
Linear Programming via Least Squares 

Achiya Dax 

Hydrological Service 
P.O.B. 6381 
Jerusalem, 91060, Israel 

Submitted by Hans Schneider 

ABSTRACT 

The paper suggests a new implementation of the active set method for solving 
linear programming problems. The proposed method is based on the observation that 
the search direction can be obtained via the solution of a linear least squares 
subproblem. It is shown that the steepest descent direction can be computed by 
solving the same least squares subproblem but with simple bounds on the variables. 
This direction is used to prevent cycling at degenerate dead points. Numerical 
experiments illustrate the feasibility of the new approach. 

1. INTRODUCTION 

This paper outlines an active set method for solving the problem 

minimize grx 

subject to a;x = bi for i E E 

and a:x> bi for i EC, 

0.1) 

where E and C are finite index sets, x E Iw n is the vector of unknowns, g and 
ai are given vectors in R n , and bj are given real numbers. 

A comprehensive uptodate survey of methods for solving this problem 
can be found in Fletcher (1981) or Osborne (1985). The proposed algorithm 
can be viewed as a modification of the nonsimplex method of Gill and 
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Murray (1973), which enables the handling of degenerate and underde- 
termined problems. The new feature which characterizes our method is that 
the search direction is obtained by solving a linear least squares problem. The 
motivation behind this approach is based on constructive optimality condi- 
tions that avoid the traditional assumption of nondegeneracy. 

Being an active set method, the new algorithm is related to the methods 
of Conn (1976) and Bartels (1980). However, there are significant differences 
between the two approaches. That is, the new method is not a penalty 
function method and preserves feasibility. Also, it handles degeneracy in a 
different way. 

2. MOTIVATION AND OPTIMALITY CONDITIONS 

We shall start by introducing some necessary terminology. Let x E R n be 
a feasible point, i.e., a:x = bi for i E E and a:x > bi for i E C. Define 

c*= {iJiECanda;x=bi} 

and 

N=EuC*. 

Then N contains the indices of the active constraints. The number of active 
constraints is denoted by t. The active constraint matrix A is a t X n matrix 
whose rows are a:, i E N. The order of the rows does not matter. Thus it is 
assumed here, for simplicity, that N = { 1,. . . , t }. 

A vector u E Iw n is said to be a feasible direction at x if it satisfies 

aTu=O for iEE, and a:u>O for iEC*. (2.1) 

If, in addition to (2.1), u satisfies 

gTu < 0, (2.2) 

then it is called a feasible descent direction. The following theorem provides a 
simple way to obtain such a direction. 
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THEOREM 1. Let 7 E R t solve the problem 

minimize 1lAry - gili, (2.3) 

and let r = ATy - g denote the corresponding residual vector. Zf r z 0, it is a 
feasible descent direction. 

Proof. The basic properties of the linear least squares problem imply 
that Ar = 0. This means that r is a feasible direction and 

gTr = ( AT7 - r)‘r = yTAr - rTr = - rTr < 0. 

If r = 0, then x is called a dead point. In this case the question whether 
there exists a feasible descent direction at x is answered by imposing certain 
bounds on the components of y. 

THEOREM 2. Let y* E R t solve the problem 

minimize IIATy - gill (2.4) 

subject to yi > 0 fo7 i E C*, 

and let r = ATy* - g denote the corresponding residual vector. Zf r = 0, then 
x solves (1.1). Otherwise r is a feasible descent direction. 

Proof. If r = 0 and u is a feasible direction, then 

gTu = (ATy*)T~ = c yT(a:u) = c yF(aTu) > 0, 
iGN iCC* 

which means that x solves (1.1). 
The proof of the second claim is obtained by considering the one 

parameter functions 

i=l , . . . , t, where e, denotes the ith column of the t X t unit matrix. If i E E, 
then 9 = 0 minimizes A(9). Similarly, for i E C* this point minimizes A( 8) 
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subject to the bound yi* + 9 > 0. The necessary conditions for minimizing 
fi‘( 9) imply, therefore, 

a:r = 0 when iEE, 

a:r = 0 when i E C* and yi* > 0, 

a:r > 0 when i E C* and yi* = 0. 

These relations indicate that r is a feasible direction, 

(y*)TAr = 0, 

and 

gTr = ( ATy* - r)‘r = - rTr < 0. n 

The above proof provides a constructive way to derive Farkas’ lemma and 
other related theorems of the alternative. For a detailed discussion of this 
topic see Dax (1985). The following result indicates that r points at the 
steepest descent direction. 

COROLLARY 1. Zf r # 0, then r/llrllz solves the problem 

minimize gTu 

subject to a:u = 0 for i E E, 

a:u>O for iEC*, 

(2.5) 

and uTu=l. 

The proof of this corollary is obtained by verifying that the Kuhn-Tucker 
optimality conditions are satisfied. The next corollary may avoid the need to 
solve (2.4) in order to ensure feasibility. 

COROLLARY 2. Let 9 solve (2.3). If g = ATy and y satisfies the bounds 

yi 2 O for iEC*, (2.6) 

then x solves (1.1). 
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If the rows of A are linearly dependent, then x is called degenerate. 
Otherwise, when the rows of A are linearly independent, x is called nonde- 
generate. The assumption of nondegeneracy provides an alternative way to 
compute a feasible descent direction at dead points. 

THEOREM 3. Let x be a nondegenerate dead point such that 7, the 
unique solution of (2.3), violates (2.6). Let i E C* be an index such that 
yi < 0. Let d denote the (t - 1) X n matrix which is obtained from A by 
deleting its ith row. Let i E ate1 solve the problem 

minimize Ijk?y -- gili, (2.7) 

and let r = A79 - g denote the corresponding residual uector. Then r is a 
feasible descent direction. 

Proof. The possibility r = 0 is excluded by the 
r = 0, then the relation g = AT7 = A79 contradicts 
sumption. It is also clear that Ar = 0, which gives 

g*r = (flf - r)*r = - rTr < 0. 

Similarly, the equality g = AT7 implies 

a, = 
g-CjcAGjaj 

Si ' 

where ?? = N - { i }. Therefore 

gTr T 
a:r = I = _ f_f ,o. 

Yi i7i 

3. MOVING AWAY FROM A DEAD POINT 

following argument. If 
the nondegeneracy as- 

The discussion in the previous section suggests the following alternatives. 
In both cases it is assumed that g = ATy while (2.6) is violated. 

STRATEGY A. Solve (2.4) and use r as a search direction. 
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STRATEGY B. If there is a clear indication of degeneracy (e.g. t > n), 
apply Strategy A. Otherwise, when x is assumed to be a nondegenerate dead 
point, solve (2.7) and use r as a search direction. If, however, the nondegener- 
acy assumption is false, and, r = 0, then use Strategy A. 

The motivation behind Strategy B lies in the observation that solving (2.7) 
is likely to require less work than solving (2.4). Furthermore, if (2.4) is solved, 
then it is possible that many constraints are deleted from the active set at one 
step. On the other hand, there are many problems in which it is known in 
advance that the optimal point is at a vertex of the feasible region, i.e. a point 
where n linearly independent constraints are satisfied exactly. In such a case 
the deletion of constraints is likely to be followed by at least the same number 
of “adding” iterations, which implies that deleting one constraint at a time is 
a better strategy. 

4. THE ALGORITHM 

The basic iteration of the proposed active set method is composed of the 
following three steps. 

step 1: Compute a search direction. Let x denote the current feasible 
point. Solve (2.3) for P and compute r. If r # 0, set u = r and skip to step 3. 

Step 2: Moving away from a dead point (Strategy A). If 7 satisfies 
(2.6), terminate. In this case x solves (1.1). Otherwise solve (2.4) for y* and 
compute r. If r = 0, terminate. In this case x solves (1.1). Otherwise set u = r. 

Step 3: The line search. Set the new point to x + Xu, where X is the 
largest positive number that keeps this point feasible, i.e. 

A = min i E C - C* and a:u < 0 . 

If the above set is empty, terminate. In this case the objective function is not 
bounded below in the feasible region. 

The implementation of Strategy B is achieved by inserting the corre- 
sponding changes in step 2. The finite termination of the algorithm is a 
consequence of the following properties: 

(a) The objective function is strictly decreasing at each iteration. 
(b) Each time that x is not a dead point the number of active constraints 

increases. Therefore, since there are a finite number of inequality constraints, 
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m say, it is not possible to have a succession of more than m iterations in 
which step 2 is skipped. 

(c) Each time that step 2 is executed, the current point is a minimizer of 
the objective function on the linear manifold 

{ zIa;z = bi for all i E N} . 

(d) There are a finite number of such manifolds. 

A straightforward way to implement the algorithm for small dense 
problems Is to solve (2.3) and (2.7) via the QR factorization of AT and A’? 
The updating of this factorization when a row is added to or deleted from A 
is explained in Gill and Murray (1973). In our case it is advantageous to order 
the rows of A so that the first rows correspond to equality constraints. This 
way the QR factorization of these rows remains unchanged throughout the 
minimization process. Also, as a by-product, this factorization may help us to 
exclude redundant equality constraints. In the next section we show that the 
algorithm for solving (2.4) may apply the same factorization scheme as the 
main algorithm. 

5. THE BOUNDED LINEAR LEAST SQUARES PROBLEM 

This section describes an active set method for solving (2.4) whose basic 
iteration is similar to that of the main algorithm. The search direction is 
obtained by solving a modified form of (2.3) using the same factorization 
scheme as in the main algorithm. This way, the factorization of AT continues 
and the algorithm is easily incorporated into the main one. 

Let y E R’ satisfy the constraints (2.6). Then the ith variable of y is said 
to be bounded if i E C* and yi = 0. Otherwise it is called f;ee. The point y 
defines a diagonal matrix D = diag{ d 1,. . . , d, } by the following rule: If the 
ith component of y is bounded, di = 0; otherwise di = 1. The number of free 
components is denoted by s, and the s X n matrix whose rows correspond to 
free components is denoted by A. The basic iteration of the proposed method 
is composed of the following three steps. 

step 1. Compute a search direction. Let y denote the current feasible 
point, and let r = ATy - g denote the current residual vector. The search 
direction, v, is obtained by solving the problem 

minimize S(v) = &lIATv - r(li 

subject to Dv = v. 

(5.1) 
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Clearly, if r = 0 or s = 0, then there is no need to solve (5.1). In this case 
continue to step 2. If the resulting solution satisfies S(v) < #]lf, then skip to 
step 3; otherwise continue to step 2. The aim of the last precaution is to 
ensure that the objective function will decrease at each iteration. 

Step 2: Moving away jknn a dead point. Compute h = Ar, the gradi- 
ent vector of the objective fnnction at the current point. Then h is used to 
obtain a further vector, h* E R’, by the following rule: If yi is bounded and 
hi > 0, set h* = 0. Otherwise set h,? = hi. The vector h* enables us to test 
whether the Kuhn-Tucker optimality conditions hold at y. If h* = 0, then y 
solves (2.4) and the algorithm terminates. Otherwise a feasible descent 
direction, v, is obtained as follows: Compute an index j such that 

JhfI=max{Ih*),i=l,..., t}, 

and set 

v= - hj 
-ej, T ajaj (5.2) 

where ej denotes the j th column of the t x t unit matrix. 
Step 3: The line search. Set the new point to y + pv where p is the 

largest number in the interval [0, 11 that keeps this point feasible. If p = 1 and 
v was computed by (5.1), then the next iteration should start at step 2. 

The finite termination of the above algorithm is proved by standard 
arguments. The solution of (5.1) is carried out by using the QR factorization 
of A’T to solve the unconstrained problem 

rnFLn$ze]]Arw - r/l;. (5.3) 

The updating of this factorization, when a row is added to or deleted from A, 
can be done exactly as in the main algorithm. 

The initial point, y, is obtained from j; by the following rule: If i E C* and 
Qi < 0, set yi = 0. Otherwise set yi = Ji. This way the initial x is obtained 
from A by deleting those rows for which ai violates its bound. Hence the QR 
factorization of p is easily obtained from that of AT. Similarly, the final 
matrix x provides the new matrix A for the main algorithm, and the 
factorization of this matrix is available. 
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6. FURTHER REMARKS 

If the rows of A are linearly dependent, then y, the solution of (2.3) is 
not unique. In such a case we apply the following strategy: Let p denote the 
rank of A. Then the last t - p components of 7 are set to be zero. The reason 
for this rule is the assumption that the QR factorization transforms the first p 

columns of AT into a n x p upper triangular matrix whose rank is p. Hence 
the above rule fixes 9 in a definite way. This strategy is advantageous when 
t > n, since the QR factorization can be restricted to the first n columns of 
AT. A similar strategy is applied in the solution of (5.3). This way the first p 

rows of A form the working set, while the solution of (2.4) provides an 
effective way for determining the right working set at degenerate dead 
points. 

For large sparse problems the solution of (2.3) and (2.4) should be done 
by methods which are able to take advantage of the special structure of these 
problems. This is demonstrated in Dax (1986a), where a problem analogous 
to (2.4) is solved by a relaxation technique. 

The computation of a feasible initial point for the main algorithm can be 
done by a similar algorithm (see Dax, 1985). The only differences are that 
here the objective function is 

F(x) = c (b, - a:x), 
iEV 

and 

where 

g= - C ai, 
iEV 

V= {i)iECandaTx<bi}. 

7. NUMERICAL RESULTS 

This section presents some preliminary trials with the new algorithm. The 
first type of test problems consists of “random” problems that have the 
following structure. The components of g are random numbers from the 
interval [ - 1, 11. (The random number generator is of uniform distribution.) 
The components of the equality constraints are generated in the same way, 
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TABLE 1 
&WILTS 0F“hUDOM"TESTPROBLRMS 

Strategy A Strategy B 

Major Solving Minor Major Solving Minor 
m iterations (2.4) iterations iterations (2.4) iterations 

5 15.9 0.6 1.3 15.9 0 0 
10 16.4 0.9 1.3 16.5 0 0 
20 18.2 1.6 3.8 18.9 0 0 
40 22.4 2.8 12.6 26.4 0 0 

while bi = X7= iaij for i E E. The inequality constraints include 2n simple 
bounds of the form - 10 < xi d 10, j = 1,. . . , n, and m “random” con- 
straints whose components (including bi) are random numbers from the 
interval [ -l,l]. The starting point is e=(l,l,...,l)TER”. In order to 
ensure that this point is feasible, we check the “random” inequalities and 
multiply by - 1 those which are violated at this point. AlI the experiments 
were done with n = 20 and five equality constraints. The number of “ran- 
dom” inequalities takes the values m = 5,10,20,40. For each value of m we 

have generated and solved ten different problems of this type. The results of 
the “random” test problems are presented in Table 1. The figures in this 
table are, therefore, average numbers. The columns headed “Major iterations” 
give the number of iterations made by the main algorithm. The columns 
headed “Solving (2.4)” provide the number of major iterations in which 
problem (2.4) was solved. The columns headed “Minor iterations” give the 
overah number of iterations made by the active set method for solving (2.4). 

The second type of test problems consists of “degenerate” problems. 
These problems are obtained from the “random” problems by adding 
m(m - 1)/2 redundant constraints. Let a:x > bi, i = 1,. . . , m, denote the 

TABLE 2 
RESULTS OF"DEGEIWRA~TRSTPROBLJZMS 

Strategy A Strategy B 

Major Solving Minor Major Solving Minor 
m iterations (2.4) iterations iterations (2.4) iterations 

5 16.0 1.4 3.8 16.0 1.4 3.8 
6 16.3 1.7 4.5 16.3 1.7 4.5 
7 15.9 1.7 5.1 15.9 1.7 5.1 
8 16.1 1.7 8.7 16.1 1.7 8.7 
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“random” inequality constraints. Then the redundant constraints have the 
form (ai + a j)Tx >, bi + bj, where 1 Q i < j < m. In these problems m takes 
the values m = 5,6,7,8. As before, for each value of m we have generated 
and solved ten different problems of this type. The results of the “degenerate” 
test problems are given in Table 2. 

The comparison of Strategies A and B reveals that the second strategy is 
advantageous in solving “random” test problems, while for “degenerate” 
problems there is no difference between the two options. 

8. CONCLUDING REMARKS 

The results of our experiments are quite encouraging. It seems that the 
new method compares favorably with other methods. It is illustrated that the 
number of “minor” iterations needed to solve (2.4) is usually small. The 
maximum number that was recorded is 8, while the average number is about 
4. This indicates that the proposed algorithm for solving (2.4) provides an 
efficient way to resolve degeneracy. 

Another feature that distinguishes the new method is that there is no need 
to transform the constraints into a standard form. Moreover, the number of 
constraints need not exceed the number of variables, and the current feasible 
point need not be a vertex. In fact, the computational effort per iteration is 
reduced as the number of active constraints decreases. Therefore the method 
is especially attractive for problems with few constraints. 

The potential value of the new approach lies in the solution of large 
sparse problems where the least squares subproblems can be solved efficiently 
by iterative methods such as relaxation or conjugate gradients. 

The ability to compute the steepest descent direction gives rise to the 
steepest descent method for solving (1.1). This idea is investigated in Dax 
(1987). 

Finally we note that similar methods have been constructed for the 
analogous I, and Z, problems (see Dax 1986b, 1986c, respectively). The 
present algorithm can be viewed, therefore, as a special case of a general 
method for minimizing polyhedral convex functions subject to linear con- 
straints. 
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