paper the approaches used for dynamical percolation to the dynamical
discrete web. Although we restrict attention to one-dimensional random walks whose paths are
in two-dimensional space–time and hence analogous to d = 2 dynamical percolation, we use
both the high d and d = 2 methods of [2,3].

–Tameness. A natural initial question is whether there might be exceptional dynamical times τ
for which the walk from the origin Sτ0 (t) is transient (say to +∞). Our first main result (see
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Theorem 2.1), modeled after the high-d dynamical percolation results of [2], is that there are no
such exceptional times.

–Existence of exceptional times. For a simple symmetric random walk S, it is well known
that lim inft↑∞ S(t)/

√
t = −∞ a.s. (and, of course, lim supt↑∞ S(t)/

√
t = +∞ a.s.). In the

following, we will say that a path is subdiffusive if it violates this a.s. property of the standard
random walk.

Definition 1.1 (K+-subdiffusivity). Let K ∈ (0,∞). A path π starting at x = 0 at time t = 0 is
said to be K+-subdiffusive iff there exists j ≥ 0 such that

∀t > 0, π(t) ≥ − j − K
√

t . (1.3)

We say that π is subdiffusive iff there exists K ∈ (0,∞) such that lim inft↑∞ π(t)/
√

t ≥ −K or
lim supt↑∞ π(t)/

√
t ≤ K .

In Proposition 4.1, we prove that for K large enough, there is a strictly positive probability
for having a dynamical time τ ∈ [0, 1] at which Sτ0 is K+-subdiffusive. Propositions 5.3
and 5.5 give lower and upper bounds on the (deterministic) Hausdorff dimension of these
exceptional times in [0,∞). Interestingly, the Hausdorff dimensions depend non-trivially on
the constant K so that the dimension tends to zero (respectively, one) as K → 0 (respectively,
K → ∞). In particular, as a direct consequence of Proposition 5.3, we obtain the following
result.

Theorem 1.2. The set of times τ ∈ [0,∞) at which Sτ0 is subdiffusive has Hausdorff dimension
one. Hence, the set of exceptional times for the law of the iterated logarithm (LIL) also has
Hausdorff dimension one.

Since a set of exceptional times has zero Lebesgue measure (see (1.1)), we see that the set of
exceptional times for the LIL (or for subdiffusivity) is in a sense as large as it can be. This is
strikingly in contrast with the dynamical one-dimensional random walk of [8] where there are
no exceptional times for which the LIL fails (in [8], we recall that the analogue of Sτ0 is simply
defined as

S̄τ0 (n) =
n∑

i=1

X τi , (1.4)

where {X τi }i are independent {−1,+1}-valued Markov jump processes with rate 1 and uniform
initial distribution). To explain why the walks of [8] can behave so differently from those of the
discrete web, we note that a single switch in the dynamical random walk of (1.4) affects only
one increment of the walk while single switches in the discrete web can change the path of the
walker by a “macroscopic” amount. Indeed, the difference between the path Sτ0 before and after
a single switch is given by the difference between two independent simple random walks starting
two spatial units apart. This corresponds to the excursion of a (non-simple) random walk from
zero whose mean duration is infinite. It follows that a simple random walk is more sensitive to the
extra noise induced by the dynamics on the discrete web than to the one induced by the dynamics
considered in [8]. Rephrasing [3] in our context, since our dynamical random walk “changes
faster” than the one in [8], it has “more chances” to exhibit exceptional behavior. Mathematically,
“changing fast” corresponds to having small correlations over short time intervals and the main
ingredient for proving our exceptional times results will be the correlation estimate (3.16) of
Proposition 3.1.
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By an obvious symmetry argument, there are also exceptional dynamical times τ for which
Sτ (t) ≤ j + K

√
t for all t . One may ask whether there are exceptional τ for which |Sτ (t)| ≤

j + K
√

t for all t . Proposition 5.8 shows, at least for small K , that there are no such exceptional
times. The case of large K is unresolved.

1.5. Scaling limits

In Section 6, we discuss the continuum analogue of the dynamical random walk, the
dynamical Brownian motion constructed in [4]. We briefly recall there the main ideas of the
construction along with some elementary properties of that object. Then, we outline the main
ideas that are needed to extend the results for exceptional times from the discrete level to the
continuum.

2. Tameness

In this section, we prove the following theorem.

Theorem 2.1. P
(
Sτ0 is recurrent for all τ ≥ 0

)
= 1.

Recall the definition of the dynamical percolation model given in the introduction. For Bernoulli
percolation on a homogeneous graph with critical probability pc, let θ(p) be the probability that
the origin belongs to an infinite cluster. In Section 3 of [2], it is proved that if for some C <∞

θ(p) ≤ C(p − pc) for p ≥ pc, (2.5)

then in the corresponding dynamical percolation model, there is almost surely no dynamical
time τ at which percolation occurs. In our setting, an entirely parallel argument can be used to
show tameness of the dynamical discrete web with respect to recurrence.

Following [2], we start by giving a very general tameness criterion. Let Pp be the probability
measure for the static web when the probability for having a right arrow at a given site of Z2

even
is p. Let S0 be the simple random walk starting from the origin and let A be a measurable set of
paths such that P1/2(S0 ∈ A) = 0. In the following, Pp(S0 ∈ A) plays the role that θ(p) did for
dynamical percolation. Our first lemma is the analogue to Lemma 3.1 in [2].

Lemma 2.2. Let A be such that {S0 ∈ A} is an increasing event w.r.t. the basic Bernoulli {ξz}

variables and such that P1/2(S0 ∈ A) = 0. Let NA be the cardinality of the set {τ ∈ [0, 1] :
Sτ0 ∈ A}. Suppose there exists c <∞ such that

Pp(S0 ∈ A) ≤ c

(
p −

1
2

)
for all p ≥

1
2
; (2.6)

then E(NA) <∞.

Proof. Let m > 1. We first estimate E(Nm) where Nm is the number of i ∈ {1, 2, . . . ,m} such
that there exists τ ∈ [ i−1

m , i
m ] for which Sτ0 ∈ A. For a given i ≤ m, define

ξ̄ = ξ̄ (i) =

 sup
τ∈
[

i−1
m , i

m

] ξ τz


z∈Z2
even

. (2.7)
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This naturally induces a new arrow configuration ℵ̄ for which the probability to find a right arrow
at any given site is given by

p̄ = 1−
1
2

exp
(
−

1
2m

)
≤

1
2
+

1
4m
. (2.8)

For such a configuration, the path S̄0 starting from the origin is a drifting random walk coupled
with Sτ0 in such a way that

∀τ ∈

[
i − 1

m
,

i

m

]
, Sτ0 ≤ S̄0, (2.9)

which implies

P
(
∃τ ∈

[
i − 1

m
,

i

m

]
with Sτ0 ∈ A

)
≤ P(S̄0 ∈ A) (2.10)

≤ c

(
p̄ −

1
2

)
≤

c

4m
. (2.11)

Hence, E(Nm) ≤ m c
4m = c/4 for all m > 1. Since NA = lim infm↑∞ Nm , Fatou’s lemma

completes the proof. �

We now turn to the proof of Theorem 2.1. We extend in the usual way a random walk
π , initially defined for integer times, to be a continuous (piecewise linear) function π(t) for
t ∈ [0,∞) by setting π(t) = π(k)+ (t − k)(π(k+ 1)−π(k)) for k ≤ t ≤ k+ 1. For any n ≥ 0,
let An be the set of (piecewise linear) simple random walks π starting from the origin and such
that for all t ≥ 0, π(t) > −n. It is well known that

Pp(S0 ∈ A) = 1−
(

1−
(2p − 1)

p

)n

, for p ∈

[
1
2
, 1
]
. (2.12)

Clearly, An satisfies the hypotheses of Lemma 2.2, implying that E(NAn ) <∞.
In Lemma 3.4 of [2], it is proved that for any homogeneous graph with θ(pc) = 0, the number

N of times τ ∈ [0, 1] such that in dynamical percolation the origin belongs to an infinite cluster
is a.s. either 0 or ∞. By exactly the same reasoning, one can show that NAn is either 0 or ∞;
we give the proof below for completeness. Since E(NAn ) < ∞ for every n, we then have that
NAn = 0 for every n and this together with the corresponding result for transience to −∞ will
complete the proof of Theorem 2.1.

It remains to show that a.s. NAn is either 0 or ∞. Arguing by contradiction, we assume
that for some 0 < k < ∞, P(NAn = k) > 0. Then, by an application of the martingale
convergence theorem, there will be some large finite subset Λ of Z2

even and some realization ω
of ξΛ = {ξ τz : z ∈ Λ, τ ∈ [0, 1]} so that the regular conditional distribution P̃ of P given ω has
P̃(NAn = k) ≥ 0.9. Let As denote the event that Sτ0 ∈ An for at least one τ ∈ [0, s). Then P̃(As)

is non-decreasing and left-continuous in s with P̃(A0) = 0 and P̃(A1) ≥ 0.9; it is also right-
continuous because at the countably many τ j ’s where for some z, ξ τz changes, P̃(Sτ j

0 ∈ An) = 0.
Thus for some γ ∈ (0, 1), P̃(Aγ ) = 0.5. Let Bγ denote the event that Sτ0 ∈ An for at least k
different τ ’s in [γ, 1]. Then since {NAn = k} ⊂ Aγ ∪ Bγ , it follows that P̃(Bγ ) ≥ 0.4. Letting
ξγ denote {ξγz : z ∈ Z2

even}, we have that the conditional probabilities P̃(Aγ |ξ
γ ) and P̃(Bγ |ξγ )
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are increasing functions of ξγ so that by the Markov property and the Harris–FKG inequalities,

P̃(Aγ ∩ Bγ ) =
∫

P̃(Aγ |ξ
γ )P̃(Bγ |ξγ )dP̃ ≥ P̃(Aγ ) · P̃(Bγ ) ≥ 0.2. (2.13)

Since {NAn = k} and Aγ ∩ Bγ are disjoint, it follows that P̃(NAn = k) ≤ 0.8 which contradicts
our earlier assumption and completes the proof.

Remark 2.3. Another property of the static discrete web with respect to which the dynamical
one is tame is the almost sure coalescence of all of its paths. Indeed, the difference between two
independent random walks is again a (non-simple) random walk and the proof of Theorem 2.1
can easily be adapted to show that at every dynamical time τ two walkers always meet and
coalesce after some finite time t .

3. Sensitivity to the dynamics

In the following, (C([0, 1]), |.|∞) denotes the space of continuous functions on [0, 1]
equipped with the sup norm. In order to prepare for our results about exceptional times, we need
to prove that the arrow configuration in the DyDW decorrelates fast enough to allow exceptional
behavior for the dynamical random walk. This will be done by proving that on a large (diffusive)
scale and for τ 6= τ ′, the paths Sτ0 and Sτ

′

0 evolve almost independently. More precisely, if for any
(small) δ > 0 and any π ∈ C([0, 1]) we set π̃(t) ≡ π(t/δ2) δ, we will prove that for a certain
open set O ∈ C([0, 1]), we have the following decorrelation inequality:

P(S̃τ0 ∈ O, S̃τ
′

0 ∈ O) ≤ P(S̃ ∈ O)2 + K

(
δ

|τ − τ ′|

)a

, (3.14)

where S is a simple symmetric random walk and K does not depend on δ, τ and τ ′. In other
words, the inequality (3.14) estimates the sensitivity of the event O to the dynamics.

We now turn to our specific choice for O . Recall that we aim to prove that at some exceptional
τ ’s the path Sτ0 is K+-subdiffusive, which requires that the walk starting from the origin is
abnormally tilted to the right. Hence, it is natural to study the noise sensitivity of the event

O = {∀t ∈ [0, 1], π(t) > −1 and π(1) > 1} (3.15)

which occurs for paths slightly tilted to the right. Studying noise sensitivity for this event is
analogous to the corresponding question concerning left–right crossing of a square in dynamical
percolation as studied in [3]. The previous discussion motivates the following proposition.

Proposition 3.1. For O = {∀t ∈ [0, 1], π(t) > −1 and π(1) > 1}, there exist K , a ∈ (0,∞)
(independent of δ, τ and τ ′) such that

P(S̃τ0 ∈ O, S̃τ
′

0 ∈ O) ≤ P(S̃ ∈ O)2 + K

(
δ

|τ − τ ′|

)a

, (3.16)

where S is a simple symmetric random walk.

In order to prove the proposition, we start by highlighting the fact that along the t-axis, the
pair (Sτ0 , Sτ

′

0 ) alternates between times at which the two paths are equal (they “stick together”)

and times at which they move independently. Recall that if Sτ0 and Sτ
′

0 coincide at time t and if

the clock at (Sτ0 (t), t) does not ring on [τ, τ ′), the increments of Sτ0 and Sτ
′

0 at time t are equal
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(i.e., Sτ0 and Sτ
′

0 stick together). Otherwise, the two increments are independent. This suggests

the following time decomposition of the pair (Sτ0 , Sτ
′

0 ). Define inductively {Tk}k≥0 with T0 = 0
and for any k ≥ 0,

T2k+1 = inf{n ∈ N, n ≥ T2k : the clock at (Sτ0 (n), n) rings in [τ, τ ′)},

T2k+2 = inf{n ∈ N, n > T2k+1 : Sτ0 (n) = Sτ
′

0 (n)},

1Tk = T2k+1 − T2k, where we have P(1Tk ≥ j) = e−|τ−τ
′
| j .

On the interval of integer time [T2k, T2k+1], the paths Sτ0 , Sτ
′

0 coincide and at time T2k+1
they move independently until meeting at time T2k+2. Hence, if we skip the intervals
{[T2k, T2k+1)}k≥0, (Sτ0 , Sτ

′

0 ) behave as two independent random walks (Sτd , Sτ
′

d ), while if we skip
{[T2k+1, T2k+2)}k≥0, the two walks coincide with a single random walk Ss . Furthermore, since
Ss is constructed from the arrow configuration at sites different from the ones used to construct
(Sτd , Sτ

′

d ), it is independent of (Sτd , Sτ
′

d ).
Now, skipping the intervals {[T2k, T2k+1)}k≥0 corresponds to making the random time change

t → C(t) where C is the right-continuous inverse of

t +
∑

k≤l(t)

1Tk with l(t) = #{i ∈ N, i ≤ t : Sτd (i) = Sτ
′

d (i)}. (3.17)

Skipping {[T2k+1, T2k+2)}k≥0 corresponds to making the time change t → t−C(t). This analysis
yields the following lemma.

Lemma 3.2. There exist three independent simple symmetric random walks (Ss, Sτd , Sτ
′

d ) and an
independent sequence of independent non-negative integer valued random variables {∆Tk}k≥0

with P(1Tk ≥ j) = e−(τ
′
−τ) j such that

Sτ0 (t) = Sτd (C(t))+ Ss(t − C(t)), (3.18)

Sτ
′

0 (t) = Sτ
′

d (C(t))+ Ss(t − C(t)), (3.19)

where C is the right-continuous inverse of (3.17).

In the following, the pair (Sτ0 , Sτ
′

0 )will be referred to as a sticky pair of random walks. We note
that the previous lemma has a continuous analogue called a sticky pair of Brownian motions—see
Section 6 for more details.

Heuristically, in order to prove Proposition 3.1, we need to show that at large (diffusive) scales
Eqs. (3.18) and (3.19) become

Sτ0 (t) ≈ Sτd (t), (3.20)

Sτ
′

0 (t) ≈ Sτ
′

d (t), (3.21)

or equivalently that C(t) ≈ t (see Lemma 3.4). The following three lemmas prepare the
justification of this informal approximation. Let δ > 0. We recall that for a path S, S̃(·) ≡
S(·/δ2) δ. In the following, we set ∆ ≡ δ/|τ − τ ′| and for O ⊂ C([0, 1]) and any r ≥ 0, we
define

O + r ≡ {π ∈ C([0, 1]) s.t. ∃ π̄ ∈ O s.t. |π − π̄ |∞ ≤ r}.
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Lemma 3.3. Let S be a simple symmetric random walk. For the O defined in (3.15) and any
α < 1

2 ,

P(S̃ ∈ [O +∆α
] \ O) ≤ c′∆α (3.22)

where c′ ∈ (0,∞) is independent of ∆ and δ.

Proof.

P(S̃ ∈ [O +∆α
] \ O) ≤ P

(
inf

t∈[0,1]
S̃(t) ∈ (−1−∆α,−1]

)
+ P(S̃(1) ∈ (1−∆α, 1]).

(3.23)

We will first prove that the second term on the right-hand side of this inequality is of order ∆α

and then that the first term has the same bound.
In [13], it is proved that a sequence of rescaled standard random walks {S(·/δ2)δ}δ>0 and a

Brownian motion B can be constructed on the same probability space in such a way that for any
α < 1

2 , the quantity P(|B − S(· /δ2)δ|∞ > δα) goes to 0 faster than any power of δ. On this
probability space,

P(S̃(1) ∈ (1−∆α, 1]) ≤ P(B(1) ∈ [1− 2∆α, 1+∆α
])+ P(|S̃ − B|∞ ≥ ∆α). (3.24)

Let α < 1
2 . Since ∆α > δα (because |τ − τ ′| ≤ 1), the last term on the right-hand side of (3.24)

is bounded by O(δ), and consequently by O(∆). Since B(1) has a Gaussian density, the first
term on the right-hand side of this inequality is clearly bounded by c∆α giving us the correct
bound for the second term on the right-hand side of (3.23). To get bounds of the same order
for the first term from (3.23), we proceed along the same lines, approximating the random walk
by a Brownian motion and using the fact that the well-known explicit density function for its
maximum is bounded. This completes the proof of the lemma. �

Lemma 3.4. Define C̄(t) = C(t/δ2)δ2 where C is defined in (3.17) (note that the random clock
C and the paths are rescaled in a different manner).

For any 1 > β > 0

P

(
sup

t∈[0,1]
(t − C̄(t)) ≥ ∆β

)
≤ c̃∆1−β , (3.25)

where c̃ ∈ (0,∞) is independent of ∆ and δ.

Proof. Recall from Lemma 3.2 that

C−1(t) = t + L(t), where L(t) =
∑

k≤l(t)

1Tk, (3.26)

{1Tk} are independent geometric random variables, l is the discrete local time at the origin of
Sτd−Sτ

′

d and C−1 is the right-continuous inverse of C . In the following, we set L̄(t) ≡ L(t/δ2) δ2.
We first prove that

P(L̄(1) ≥ ∆β) ≤ c̃∆1−β . (3.27)
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By the Markov inequality,

P(L̄(1) ≥ ∆β) ≤ E
(

l(1/δ2)δ
)
(E(1T1)δ)

1
∆β

(3.28)

with E(1T1) =

∞∑
k=1

e−|τ−τ
′
| k
=

exp(−|τ − τ ′|)
1− exp(−|τ − τ ′|)

. (3.29)

Now

E(l(1/δ2)) =
∑

k≤1/δ2

P(Sτd (k)− Sτ
′

d (k) = 0)

and it is a standard fact that the probability in the summation is O(1/
√

k) as k → ∞; thus
E(l(1/δ2)δ) is uniformly bounded in δ as δ→ 0. Furthermore, since E(∆T1) = O(|τ − τ ′|−1),
we have δE(∆T1) = O(∆) and thus (3.27) follows.

Next, on the event {L̄(1) ≤ ∆β
}, (3.26) implies that for any t ∈ [0, 1]:

(C̄)−1(t) ≤ t +∆β . (3.30)

Since C̄(t) ≤ t and C̄ is an increasing function of t , it follows that on {L̄(1) ≤ ∆β
}, for all

t ∈ [0, 1], we have

t − C̄(t) ≤ ∆β . (3.31)

The lemma thus follows from (3.27).

Lemma 3.5. For any continuous function f , define ω f (ε) = sups,t∈[0,1],|s−t |<ε | f (t)− f (s)| to
be the modulus of continuity of f on [0, 1].

Let α, β ∈ (0,∞) be such that β/2 > α. For any r ≥ 0, there exists c (independent of ∆ and
δ) such that

P
(
ωS̃(∆

β) ≥
∆α

2

)
≤ c∆r . (3.32)

Proof. Let m, n ≥ 0 and define

M̃ ≡
∫ 1

0

∫ 1

0

|S̃(t)− S̃(s)|n

|t − s|m
dtds. (3.33)

By the Garsia, Rodemich and Rumsey inequality [14], we have for m > 2 and all s, t ∈ [0, 1]

|S̃(t)− S̃(s)| ≤
8m

m − 2
(4M̃)

1
n |t − s|

m−2
n . (3.34)

It is well known that E(|S̃(t) − S̃(s)|n) ≤ c′|t − s|
n
2 , where c′ is uniform in δ. Hence, (3.33)

implies that if n
2 − m > −1, then E(M̃) ≤ c <∞ so that for every r ≥ 0,

P(M̃ > ∆−r ) ≤ c∆r . (3.35)

On the other hand, on {M̃ ≤ ∆−r
}, (3.34) yields

ωS̃(∆
β) ≤

8m

m − 2
(4∆−r )

1
n |∆β
|

m−2
n (3.36)

≤ c(n,m) ∆
1
n (β(m−2)−r). (3.37)
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Since β/2 > α, one can always take (for fixed α, β, r ) n,m large enough such that both
n
2 − m > −1 and 1

n (β(m − 2) − r) > α. For such a choice, and taking ∆ small enough so

that c(n,m)∆
1
n (β(m−2)−r)

≤ ∆α/2, we obtain then on {M̃ ≤ ∆−r
}

ωS̃(∆
β) ≤ ∆α/2. (3.38)

Hence, for small enough values of ∆, the claim of the lemma follows from (3.35). The claim is
obviously satisfied for larger values of ∆. �

We are now ready to prove Proposition 3.1. Recall the definitions of Sτd and Sτ
′

d in Lemma 3.2.
For any α > 0, we have

P(S̃τ0 ∈ O, S̃τ
′

0 ∈ O) ≤ P(S̃τd ∈ O +∆α, S̃τ
′

d ∈ O +∆α)

+ 2P(S̃τ0 ∈ O, S̃τd ∈ (O +∆α)c), (3.39)

where (O +∆α)c is the complementary set of O +∆α . Note that we used the equidistribution
of (S̃τd , S̃τ ) and (S̃τ

′

d , S̃τ
′

). We start by dealing with the first term on the right-hand side of
the inequality. Since S̃τd , S̃τ

′

d are independent and distributed like a rescaled simple symmetric
random walk S̃, we have

P(S̃τd ∈ O +∆α, S̃τ
′

d ∈ O +∆α) = P(S̃τd ∈ O +∆α) P(S̃τ
′

d ∈ O +∆α)

≤ P(S̃ ∈ O)2 + 2P(S̃ ∈ [O +∆α
] \ O). (3.40)

The latter inequality and Lemma 3.3 imply that

P(S̃τd ∈ O +∆α, S̃τ
′

d ∈ O +∆α) ≤ P(S̃ ∈ O)2 + 2c′∆α, (3.41)

for any α < 1/2. By (3.39) and (3.41), Proposition 3.1 follows if there are c′′, a′ ∈ (0,∞) such
that

P[S̃τ0 ∈ O, S̃τd ∈ (O +∆α)c] ≤ c′′∆a′ . (3.42)

This inequality can be justified as follows. Let 0 < β < 1. By Lemma 3.2

S̃τ0 (t) = S̃τd (C̄(t))+ S̃s(t − C̄(t)) (3.43)

= S̃τd (t)+ [S̃
τ
d (C̄(t))− S̃τd (t)] + S̃s(t − C̄(t)). (3.44)

The last equality implies that for any 0 < β < 1 with α < β/2,

P[S̃τ0 ∈ O, S̃τd ∈ (O +∆α)c] ≤ P(|S̃τ0 − S̃τd |∞ ≥ ∆α)

≤ P
(
|S̃s(t − C̄(t))|∞ ≥

∆α

2

)
+P

(
|S̃τd (t)− S̃τd (C̄(t))|∞ ≥

∆α

2

)
≤ 2P

(
ωS̃(∆

β) ≥
∆α

2

)
+ 2P(|t − C̄(t)|∞ ≥ ∆β)

≤ 2c∆r
+ 2c̃∆1−β
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Fig. 1. Construction of the first three boxes (R0, R1, R2) with t the vertical and x the horizontal coordinate. The thin
curves represent segments of the paths starting from z̄i , for i = 1, 2, 3, for which the events Aτ0 , Aτ1 and Aτ2 occur.

where r > 0 and the last inequality is given by Lemmas 3.4 and 3.5. So far we have only needed
α ∈ (0, 1/2) and thus we can indeed choose β ∈ (0, 1) and then α < β/2 so that Proposition 3.1
follows.

4. Existence of exceptional times

In this section we prove the following result.

Proposition 4.1. For K large enough

P(∃τ ∈ [0, 1], s.t. Sτ0 is K+-subdiffusive) > 0. (4.45)

(For a definition of K+-subdiffusivity, see Definition 1.1.)

Let γ > 2 and dk = 2(b γ
k

2 c + 1), where bxc is the integer part of x . We construct inductively
a sequence of boxes Rk with diffusive space–time scale in the following manner (see Fig. 1).

• R0 is the rectangle with vertices (−d0, 0), (+d0, 0), (−d0, d2
0 ) and (+d0, d2

0 ).
• Let z̄k = (xk, tk) be the middle point of the lower edge of Rk (e.g., z̄0 = (0, 0)). Rk+1 is the

rectangle of height d2
k+1 and width 2dk+1 such that z̄k+1 coincides with the upper right vertex

of Rk (see Fig. 1).

Note that for our particular choice of dk , z̄k always belongs to Z2
even for k ≥ 0 and a simple

computation leads to the following lemma. Note further that xk, tk, dk and hence the rectangles
Rk and their left boundaries ∂k all depend on the parameter γ .

Lemma 4.2. Let ∂γ = ∂γ (t) denote the right-continuous function obtained by joining together
the left boundaries ∂k of Rk . For any K > 0, let γ (K ) be the solution in (2,∞) of K =

(γ − 2)
√
γ+1
γ−1 . Then,

∀t ≥ 0, ∂γ (K )(t) ≥ −3− K
√

t . (4.46)
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Proof. On [tn, tn+1), we have ∂γ (t) = ∂γ (tn) = xn − dn = (d0 + d1 + · · · + dn−1 − dn). If γ is
such that

∂γ (tn) ≥ −(3+ K
√

tn) for n = 0, 1, 2, . . . , (4.47)

then we will have ∂γ (t) ≥ −(3+ K
√

t) for all t ≥ 0 as desired.
The inequality (4.47) can be rewritten as

dn ≤ 3+ d0 + · · · + dn−1 + K [d0
2
+ · · · + d2

n−1]
1/2. (4.48)

Using the bound dn ≤ 2 + γ n on the left-hand side of (4.48) and the bounds d j ≥ γ
j on the

right-hand side, it follows that in order to verify (4.48) it suffices to have, for n = 0, 1, 2, . . .,

γ n
≤ 1+

γ n
− 1

γ − 1
+ K

√
γ 2n − 1

γ 2 − 1
. (4.49)

Using the elementary bound
√
γ 2n − 1 ≥ γ n(1 − γ−2n) (for γ ≥ 1), we see that in order to

verify (4.49), it suffices to have, for n = 0, 1, 2, . . . ,

γ n

(
γ − 2
γ − 1

−
K√
γ 2 − 1

)
≤ 1−

1
γ − 1

−
K√
γ 2 − 1

γ−n, (4.50)

which is satisfied by any γ for which K = (γ − 2)
√
γ+1
γ−1 . The lemma follows from the fact that

γ → (γ − 2)
√
γ+1
γ−1 is a continuous increasing function mapping (2,∞) onto (0,∞).

By Lemma 4.2, Sτ0 is K+-subdiffusive if Sτ0 (t) ≥ ∂
γ (K )(t). Let Sτz̄k

be the path in W (τ ) starting
from z̄k = (xk, tk) and define the event

Aτk = Aτk (K ) = {∀t ∈ [tk, tk+1] Sτz̄k
(t) > ∂k(t), Sτz̄k

(tk+1) > xk+1}. (4.51)

(Here ∂k depends implicitly on γ (K ).) Since paths in W (τ ) do not cross, if ∩k≤n Aτk occurs, Sτ0
is forced to remain to the right of ∂k on [tk, tk+1] for every k ≤ n (see Fig. 1). This implies that
if we have

P(∃τ ∈ [0, 1], ∩
k≥0

Aτk (K ) occurs) > 0, (4.52)

then

P(∃τ ∈ [0, 1], Sτ0 is K+-subdiffusive) > 0. (4.53)

In the rest of the section we proceed to verifying (4.52).
In the following, K is temporarily fixed and to ease the notation we write Aτk for Aτk (K )

and γ for γ (K ). In order to verify (4.52), we start by proving the following lemma using
Proposition 3.1.

Lemma 4.3. There exists c ∈ (0,∞) such that for τ, τ ′ ∈ [0, 1]

∀n ≥ 0,
n∏

k=0

P(Aτk ∩ Aτ
′

k )

P(Ak)2
≤ c

1
|τ − τ ′|b

, (4.54)

where Ak ≡ A0
k and b = log(supk[P(Ak)

−1
])/ log γ > 0.
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Proof. Let (Sτ , Sτ
′

) be the paths starting at (0, 0), defined as the translated version of the pair
(Sτz̄k

, Sτ
′

z̄k
) ∈ (W (τ ),W (τ ′)) starting at z̄k . By translation invariance, (Sτ , Sτ

′

) is a sticky pair of
random walks starting at (0, 0) whose distribution is described in Lemma 3.2 and by definition

Aτk =

{
Sτ (d2

k ) > dk, inf
[0,d2

k ]

Sτ (t) > −dk

}
. (4.55)

Recalling the definition of dk in terms of γ given at the beginning of this section and
Proposition 3.1 for δ = d−1

k , we have that there exists c, a ∈ (0,∞) such that

P(Aτk , Aτ
′

k ) ≤ P(Ak)
2
+ c

(
1

γ k |τ − τ ′|

)a

. (4.56)

Defining N0 = [
− log(|τ−τ ′|)

log γ
] + 1 so that (γ N0 |τ − τ ′|) ≥ 1, we have for n > N0

n∏
k=N0+1

(
P(Aτk ∩ Aτ

′

k )

P(Ak)2

)
≤

∞∏
k=N0+1

(
1+

c/P(Ak)
2

|τ − τ ′|aγ aN0 γ a(k−N0)

)

≤

∞∏
k=1

1+
c

inf
n

P(An)2

1
γ ak

 . (4.57)

The right-hand side of (4.57) is independent of |τ − τ ′| and is finite. Indeed, we have 0 <

infn P(An) since the boxes Rk have diffusively scaled sizes and therefore P(Ak) → P(A) as
k →∞, where A is the event that a Brownian motion B(t) starting at 0 at time 0 has B(1) > 1
and inft∈[0,1] B(t) > −1.

On the other hand, for n ≤ N0

n∏
k=0

P(Aτk ∩ Aτ
′

k )

P(Ak)2
≤

(
sup

k

1
P(Ak)

)N0+1

≤ c′′ exp

 log[sup
k
(P(Ak)

−1)]

log γ
log

(
1

|τ − τ ′|

)
= c′′/|τ − τ ′|b, (4.58)

where c′′ = supk(P(Ak)
−1) and b = log[supk(P(Ak)

−1)]/ log γ are in (0,∞). This and (4.57)
imply (4.54). �

Arguing as in [3], the Cauchy–Schwarz inequality and the previous lemma imply that for
every n ≥ 0, we have

P

(∫ 1

0

n∏
k=0

1Aτk
dτ > 0

)
≥

(
E
[∫ 1

0

n∏
k=0

1Aτk
dτ
])2

E

[(∫ 1
0

n∏
k=0

1Aτk
dτ
)2
] (4.59)

=

([∫ 1

0

∫ 1

0

n∏
k=0

P(Aτk
⋂

Aτ
′

k )

P(Ak)2
dτdτ ′

])−1

(4.60)
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≥ c−1

([∫ 1

0

∫ 1

0

1
|τ − τ ′|b

dτdτ ′
])−1

(4.61)

where the equality is a consequence of the stationarity of τ → W (τ ) and the independence
between the arrow configurations in different boxes Rk . Recall that γ has an implicit dependence
on K and that γ increases from 0 to∞ as K increases on (0,∞) (see Lemma 4.2). Hence, for
K large enough such that γ = γ (K ) > supk P(Ak)

−1, we have

b = log
(

sup
k
[P(Ak)

−1
]

)
/ log γ (K ) < 1

and (τ, τ ′)→ |τ − τ ′|−b
∈ L1([0, 1] × [0, 1], dτ dτ ′). (4.61) then implies that

inf
n

P

(∫ 1

0

n∏
k=0

1Aτk
dτ > 0

)
≥ p > 0. (4.62)

Let En be the set of times τ in [0, 1] such that
⋂n

k=0 Aτk occurs. (4.62) implies that P(
⋂
∞

n=0{En 6=

∅}) ≥ p > 0. Since {En} is obviously decreasing in n, if the En were closed subsets of [0, 1] it
would follow that P((

⋂
∞

n=0 En) 6= ∅) ≥ p > 0.
Unfortunately, the set of times at which one arrow is (or any finitely many are) oriented to

the right (resp., to the left) is not in general a closed subset of [0, 1] since we have a right-
continuous process, and thus En is not in general a closed set. This extra technicality is handled
as in Lemma 5.1 in [3], as follows. On the one hand, there are only countably many switching
times for all ξ τz ’s (recall that ξ τz represents the arrow direction at location z). On the other hand,
at any switching time τ ,

⋂
n≥0 Aτn does not occur by independence of the ξ τz ’s. Since there are

countably many switching times, this implies that almost surely, the closures Ēn of En satisfy

∞

∩
n=1

Ēn =
∞

∩
n=1

En . (4.63)

This completes the verification of (4.52) and thus the proof of Proposition 4.1.

5. Hausdorff dimension of exceptional times

In this section, we derive some lower and upper bounds for the Hausdorff dimension of the
set of exceptional dynamical times τ ∈ [0,∞) at which Sτ0 becomes subdiffusive.

Definition 5.1. We say that τ is a K -exceptional time if the path Sτ0 in W (τ ) does not cross
the moving boundary t  −K

√
t . T (K ) is then defined as the set of all K -exceptional times

τ ∈ [0,∞).

Clearly, the set consisting of all the K -exceptional times in [0,∞) is a non-decreasing
function of K . The next proposition asserts that for fixed K , the Hausdorff dimension dimH
of the set of exceptional times is unchanged if −K

√
t is replaced by − j − K

√
t for any j ≥ 0.

We note that as in dynamical percolation (see Sec. 6 of [2]), dimH (T (K )) is a.s. a constant by
the ergodicity in τ of the dynamical discrete web.

Proposition 5.2. The Hausdorff dimension dim H of the set T j = T j (K ) of exceptional times
τ ∈ (0,∞) such that Sτ0 does not cross the moving boundary t  − j − K

√
t does not depend

on j ≥ 0 (for fixed K ).
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Proof. By the monotonicity in j , it is enough to prove that dimH (T j ) ≤ dimH (T0) for any
positive integer j .

First, T0 ⊃ T ′j
⋂
{τ ∈ [0, 1] : ξ τ(m,m) = +1 for m < j} where T ′j is the set of τ ∈ [0,∞)

such that Sτ( j, j)(n) ≥ −K
√

n for n ≥ j . Furthermore, T ′j ⊃ T̄ j , where T̄ j is the set of

τ ∈ [0,∞) such that Sτ( j, j)(n) − j ≥ − j − K
√

n − j for n ≥ j . Note that T̄ j is just
the translation (from (0, 0) to ( j, j)) of T j . Hence, dimH (T0) is at least the dimension of
{τ ∈ [0, 1] : ∀ m < j, ξ τ(m,m) = +1}

⋂
T̄ j .

By ergodicity in τ , the a.s. constant dimH (T̄ j ) is the essential supremum of the random
variable dimH (T̄ j

⋂
[0, 1]). On the other hand, since T̄ j

⋂
[0, 1] and {τ ∈ [0, 1] : ∀ m < j,

ξ τ(m,m) = +1} are independent and the probability to have {∀τ ∈ [0, 1],∀m < j, ξ τ(m,m) = +1}

is strictly positive, it follows that dimH ({τ ∈ [0, 1] : ∀ m < j, ξ τ(m,m) = +1}
⋂

T̄ j ) has the

same essential sup as dimH (T̄ j
⋂
[0, 1]). Hence dimH (T j ) = dimH (T̄ j ) ≤ dimH (T0) and the

conclusion follows. �

5.1. Lower bound

Set γ0 ≡ supk,K 1/P(Ak(K )), where Ak(K ) is defined by (4.51) with τ = 0. (Note that

γ0 > 2.) We recall that γ (K ) is the solution in (2,∞) of K = K (γ ) = (γ − 2)
√
γ+1
γ−1 for

K > 0. In this section, we prove the following proposition using Lemma 4.3 and then arguments
identical to certain of those in [3].

Proposition 5.3.

dimH (T (K )) ≥ 1−
log γ0

log γ (K )
for K > K (γ0). (5.64)

Thus, limK↑∞ dimH (T (K )) = 1.

Let K > K (γ0). Note that since K → γ (K ) is increasing, γ (K ) > γ0. In the following and as
in Section 4, we drop the dependence on K in the notation. Consider the random measure σn ,
such that for any Borel set E in [0, 1]

σn(E) =
∫

E

n∏
k=0

1Aτk

P(Ak)
dτ.

We note that σn is supported by Ēn , the closure of En with

En = {τ ∈ [0, 1] : ∩
k≤n

Aτk occurs}. (5.65)

For any positive measure σ , define the α-energy of σ as

Eα(σ ) =
∫ 1

0

∫ 1

0

1
|τ − τ ′|α

dσ(τ)dσ(τ ′). (5.66)

Following [3], we will need the following extension of Frostman’s lemma.

Lemma 5.4 ([3]). Let D1 ⊃ D2 ⊃ · · · be a decreasing sequence of compact subsets of [0, 1],
and let µ1, µ2, . . . be a sequence of positive measures with µn supported on Dn . Suppose that
there exist C ∈ (0,∞) and α ∈ (0, 1) such that for infinitely many values of n,

µn([0, 1]) ≥ 1/C, Eα(µn) ≤ C. (5.67)
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Then the Hausdorff dimension of ∩Dn is at least α.

Using the ergodicity of the dynamical web in the variable τ , we will prove Proposition 5.3
by showing that for α < 1 − log(γ0)

log(γ (K )) , {σn} satisfies the hypotheses of this lemma with strictly
positive probability. By Lemma 4.3, we have for all n that

E[σn([0, 1])2] =
∫ 1

0

∫ 1

0

n∏
k=0

P(Aτk ∩ Aτ
′

k )

P(Ak)2
dτdτ ′ ≤ c

([∫ 1

0

∫ 1

0

1
|τ − τ ′|b

dτdτ ′
])

,

where

b = log
[

sup
k
(P(Ak)

−1)

]/
log γ ≤

log(γ0)

log(γ )
< 1. (5.68)

By the Cauchy–Schwarz inequality

E
[
σn([0, 1])2

] 1
2 P

[
σn([0, 1]) >

1
2

] 1
2

≥ E
[
σn([0, 1]) · 1σn([0,1])>1/2

]
≥ E [σn([0, 1])]−

1
2
=

1
2
,

which implies that P[σn([0, 1] > 1
2 )] > c1 for some c1 > 0 not depending on n.

By Fubini’s theorem and Lemma 4.3,

E(Eα(σn)) =

∫ 1

0

∫ 1

0
|τ − τ ′|−α

n∏
k=0

P(Aτk ∩ Aτ
′

k )

P(Ak)2
dτdτ ′

≤ c
∫ 1

0

∫ 1

0

1
|τ − τ ′|b+α

dτdτ ′. (5.69)

Taking α such that

α < 1−
log(γ0)

log(γ )
, (5.70)

we have from (5.68) that b + α < 1 and therefore

sup
n≥0

E(Eα(σn)) ≤ c2 <∞. (5.71)

By the Markov inequality, for all n and all T ,

P(Eα(σn) ≥ c2T ) ≤ 1/T . (5.72)

Choose T such that 1/T < c1/2. Letting

Uα
n =

{
σn([0, 1]) >

1
2

}
∩ {Eα(σn) ≤ c2T }, (5.73)

by the choice of T , we have that

P(Uα
n ) ≥ c1/2. (5.74)
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By Fatou’s lemma,

P

(
lim sup

n↑∞
Uα

n

)
≥ c1/2. (5.75)

By Lemma 5.4, it follows that for α satisfying (5.70), ∩n≥0 Ēn has Hausdorff dimension at
least α with positive probability. Since ∩n≥0 Ēn = ∩n≥0 En (see (4.63)), the same statement
holds for ∩n≥0 En and we are done.

5.2. Upper bound

We will prove the following proposition.

Proposition 5.5. dimH (T (K )) ≤ 1− p(K ) where p(K ) ∈ (0, 1) is the solution of the equation

f (p, K ) ≡
sin(πp/2)Γ (1+ p/2)

π

∞∑
n=1

(
√

2K )n

n!
Γ ((n − p)/2) = 1. (5.76)

Furthermore, K  p(K ) is a continuous decreasing function on (0,∞) with

lim
K↑∞

p(K ) = 0 and more significantly lim
K↓0

p(K ) = 1. (5.77)

To prove Proposition 5.5 we need the following lemma proved in the Appendix.

Lemma 5.6. Let 0 < l < 1. Let Sε be the simple asymmetric random walk with

P(Sε(n + 1)− Sε(n) = +1) =
1
2
+

1
2
(1− e−ε). (5.78)

Then there exists c(l) such that

P(∀n, Sε(n) ≥ −1− K
√

n) ≤ c(l)ε p(K/ l) (5.79)

where p(K ) is the real solution in (0, 1) of (5.76) (which satisfies (5.77)).

Let us partition [0, 1] into intervals of equal length 2ε, and select the intervals containing a
K -exceptional time. The union of those is a cover of T (K ) and we now estimate the number
n(ε) of intervals in the cover.

Let Uε be the event that there is a time τ in [0, 2ε] such that τ ∈ T (K ). From the full
dynamical arrow configuration for all τ ∈ [0, 2ε], we construct a static arrow configuration as
follows. We declare the static arrow at (i, j) to be right oriented if and only if the dynamical
arrow is right oriented (i.e., ξ τi, j = +1) at some τ ∈ [0, 2ε] (a similar construction was used in
Section 2). In this configuration, the path Sε starting from the origin and following the arrows
is a slightly right-drifting random walk with P(Sε(n + 1) − Sε(n) = +1) = 1

2 +
1
2 (1 − e−ε).

Clearly,

P(Uε) ≤ P(∀n, Sε(n) ≥ −1− K
√

n). (5.80)

Lemma 5.6 implies that for any l < 1

P(Uε) ≤ c(l)ε p( K
l ). (5.81)
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Hence

E(n(ε)) = O(ε p( K
l )−1) (5.82)

so that

lim sup
ε→0

E
(

n(ε)

ε p(K/ l)−1

)
<∞. (5.83)

By Fatou’s lemma, lim infε↓0 n(ε) ε1−p(K/ l) is almost surely bounded, which implies that
dim H T (K ) (which is equal to dim H (T1(K )) by Proposition 5.2) is bounded above by 1− p( K

l )

for any l < 1. Since p(K ) is continuous in K , Proposition 5.5 follows.

Remark 5.7. We conjecture that 1− p(K ) is the exact Hausdorff dimension of T (K ).

Finally, Lemma 5.6 also yields the following tameness result.

Proposition 5.8. Let K1, K2 > 0 be small enough so that p(K1) + p(K2) > 1, where p(K ) is
defined in Proposition 5.5. For any j ≥ 0,

P(∃τ ∈ [0, 1] s.t. ∀t ≥ 0, − j − K1
√

t ≤ Sτ0 (t) ≤ + j + K2
√

t) = 0. (5.84)

Proof. Define U+ε (resp., U−ε ) to be the event that for some τ ∈ [0, 2ε] and all t ≥ 0,
Sτ (t) ≤ +k + K2

√
t (resp., Sτ (t) ≥ −k − K1

√
t). U+ε (resp., U−ε ) is a decreasing (resp.,

increasing) event with respect to the basic ξ τ(i, j) processes. Hence, using the FKG inequality, we
have

P(U+ε ∩U−ε ) ≤ P(U+ε ) · P(U
−
ε ).

Reasoning as in Proposition 5.5, for any l < 1, we have

P(U−ε ) ≤ P(∀t ≥ 0, Sε(t) ≥ − j − K1
√

t) (5.85)

≤ c1ε
p(

K1
l ), (5.86)

where Sε is defined as in the proof of Proposition 5.5. The second inequality is given by (5.81)
immediately for j ≤ 1 and with a little bit of extra effort for all j . Symmetrically,

P(U+ε ) ≤ c2ε
p(

K2
l ), (5.87)

which implies that

P(U+ε ∩U−ε ) ≤ c1c2ε
p(K1/ l)+p(K2/ l). (5.88)

Take l close enough to 1 so that p(K1/ l) + p(K2/ l) > 1 and define N as the cardinality of
{τ ∈ [0, 1] s.t. ∀t ≥ 0, − j − K1

√
t ≤ Sτ0 (t) ≤ + j + K2

√
t}. Reasoning as in Lemma 2.2, we

have

E(N ) = lim
ε↓0

1
2ε

P(U+ε ∩U−ε ) = 0, (5.89)

which completes the proof of the proposition. �
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Remark 5.9. We conjecture that when p(K1) + p(K2) < 1, the set of exceptional times for
which the path Sτ0 is bounded on both sides, as in (5.84), by

− j − K1
√

t and j + K2
√

t

is non-empty with Hausdorff dimension 1 − p(K1) − p(K2). Since the techniques used to
prove our one-sided result do not seem to work for the double-sided case, we would need a
new approach to prove this conjecture.

6. Scaling limit

In this section, we discuss the existence of a dynamical Brownian motion (constructed, using
the Brownian web, in [4]) and the occurrence of exceptional times for this object.

6.1. Brownian web and (1, 2) points

Under diffusive scaling, individual random walk paths converge to Brownian motions. In [15],
it was proved (extending the results of [16,17]) that the entire collection of discrete paths in the
DW converges (in an appropriate sense) to the continuum Brownian web (BW), which can be
loosely described as the collection of graphs of coalescing one-dimensional Brownian motions
starting from every possible location in R2 (space–time).

Formally, the Brownian web (BW) is a random collection of paths with specified starting
points in space–time. The paths are continuous graphs in a space–time metric space (R̄2, ρ)

which is a compactification of R2. (Π , d) denotes the space whose elements are paths with
specific starting points. The metric d is defined as the maximum of the sup norm of the distance
between two paths and the distance between their respective starting points. (Roughly, the
distance between two paths is small when they start from close (space–time) points and remain
close afterwards). The Brownian web takes values in a metric space (H, dH), whose elements
are compact collections of paths in (Π , d) with dH the induced Hausdorff metric. Thus the
Brownian web is an (H,FH)-valued random variable, where FH is the Borel σ -field associated
to the metric dH. The next theorem and the following discussion, taken from [15], give some of
the key properties of the BW.

Theorem 6.1. There is an (H,FH)-valued random variable W whose distribution is uniquely
determined by the following three properties:

(o) from any deterministic point (x, t) in R2, there is almost surely a unique path B(x,t) starting
from (x, t);

(i) for any deterministic, dense countable subset D of R2, almost surely, W is the closure in
(H, dH) of {B(x,t) : (x, t) ∈ D};

(ii) for any deterministic n and (x1, t1), . . . , (xn, tn), the joint distribution of B(x1,t1), . . . , B(xn ,tn)
is that of coalescing Brownian motions (with zero drift and unit diffusion constant).

This characterization provides a practical construction of the Brownian web. For D as above,
construct coalescing Brownian motion paths starting from D. This defines a skeleton for the
Brownian web. W is simply defined as the closure of this precompact set of paths.

We note that generic (e.g., deterministic) space–time points have almost surely only mout = 1
outgoing (to later times) paths from that point and min = 0 incoming paths passing through
that point (from earlier times). These features of the BW are not hard to prove; for example, the
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Fig. 2. A schematic diagram of a left (min,mout) = (1, 2) point. In this example the incoming path connects to the
leftmost outgoing path, and the right outgoing path is a newly born path.

reason why min = 0 at a deterministic (x, t) is that min > 0 would require an incoming path
from R× {t − ε} to touch (x, t), but as was already shown by Arratia [16], those paths coalesce
by time t into a discrete set of random locations on R × {t} with zero probability of including
a deterministic point. An interesting property of the BW is related to the existence of special
points with other values of (min,mout). In the following, a dominant role is played by the (1, 2)
points as we shall explain. Back in the lattice, (1, 2) points correspond to locations where a path
starts at a “microscopic” distance from an old path (that started from an earlier time; we note
that in the count of paths, incoming paths that coalesce at some earlier time are identified) and
coalesces with it only after some “macroscopic” amount of time. We remark that, with a little
work, it can be shown that the paths can be chosen so that the microscopic distance from the old
path is actually a single unit lattice spacing. For a (1, 2) point, the single incident path continues
along exactly one of the two outward paths. The (1, 2) point is either left-handed or right-handed
according to whether the incoming path connects to the left or right outgoing path. See Fig. 2 for
a schematic diagram of the “left-handed” case. Both types occur and it is known [15] that each
of the two types, as a subset of R2, has Hausdorff dimension 1.

6.2. The dynamical Brownian web and exceptional times

It is natural that there should also exist scaling limits of the DyDW (including those of the
random walk from the origin evolving in τ , i.e., a dynamical Brownian motion). Indeed, this
was proposed by Howitt and Warren [1] who also studied (two dynamical time distributional)
properties of any such limit. In [4], we provided a complete construction that we now briefly
describe.

A priori, a direct construction in the continuum appears difficult since the DyDW is entirely
based on a modification of the discrete arrow structure of the DW, while in the BW it was unclear
a priori whether there even is any arrow structure to modify. Two of the main themes of [4] are
thus: (i) “Where is the arrow structure of the BW?” and (ii) “How is it modified to yield the
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DyBW (including a dynamical Brownian motion from the origin)?”. The answer to the first
question is that the arrow structure of the BW comes from the (1, 2) points. Indeed, one can
change the direction of the “continuum” arrow at a given (1, 2) point z by simply connecting the
incoming path to the newly born path starting from z rather than to the original continuing path.
(Back in the lattice, this amounts to changing the direction of an arrow whose switch induces a
“macroscopic” effect in the web.) The answer to question (ii) is based on the construction of a
Poissonian marking of the (1, 2) points (see [4] for details) that indicates which (1, 2) points get
switched and at what value of τ does the switch occur. We note that the main difficulty in the
construction of the DyBW lies in the fact that between two dynamical times τ < τ ′, one needs
to switch the direction of a set of (1, 2) points dense in R2 in order to deduce the web at time τ ′

from the one at time τ .
We proceed to discussing the existence of exceptional times for Bτ0 , the dynamical Brownian

motion starting from the origin at dynamical time τ . (We remark that our tameness results,
Theorem 2.1 and Remark 2.3, should be extendable to the continuum DyBW, but the arguments
will involve some extra Brownian web technology.) Recall that the key ingredient for proving
our existence results for the dynamical discrete web is contained in Proposition 3.1 where we
estimate how fast the dynamical discrete web decorrelates. The proof of that proposition mostly
relies on the observation that (Sτ0 , Sτ

′

0 ) form a sticky pair of random walks. More precisely, we
showed in Lemma 3.2 that along the t-axis the pair alternates between periods during which the
two paths evolve as a single path (they stick) and periods during which they move independently.

In [4], we proved that τ  Bτ0 has a similar structure (as suggested in [1]), in that for two

distinct dynamical times τ, τ ′, the paths Bτ0 , Bτ
′

0 form a 1/(2|τ − τ ′|)-sticky pair of Brownian
motions. Such a pair can be simply expressed in terms of three independent standard Brownian

motions (Bτd , Bτ
′

d , Bs) in the following way.

Bτ0 (t) = Bτd (C(t))+ Bs(t − C(t)),

Bτ
′

0 (t) = Bτ
′

d (C(t))+ Bs(t − C(t)), (6.90)

where C is the continuous inverse of the function

C−1(s) = s +
1

√
2|τ − τ ′|

l0(s) (6.91)

and l0 is the local time at the origin of the process
(

Bτd − Bτ
′

d

)
/
√

2. We note that the paths

Bτ0 , Bτ
′

0 always spend a strictly positive Lebesgue measure of time together, hence the name
sticky Brownian motions. Finally, the time the two paths spend together is directly related to the
parameter 1/(2|τ − τ ′|) commonly referred to as the “amount of stick” of the pair.

If we denote π̃(·) = π(·/δ2)δ, the scaling invariance for the Brownian motion combined with
(6.90) implies that (B̃τ0 , B̃τ

′

0 ) is identical in law to a δ/(
√

2|τ − τ ′|)-sticky pair of Brownian

motions. In other words, the amount of stick of the pair (B̃τ0 , B̃τ
′

0 ) vanishes as δ → 0 and from
(6.90) and (6.91) we see that for small δ,

Bτ0 (t) ≈ Bτd (t) and Bτ
′

0 (t) ≈ Bτd (t), (6.92)

i.e., the two paths become “almost independent”. This can be made more precise by establishing
(along the same lines as the proof of Proposition 3.1) that for

O = {∀t ∈ [0, 1], π(t) > −1 and π(1) > 1}
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and δ > 0, there exist K , a ∈ (0,∞) (independent of δ, τ and τ ′) such that

P(B̃τ0 ∈ O, B̃τ
′

0 ∈ O) ≤ P(B̃ ∈ O)2 + K

(
δ

|τ − τ ′|

)a

(6.93)

= P(B ∈ O)2 + K

(
δ

|τ − τ ′|

)a

, (6.94)

where B is a standard Brownian motion.
Since all the results of Sections 4 and 5.1 for our dynamical random walk are based on the

discrete analogue of this result, Propositions 4.1 and 5.3 should be extendable to the continuum
in the following manner. Define

A =

{
inf

t∈[0,1]
B(t) > −1, B(1) > 1

}
,

γ0 = 1/P(A), and let T̄ (K ) be the set of τ ’s belonging to [0,∞) such that

∀t ≥ 0, Bτ0 (t) ≥ −1− K
√

t . (6.95)

Then T̄ (K ) should be non-empty with

dimH (T̄ (K )) ≥ 1−
log γ0

log γ (K )
for K > K (γ0), (6.96)

so that limK↑∞ dimH (T̄ (K )) = 1.
We conclude by noting that our upper bound results on the Hausdorff dimension,

Propositions 5.5 and 5.8, should also be extendable to the continuum DyBW, but, like the
tameness results, that extension would require some extra Brownian web technology beyond
what is described in this paper.
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Appendix. Some estimates on random walks (Proof of Lemma 5.6)

We start with the two following lemmas.

Lemma A.1 ([18]). Let j, K ∈ (0,∞) and let B be a standard Brownian motion. Then there
exists q ∈ (0,∞) such that

lim
t→∞

t p(K )/2P(∀s ∈ [0, t], B(s) ≥ − j − K
√

s) = q, (A.97)

where p(K ) is the solution in (0, 1) of the equation

f (p, K ) ≡
sin(πp/2)Γ (1+ p/2)

π

∞∑
n=1

(
√

2K )n

n!
Γ ((n − p)/2) = 1. (A.98)
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Furthermore, p(K ) is a continuous decreasing function on (0,∞) with

lim
K↑∞

p(K ) = 0 and lim
K↓0

p(K ) = 1. (A.99)

Lemma A.2. Let K ∈ (0,∞), l ∈ (0, 1) and let S be a simple symmetric random walk. Then
there exists c̄(K , l) ∈ (0,∞) such that for every n

n p(K/ l)/2 P(∀k ≤ n, S(k) ≥ −1− K
√

k) ≤ c̄(K , l). (A.100)

Proof. By Lemma A.1, it suffices to prove that for every l < 1, there exists c(K , l) such that

P(∀k ≤ n, S(k) ≥ −1− K
√

k) ≤ c(K , l)P(∀t ∈ [0, l2n],

B(t) ≥ −2− K
√

t/ l).
(A.101)

We now prove the latter inequality. Consider S, the discrete time random walk embedded in the
Brownian motion B. Namely, we define inductively a sequence of stopping times ti with t0 = 0
and

ti+1 = inf{t > ti : |B(t)− B(ti )| ≥ 1} (A.102)

and then we define S(i) = B(ti ). Note that S and {ti } are independent and therefore

P(∀k ≤ n, S(k) ≥ −1− K
√

k)

= P
(
∀k ≤ n, S(k) ≥ −1− K

√
k, l2k ≤ tk ≤

k

l2

)/
P
(
∀k ≤ n, l2k ≤ tk ≤

k

l2

)
= P

(
∀k ≤ n, B(tk) ≥ −1− K

√
k, l2k ≤ tk ≤

k

l2

)/
P
(
∀k ≤ n, l2k ≤ tk ≤

k

l2

)
≤ P

(
∀k ≤ n, B(tk) ≥ −1− K

√
tk/ l, l2k ≤ tk

)/
P
(
∀k ≤ n, l2k ≤ tk ≤

k

l2

)
.

If for every k ≤ n, we have B(tk) ≥ −1 − K
√

tk/ l and moreover l2k ≤ tk , then on [0, l2n],
every time B takes an integer value, B is to the right of t  −1− K

√
t/ l. Hence, B remains to

the right of t  −2− K
√

t/ l on [0, l2n] which implies that

P(k ≤ n, S(k) ≥ −1− K
√

k)

≤ P(∀t ≤ l2n, B(t) ≥ −2− K
√

t/ l) / P
(
∀k ≤ n, l2k ≤ tk ≤

k

l2

)
.

Finally, tk is a sum of k i.i.d. random variables with mean 1 (whose common distribution includes
1 in its support). Therefore, P(∀k ∈ N, l2k ≤ tk ≤ k

l2 ) > 0 and (A.101) follows. This completes
the proof of the lemma. �

We are now ready to prove Lemma 5.6. Recall that Sε is a simple random walk with

P(Sε(k + 1)− Sε(k) = 1) =
1
2
+

1
2
(1− e−ε).

Since 1
2 +

1
2 (1 − e−ε) ≤ 1

2 (1 + ε), it is enough to show the conclusions of the lemma for the
simple walk S̄ε where p±ε = P(S̄ε(k + 1)− S̄ε(k) = ±1) = 1

2 (1± ε).
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Let Tε = inf{n > 0 : S̄ε(n) < −1− K
√

n}. We have

P(Tε = n) = P(T0 = n) fε(n) (A.103)

with fε(n) ≡ (2p−ε )
1
2 (n+b1+K

√
nc+1) (2p+ε )

1
2 (n−b1+K

√
nc−1), (A.104)

where bxc denotes the greatest integer ≤ x and fε is the Radon–Nikodym derivative of the
distribution of the drifting random walk S̄ε with respect to that of the non-drifting walk S0
evaluated on any path from the origin that first is to the left of −1 − K

√
t at (integer) time n.

Since a simple symmetric random walk S eventually hits the moving boundary t  −1− K
√

t ,
we have

P(Tε = ∞) = 1−
∑
n≥1

fε(n)P(T0 = n) =
∑
n≥1

(1− fε(n))P(T0 = n). (A.105)

Then, proceeding to a summation by parts we have

P(Tε = ∞) =
∑
n≥1

(P(T0 ≥ n)− P(T0 ≥ n + 1)) [1− fε(n)] (A.106)

=

∑
n≥1

P(T0 ≥ n + 1)( fε(n)− fε(n + 1))+ (1− fε(1)) (A.107)

= Qε + (1− fε(1)), (A.108)

with Qε ≡

∑
n≥1

P(T0 ≥ n + 1) fε(n)

(
1−

fε(n + 1)
fε(n)

)
. (A.109)

We proceed to estimating Qε . First, for ε ∈ (0, 1), we have

ln(1+ ε) ≤ ε, ln(1− ε) ≤ −ε,

implying that

fε(n) = exp
{

1
2

ln(1− ε)(n + b1+ K
√

nc + 1)+
1
2

ln(1+ ε)(n − b1+ K
√

nc − 1)
}

≤ exp
{
−
ε

2
(n + b1+ K

√
nc + 1)+

ε

2
(n − b1+ K

√
nc − 1)

}
≤ exp{−ε(b1+ K

√
nc + 1)}

≤ exp{−εK
√

n}.

Next, if we set ∆n ≡ b1+ K
√

n + 1c − b1+ K
√

nc = bK
√

n + 1c − bK
√

nc, we have

1−
fε(n + 1)

fε(n)
= 1− exp

{
ln(1− ε)

(
1
2
+

1
2
∆n

)
+ ln(1+ ε)

(
1
2
−

1
2
∆n

)}
= 1− exp

(
−ε∆n −

ε2

2
+ o(ε)∆n + o(ε2)

)
= ε∆n +

ε2

2
+ o(ε)∆n + o(ε2).

By Lemma A.2, for every l < 1 there exists c̄(K , l) such that

Qε ≤

∑
n≥1

P(T0 ≥ n + 1) exp{−εK
√

n}

(
ε∆n +

ε2

2
+ o(ε)∆n + o(ε2)

)
(A.110)
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≤ c̄(K , l)
∑
n≥1

exp{−εK
√

n}

(
ε

∆n

n p/2 +
ε2

2n p/2 + o(ε)
∆n

n p/2 +
o(ε2)

n p/2

)
, (A.111)

where p ≡ p(K/ l) is as in Lemma A.2. Since ∆n = bK
√

n + 1c − bK
√

nc, and (
√

n + 1 −
√

n)
√

n→ 1/2 as n→∞, it is natural to expect that

lim
ε↓0

ε2
∑
n≥1

exp{−K
√
ε2n}

∆n

ε

1

(
√
ε2n)p

= lim
ε↓0

ε2
∑
n≥1

exp{−K
√
ε2n}

K

2
√

nε2

1

(
√
ε2n)p

=
1
2

∫
∞

0
exp{−K

√
t}

K

t (p+1)/2
dt, (A.112)

where the second equality is due to the Riemann sum on the right-hand side of the first equality.
To justify the first equality, one may note that ∆n is (for large n) either 0 or 1 and then define
N`(n) (resp., Nu(n)) to be the largest m ≤ n (resp., smallest m > n) such that ∆m 6= 0. It is
straightforward to show first that Nu(n)− N`(n)/

√
n→ 2/K as n→∞ and then to obtain the

first equality of (A.112) as a consequence. It is also the case that

lim
ε↓0

ε2
∑
n≥0

exp{−K
√
ε2n}

1

(ε2n)p/2 =

∫
∞

0
exp{−K

√
t}

1

t p/2 dt. (A.113)

Since 0 < p < 1, both integrals in (A.112) and (A.113) are finite. Thus, (A.111) yields
Qε = O(ε p) = O(ε p(K/ l)).

Finally, it is easy to prove that fε(1) − 1 = O(ε). Since p(K/ l) < 1, Lemma 5.6 follows
from (A.108).
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