
Linear Programming via Least Squares

Achiya Dax

Hydrological Service
P.O.B. 6381
Jerusalem, 91060, Israel

Submitted by Hans Schneider

ABSTRACT

The paper suggests a new implementation of the active set method for solving
linear programming problems. The proposed method is based on the observation that
the search direction can be obtained via the solution of a linear least squares
subproblem. It is shown that the steepest descent direction can be computed by
solving the same least squares subproblem but with simple bounds on the variables.
This direction is used to prevent cycling at degenerate dead points. Numerical
experiments illustrate the feasibility of the new approach.

1. INTRODUCTION

This paper outlines an active set method for solving the problem

minimize grx

subject to a;x = bi for i E E

and a:x> bi for i EC,

0.1)

where E and C are finite index sets, x E Iw n is the vector of unknowns, g and
ai are given vectors in R n , and bj are given real numbers.

A comprehensive uptodate survey of methods for solving this problem
can be found in Fletcher (1981) or Osborne (1985). The proposed algorithm
can be viewed as a modification of the nonsimplex method of Gill and

LINEAR ALGEBRA AND ITS APPLICATZONS 111:313-324 (1988)

0 Elsevier Science Publishing Co., Inc., 1988

313

655 Avenue of the Americas, New York, NY 1COlO 00243795/88/$3.50

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82359891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

314 ACHIYA DAX

Murray (1973), which enables the handling of degenerate and underde-
termined problems. The new feature which characterizes our method is that
the search direction is obtained by solving a linear least squares problem. The
motivation behind this approach is based on constructive optimality condi-
tions that avoid the traditional assumption of nondegeneracy.

Being an active set method, the new algorithm is related to the methods
of Conn (1976) and Bartels (1980). However, there are significant differences
between the two approaches. That is, the new method is not a penalty
function method and preserves feasibility. Also, it handles degeneracy in a
different way.

2. MOTIVATION AND OPTIMALITY CONDITIONS

We shall start by introducing some necessary terminology. Let x E R n be
a feasible point, i.e., a:x = bi for i E E and a:x > bi for i E C. Define

c*= {iJiECanda;x=bi}

and

N=EuC*.

Then N contains the indices of the active constraints. The number of active
constraints is denoted by t. The active constraint matrix A is a t X n matrix
whose rows are a:, i E N. The order of the rows does not matter. Thus it is
assumed here, for simplicity, that N = { 1,. . . , t }.

A vector u E Iw n is said to be a feasible direction at x if it satisfies

aTu=O for iEE, and a:u>O for iEC*. (2.1)

If, in addition to (2.1), u satisfies

gTu < 0, (2.2)

then it is called a feasible descent direction. The following theorem provides a
simple way to obtain such a direction.

LINEAR PROGRAMMING VIA LEAST SQUARES 315

THEOREM 1. Let 7 E R t solve the problem

minimize 1lAry - gili, (2.3)

and let r = ATy - g denote the corresponding residual vector. Zf r z 0, it is a
feasible descent direction.

Proof. The basic properties of the linear least squares problem imply
that Ar = 0. This means that r is a feasible direction and

gTr = (AT7 - r)‘r = yTAr - rTr = - rTr < 0.

If r = 0, then x is called a dead point. In this case the question whether
there exists a feasible descent direction at x is answered by imposing certain
bounds on the components of y.

THEOREM 2. Let y* E R t solve the problem

minimize IIATy - gill (2.4)

subject to yi > 0 fo7 i E C*,

and let r = ATy* - g denote the corresponding residual vector. Zf r = 0, then
x solves (1.1). Otherwise r is a feasible descent direction.

Proof. If r = 0 and u is a feasible direction, then

gTu = (ATy*)T~ = c yT(a:u) = c yF(aTu) > 0,
iGN iCC*

which means that x solves (1.1).
The proof of the second claim is obtained by considering the one

parameter functions

i=l , . . . , t, where e, denotes the ith column of the t X t unit matrix. If i E E,
then 9 = 0 minimizes A(9). Similarly, for i E C* this point minimizes A(8)

316 ACHIYA DAX

subject to the bound yi* + 9 > 0. The necessary conditions for minimizing
fi‘(9) imply, therefore,

a:r = 0 when iEE,

a:r = 0 when i E C* and yi* > 0,

a:r > 0 when i E C* and yi* = 0.

These relations indicate that r is a feasible direction,

(y*)TAr = 0,

and

gTr = (ATy* - r)‘r = - rTr < 0. n

The above proof provides a constructive way to derive Farkas’ lemma and
other related theorems of the alternative. For a detailed discussion of this
topic see Dax (1985). The following result indicates that r points at the
steepest descent direction.

COROLLARY 1. Zf r # 0, then r/llrllz solves the problem

minimize gTu

subject to a:u = 0 for i E E,

a:u>O for iEC*,

(2.5)

and uTu=l.

The proof of this corollary is obtained by verifying that the Kuhn-Tucker
optimality conditions are satisfied. The next corollary may avoid the need to
solve (2.4) in order to ensure feasibility.

COROLLARY 2. Let 9 solve (2.3). If g = ATy and y satisfies the bounds

yi 2 O for iEC*, (2.6)

then x solves (1.1).

LINEAR PROGRAMMING VIA LEAST SQUARES 317

If the rows of A are linearly dependent, then x is called degenerate.
Otherwise, when the rows of A are linearly independent, x is called nonde-
generate. The assumption of nondegeneracy provides an alternative way to
compute a feasible descent direction at dead points.

THEOREM 3. Let x be a nondegenerate dead point such that 7, the
unique solution of (2.3), violates (2.6). Let i E C* be an index such that
yi < 0. Let d denote the (t - 1) X n matrix which is obtained from A by
deleting its ith row. Let i E ate1 solve the problem

minimize Ijk?y -- gili, (2.7)

and let r = A79 - g denote the corresponding residual uector. Then r is a
feasible descent direction.

Proof. The possibility r = 0 is excluded by the
r = 0, then the relation g = AT7 = A79 contradicts
sumption. It is also clear that Ar = 0, which gives

g*r = (flf - r)*r = - rTr < 0.

Similarly, the equality g = AT7 implies

a, =
g-CjcAGjaj

Si '

where ?? = N - { i }. Therefore

gTr T
a:r = I = _ f_f ,o.

Yi i7i

3. MOVING AWAY FROM A DEAD POINT

following argument. If
the nondegeneracy as-

The discussion in the previous section suggests the following alternatives.
In both cases it is assumed that g = ATy while (2.6) is violated.

STRATEGY A. Solve (2.4) and use r as a search direction.

318 ACHIYA DAX

STRATEGY B. If there is a clear indication of degeneracy (e.g. t > n),
apply Strategy A. Otherwise, when x is assumed to be a nondegenerate dead
point, solve (2.7) and use r as a search direction. If, however, the nondegener-
acy assumption is false, and, r = 0, then use Strategy A.

The motivation behind Strategy B lies in the observation that solving (2.7)
is likely to require less work than solving (2.4). Furthermore, if (2.4) is solved,
then it is possible that many constraints are deleted from the active set at one
step. On the other hand, there are many problems in which it is known in
advance that the optimal point is at a vertex of the feasible region, i.e. a point
where n linearly independent constraints are satisfied exactly. In such a case
the deletion of constraints is likely to be followed by at least the same number
of “adding” iterations, which implies that deleting one constraint at a time is
a better strategy.

4. THE ALGORITHM

The basic iteration of the proposed active set method is composed of the
following three steps.

step 1: Compute a search direction. Let x denote the current feasible
point. Solve (2.3) for P and compute r. If r # 0, set u = r and skip to step 3.

Step 2: Moving away from a dead point (Strategy A). If 7 satisfies
(2.6), terminate. In this case x solves (1.1). Otherwise solve (2.4) for y* and
compute r. If r = 0, terminate. In this case x solves (1.1). Otherwise set u = r.

Step 3: The line search. Set the new point to x + Xu, where X is the
largest positive number that keeps this point feasible, i.e.

A = min i E C - C* and a:u < 0 .

If the above set is empty, terminate. In this case the objective function is not
bounded below in the feasible region.

The implementation of Strategy B is achieved by inserting the corre-
sponding changes in step 2. The finite termination of the algorithm is a
consequence of the following properties:

(a) The objective function is strictly decreasing at each iteration.
(b) Each time that x is not a dead point the number of active constraints

increases. Therefore, since there are a finite number of inequality constraints,

LINEAR PROGRAMMING VIA LEAST SQUARES 319

m say, it is not possible to have a succession of more than m iterations in
which step 2 is skipped.

(c) Each time that step 2 is executed, the current point is a minimizer of
the objective function on the linear manifold

{ zIa;z = bi for all i E N} .

(d) There are a finite number of such manifolds.

A straightforward way to implement the algorithm for small dense
problems Is to solve (2.3) and (2.7) via the QR factorization of AT and A’?
The updating of this factorization when a row is added to or deleted from A
is explained in Gill and Murray (1973). In our case it is advantageous to order
the rows of A so that the first rows correspond to equality constraints. This
way the QR factorization of these rows remains unchanged throughout the
minimization process. Also, as a by-product, this factorization may help us to
exclude redundant equality constraints. In the next section we show that the
algorithm for solving (2.4) may apply the same factorization scheme as the
main algorithm.

5. THE BOUNDED LINEAR LEAST SQUARES PROBLEM

This section describes an active set method for solving (2.4) whose basic
iteration is similar to that of the main algorithm. The search direction is
obtained by solving a modified form of (2.3) using the same factorization
scheme as in the main algorithm. This way, the factorization of AT continues
and the algorithm is easily incorporated into the main one.

Let y E R’ satisfy the constraints (2.6). Then the ith variable of y is said
to be bounded if i E C* and yi = 0. Otherwise it is called f;ee. The point y
defines a diagonal matrix D = diag{ d 1,. . . , d, } by the following rule: If the
ith component of y is bounded, di = 0; otherwise di = 1. The number of free
components is denoted by s, and the s X n matrix whose rows correspond to
free components is denoted by A. The basic iteration of the proposed method
is composed of the following three steps.

step 1. Compute a search direction. Let y denote the current feasible
point, and let r = ATy - g denote the current residual vector. The search
direction, v, is obtained by solving the problem

minimize S(v) = &lIATv - r(li

subject to Dv = v.

(5.1)

320 ACHIYA DAX

Clearly, if r = 0 or s = 0, then there is no need to solve (5.1). In this case
continue to step 2. If the resulting solution satisfies S(v) < #]lf, then skip to
step 3; otherwise continue to step 2. The aim of the last precaution is to
ensure that the objective function will decrease at each iteration.

Step 2: Moving away jknn a dead point. Compute h = Ar, the gradi-
ent vector of the objective fnnction at the current point. Then h is used to
obtain a further vector, h* E R’, by the following rule: If yi is bounded and
hi > 0, set h* = 0. Otherwise set h,? = hi. The vector h* enables us to test
whether the Kuhn-Tucker optimality conditions hold at y. If h* = 0, then y
solves (2.4) and the algorithm terminates. Otherwise a feasible descent
direction, v, is obtained as follows: Compute an index j such that

JhfI=max{Ih*),i=l,..., t},

and set

v= - hj
-ej, T ajaj (5.2)

where ej denotes the j th column of the t x t unit matrix.
Step 3: The line search. Set the new point to y + pv where p is the

largest number in the interval [0, 11 that keeps this point feasible. If p = 1 and
v was computed by (5.1), then the next iteration should start at step 2.

The finite termination of the above algorithm is proved by standard
arguments. The solution of (5.1) is carried out by using the QR factorization
of A’T to solve the unconstrained problem

rnFLn$ze]]Arw - r/l;. (5.3)

The updating of this factorization, when a row is added to or deleted from A,
can be done exactly as in the main algorithm.

The initial point, y, is obtained from j; by the following rule: If i E C* and
Qi < 0, set yi = 0. Otherwise set yi = Ji. This way the initial x is obtained
from A by deleting those rows for which ai violates its bound. Hence the QR
factorization of p is easily obtained from that of AT. Similarly, the final
matrix x provides the new matrix A for the main algorithm, and the
factorization of this matrix is available.

LINEAR PROGRAMMING VIA LEAST SQUARES 321

6. FURTHER REMARKS

If the rows of A are linearly dependent, then y, the solution of (2.3) is
not unique. In such a case we apply the following strategy: Let p denote the
rank of A. Then the last t - p components of 7 are set to be zero. The reason
for this rule is the assumption that the QR factorization transforms the first p

columns of AT into a n x p upper triangular matrix whose rank is p. Hence
the above rule fixes 9 in a definite way. This strategy is advantageous when
t > n, since the QR factorization can be restricted to the first n columns of
AT. A similar strategy is applied in the solution of (5.3). This way the first p

rows of A form the working set, while the solution of (2.4) provides an
effective way for determining the right working set at degenerate dead
points.

For large sparse problems the solution of (2.3) and (2.4) should be done
by methods which are able to take advantage of the special structure of these
problems. This is demonstrated in Dax (1986a), where a problem analogous
to (2.4) is solved by a relaxation technique.

The computation of a feasible initial point for the main algorithm can be
done by a similar algorithm (see Dax, 1985). The only differences are that
here the objective function is

F(x) = c (b, - a:x),
iEV

and

where

g= - C ai,
iEV

V= {i)iECandaTx<bi}.

7. NUMERICAL RESULTS

This section presents some preliminary trials with the new algorithm. The
first type of test problems consists of “random” problems that have the
following structure. The components of g are random numbers from the
interval [- 1, 11. (The random number generator is of uniform distribution.)
The components of the equality constraints are generated in the same way,

322 ACHIYA DAX

TABLE 1
&WILTS 0F“hUDOM"TESTPROBLRMS

Strategy A Strategy B

Major Solving Minor Major Solving Minor
m iterations (2.4) iterations iterations (2.4) iterations

5 15.9 0.6 1.3 15.9 0 0
10 16.4 0.9 1.3 16.5 0 0
20 18.2 1.6 3.8 18.9 0 0
40 22.4 2.8 12.6 26.4 0 0

while bi = X7= iaij for i E E. The inequality constraints include 2n simple
bounds of the form - 10 < xi d 10, j = 1,. . . , n, and m “random” con-
straints whose components (including bi) are random numbers from the
interval [-l,l]. The starting point is e=(l,l,...,l)TER”. In order to
ensure that this point is feasible, we check the “random” inequalities and
multiply by - 1 those which are violated at this point. AlI the experiments
were done with n = 20 and five equality constraints. The number of “ran-
dom” inequalities takes the values m = 5,10,20,40. For each value of m we

have generated and solved ten different problems of this type. The results of
the “random” test problems are presented in Table 1. The figures in this
table are, therefore, average numbers. The columns headed “Major iterations”
give the number of iterations made by the main algorithm. The columns
headed “Solving (2.4)” provide the number of major iterations in which
problem (2.4) was solved. The columns headed “Minor iterations” give the
overah number of iterations made by the active set method for solving (2.4).

The second type of test problems consists of “degenerate” problems.
These problems are obtained from the “random” problems by adding
m(m - 1)/2 redundant constraints. Let a:x > bi, i = 1,. . . , m, denote the

TABLE 2
RESULTS OF"DEGEIWRA~TRSTPROBLJZMS

Strategy A Strategy B

Major Solving Minor Major Solving Minor
m iterations (2.4) iterations iterations (2.4) iterations

5 16.0 1.4 3.8 16.0 1.4 3.8
6 16.3 1.7 4.5 16.3 1.7 4.5
7 15.9 1.7 5.1 15.9 1.7 5.1
8 16.1 1.7 8.7 16.1 1.7 8.7

LINEAR PROGRAMMING VIA LEAST SQUARES 323

“random” inequality constraints. Then the redundant constraints have the
form (ai + a j)Tx >, bi + bj, where 1 Q i < j < m. In these problems m takes
the values m = 5,6,7,8. As before, for each value of m we have generated
and solved ten different problems of this type. The results of the “degenerate”
test problems are given in Table 2.

The comparison of Strategies A and B reveals that the second strategy is
advantageous in solving “random” test problems, while for “degenerate”
problems there is no difference between the two options.

8. CONCLUDING REMARKS

The results of our experiments are quite encouraging. It seems that the
new method compares favorably with other methods. It is illustrated that the
number of “minor” iterations needed to solve (2.4) is usually small. The
maximum number that was recorded is 8, while the average number is about
4. This indicates that the proposed algorithm for solving (2.4) provides an
efficient way to resolve degeneracy.

Another feature that distinguishes the new method is that there is no need
to transform the constraints into a standard form. Moreover, the number of
constraints need not exceed the number of variables, and the current feasible
point need not be a vertex. In fact, the computational effort per iteration is
reduced as the number of active constraints decreases. Therefore the method
is especially attractive for problems with few constraints.

The potential value of the new approach lies in the solution of large
sparse problems where the least squares subproblems can be solved efficiently
by iterative methods such as relaxation or conjugate gradients.

The ability to compute the steepest descent direction gives rise to the
steepest descent method for solving (1.1). This idea is investigated in Dax
(1987).

Finally we note that similar methods have been constructed for the
analogous I, and Z, problems (see Dax 1986b, 1986c, respectively). The
present algorithm can be viewed, therefore, as a special case of a general
method for minimizing polyhedral convex functions subject to linear con-
straints.

REFERENCES

Bartels, R. H. 1980. A penalty linear programming method using reduced-gradient
basis-exchange techniques, Linear Algebra Appl. 29:17-32.

324 ACHIYA DAX

Conn, A. R. 1976. Linear programming via a nondifferential penalty function, SIAM
j. Nuw. Anal. 13:145- 154.

Dax, A. 1985. The Computation of Descent Directions at Degenerate Points, Tech.
Rep., Hydrological Service of Israel.

Dax, A. 1986a. An efficient algorithm for solving the rectilinear multifacility location
problem, ZMA J. Nuw. Anal. 6:343-355.

Dax, A. 1986b. The I, Solution of Linear Equations Subject to Linear Constraints,
Tech. Rep., Hydrological Service of Israel, (To appear in SIAM J. on Sci. and
Stat. Cump.).

Dax, A. 1986c. The minimax solution of linear equations subject to linear constraints,
Tech. Rep., Hydrological Service of Israel, (To appear in ZMA J. Numer. Anal.).

Dax, A. 1987. The steepest descent method for minimizing polyhedral convex
functions, Tech. Rep., Hydrological Service of Israel.

Fletcher, R. 1981. Practical Methods of Optimization, Vol 2: Constrained Optimize-
tion, Wiley, Chichester.

Gill, P. E. and Murray, W. 1973. A numerically stable form of the simplex algorithm,
Linear Algebra Appl. 7:99-138.

Osborne, M. R. 1985. Finite Algorithms in Optimization and Data Analysis, Wiley,
Chichester, 1985.

Received 22 December 1986; jinal manusmipt accepted 21 April 1988

