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SUMMARY

The large Mediator (L-Mediator) is a general coacti-
vator of RNA polymerase II transcription and is
formed by the reversible association of the small
Mediator (S-Mediator) and the kinase-module-
harboring Cdk8. It is not known how the kinase
module association/dissociation is regulated. We
describe the fission yeast Cdk11-L-type cyclin
pombe (Lcp1) complex and show that its inactivation
alters the global expression profile in a manner very
similar to that of mutations of the kinase module.
Cdk11 is broadly distributed onto chromatin and
phosphorylates the Med27 and Med4 Mediator sub-
units on conserved residues. The association of
the kinase module and the S-Mediator is strongly
decreased by the inactivation of either Cdk11 or
the mutation of its target residues on the Mediator.
These results show that Cdk11-Lcp1 regulates the
association of the kinase module and the S-Mediator
to form the L-Mediator complex.
INTRODUCTION

The process of messenger RNA (mRNA) transcription requires

the interaction of a set of general transcription factors and a

wide range of gene-specific factors. The Mediator complex

is essential for the expression of nearly all RNA polymerase II

(PolII)-dependent genes in Saccharomyces cerevisiae (Holstege

et al., 1998; Thompson and Young, 1995), where it was first

purified (Kelleher et al., 1990). Independently, genetic screens

identified genes encoding Mediator subunits as suppressors of

truncations of the carboxy-terminal domain (CTD) of the largest

subunit of PolII, Rpb1 (Nonet and Young, 1989). Several lines

of evidence suggest that Mediator bridges many DNA-binding

transcription factors and PolII, which supports activator-depen-

dent transcription (Conaway and Conaway, 2011). Furthermore,

the Mediator enhances PolII recruitment and stabilizes com-
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plexes at the promoter (Cantin et al., 2003). The three-dimen-

sional structure of a budding yeastMediator reveals an extended

complex that consists of three visually separate modules,

termed head, middle, and tail, that form the small Mediator

(S-Mediator) and an additional four subunits ‘‘kinase module’’

harboring the Cdk8 kinase that can associate with the core

S-Mediator to form the large Mediator (L-Mediator) (Asturias

et al., 1999; Dotson et al., 2000). There is compelling support

for an ancient origin of the overall structure, although some

metazoans include several isoforms of the kinase module and

additional subunits, which may reflect specialization in genes

regulation (Bourbon, 2008).

While the S-Mediator has a stimulatory effect on basal tran-

scription (Myers et al., 1998; Spahr et al., 2003), early data

showed that the L-Mediator instead represses transcription

in vitro, and genome-wide analyses supported a negative role

of the kinase module (Holstege et al., 1998). The current model

proposes that S-Mediator interaction with the kinase module

triggers a structural switch that prohibits interactions with PolII

or simply sterically prevents it (Elmlund et al., 2006; Knuesel

et al., 2009; Samuelsen et al., 2003). The structure of the L-Medi-

ator suggests that the kinase module must be actively displaced

to allow interaction of the S-Mediator with PolII, but the mecha-

nism remains unknown. Besides this generally accepted model,

it is also established that the kinase module plays important

roles in gene activation in higher eukaryotes (Conaway and Con-

away, 2011). Cdk8 functions as a coactivator in several tran-

scriptional programs, including those governed by p53, the

Wnt/b-catenin pathway, or the serum response network (Gal-

braith et al., 2010).

The tail module of the Mediator is critical for interactions with

DNA-binding transcription factors (Myers et al., 1999). The

broad structural variations in eukaryotic transactivators may

be reflected in the evolutionary divergence of the tail module

that is not visible in the fission yeast Schizosaccharomyces

pombe, where some of its subunits were lost (Bourbon, 2008;

Linder et al., 2008) (see also Figure S1B for a comparison of

Mediator subunits composition in budding yeast, fission yeast,

and human). Comparative genomic analyses suggested that

Med24, Med27, and Med29 could be orthologous to budding
hors
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yeast Med5, Med3, and Med2 and belong to the tail module

(Bourbon, 2008). Biochemical analyses in fission yeast and fly

do not support this possibility (Linder et al., 2008; Sato et al.,

2003a, 2003b), yet it was shown that Drosophila Med29

behaves as a tail module subunit, as it binds directly to trans-

activators (Garrett-Engele et al., 2002). Altogether, these data

suggest that structural rearrangements have occurred during

evolution.

Here, we have identified the Cdk11-Lcp1 complex in fission

yeast as a key regulator of the assembly of the L-Mediator

through the phosphorylation of Med4 andMed27. Themetazoan

PITSLRE kinase family (Cdk11) is characterized by the expres-

sion of two isoforms (p110 and p58) from the same mRNA due

to the presence of a cell cycle-regulated internal ribosome entry

site (Cornelis et al., 2000; Wilker et al., 2007; Yokoyama et al.,

2008). Importantly, Cdk11 is a distinct kinase from Cdk19 that

closely resembles Cdk8 and was sometimes referred to as

Cdk11 (Tsutsui et al., 2008). The Cdk11 kinase associates with

L-type cyclins (Dickinson et al., 2002; Loyer et al., 2008) and

was implicated at several levels of transcription regulation (Hu

et al., 2003; Trembley et al., 2002; Zong et al., 2005). Ortholo-

gous sequences to Cdk11 exist in all metazoans and fission

yeast, but there is no budding yeast counterpart (Guo and Stiller,

2004; Liu and Kipreos, 2000).

RESULTS

A Cdk11-Cyclin L Complex Is Present in Fission Yeast
and Affects Transcription Independently of CTD
Phosphorylation
Genome sequence analyses revealed the existence of a se-

quence (SPBC18H10.15) encoding a protein related to the

metazoan Cdk11 in fission yeast (Liu and Kipreos, 2000). We

fused a green fluorescent protein (GFP) moiety to the fission

yeast protein (hereafter named Cdk11) by gene targeting at

the endogenous locus. Fluorescence microscopy revealed

that Cdk11 was expressed and mainly concentrated in the

nucleus (Figure 1A). Sequences alignment showed that the

fission yeast Cdk11 was significantly shorter than its homologs,

consisting only of the C-terminal kinase domain and an

authentic PITSLRE signature (Figure S2A and S2B). Because

metazoan Cdk11 exists in several isoforms, including a mitotic,

truncated version (p58) corresponding to fission yeast Cdk11,

we analyzed the expression level of Cdk11 during the cdc25-

22 block and release experiment, which did not highlight any

cell cycle periodicity (Figure 1B). A tandem affinity purification

(TAP) identified physical partners of Cdk11, including an unchar-

acterized cyclin (SPAC1296.05c) that was confirmed to bind

Cdk11 in independent coimmunoprecipitation experiments (Fig-

ure 1C and 1D). Other interactors included transcription-associ-

ated proteins (Spt4 and Spt5), a Mediator subunit (Med10), RNA

helicases (Moc2 and Dbp2), and some classical contaminants.

None of these could be reproducibly coimmunoprecipitated in

independent experiments. The cyclin, hereafter named L-type

cyclin pombe (Lcp1), showed similarity to the L-type cyclin

family previously shown to associate with metazoan Cdk11

(Dickinson et al., 2002; Loyer et al., 2008), but was significantly

shorter than its homologs, due to the absence of the RS domain
Cell Re
(Figure S2C and S2D). Taken together, these data support the

existence in fission yeast of a divergent Cdk11-cyclin L complex

that is absent from budding yeast. Deletions of either cdk11 or

lcp1 were reported to be viable in large-scale studies (Bimbó

et al., 2005; Kim et al., 2010), which we confirmed (data not

shown).

The relationship of this complex to the CTD kinase family led

us to analyze the effect of Cdk11 on CTD phosphorylation

in vitro and in vivo. Precipitated Cdk11 or Lcp1 displayed

very low kinase activity toward a fusion between glutathione

S-transferase (GST) and the wild-type fission yeast CTD, in

contrast to Mcs6 (the Cdk7 ortholog), which readily phosphor-

ylated the GST-CTD fusion in vitro (Figure 1E) (Drogat and Her-

mand, 2012). In addition, while the inactivation of the well-

described CTD serine 5 or serine 2 kinases (Mcs6 [Cdk7] and

Lsk1 [Cdk12], respectively) specifically decreased the phos-

phorylation level of these two residues in vivo, the absence

of cdk11 had no effect (Figure 1F). Therefore, we found

no evidence of Cdk11 being a genuine CTD kinase in fission

yeast.

The Cdk11 and Mediator-Associated Cdk8 Kinase
Regulate a Common Set of Genes
The previously reported connection between Cdk11 and tran-

scription, together with its nuclear localization and copurifica-

tion with transcription regulators (although at weak level) led

us to test its chromatin association. Gene-specific chromatin

immunoprecipitation (ChIP) experiments showed that Cdk11-

hemagglutinin (HA) was enriched onto chromatin compared to

an untagged control (data not shown), and a genome-wide

ChIP-on-chip analysis showed a broad distribution of Cdk11-

HA. Analysis of the average occupancy across genes

showed a bimodal binding pattern of Cdk11 compared to the

previously reported accumulation of PolII toward the 30-end of

the transcribed unit (Coudreuse et al., 2010) (Figure 2A). The

Rpb3-HA and Cdk11-HA profiles at individual loci (see below)

are shown in Figures 2B and S3A. The genome-wide distribu-

tion of Cdk11 contrasted with the absence of phenotype of

the mutant, which suggests that, albeit Cdk11 associated with

general transcription, it may only affect a subset of genes.

This possibility was confirmed by global expression profiling,

showing that only 55 genes were significantly affected in the

absence of Cdk11. Interestingly, clustering analyses with the

expression profiles of the related Cdk family member in fission

yeast (Cdk7, Cdk8, Cdk9, and Cdk12 [Coudreuse et al.,

2010], Figure S3B) showed that the absence of either cdk11

or cdk8 resulted in very similar defects (up- or downregulation)

that were more pronounced in the cdk8 mutant (Figure 2C).

Quantitative RT-PCR confirmed this effect on representative

genes and showed, in addition, that the expression defects

were not cumulated in the double cdk8 cdk11 mutant (Fig-

ure 2D). The analysis of an analog-sensitive (-as) mutant

strongly supported that the kinase activity of Cdk11 was

required in vivo (Figures 2D and S3D). Note that, in this study,

we have chosen 10 representative genes that were the more

strongly affected in the absence of Cdk11 for more detailed

analysis. Their ChIP and expression profiles are shown in

Figures 2B, S3A, and S3C.
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Figure 1. A Cdk11-Cyclin L Complex Is Present in Fission Yeast and Affects Transcription Independently of CTD Phosphorylation

(A) Cdk11-GFP expressed from the endogenous locus or an untagged control were observed by fluorescence microscopy in the presence of DAPI.

(B) The cdk11-TAP strain was synchronized using a cdc25-22 block and release. At indicated times, samples were processed for TAP western blot and fluo-

rescence-activated cell sorting analysis. The replicated population is marked in red.

(C) TAP of the cdk11-TAP and an untagged strain. Proteins identified from bands by mass spectrometry are indicated.

(D) Strains harboring the indicated tagged proteins were lysed and the Lcp1-TAP protein was precipitated on immunoglobulin G (IgG) beads. Total or precipitated

products were resolved on PAGE and analyzed by western blot using the indicated antibodies. The asterisk indicates the IgG heavy chains.

(E) Strains harboring the indicated tagged proteins were lysed and immunoprecipitation was performed on IgG beads followed by kinase assay on GST-CTD. The

kinase gel was stained with Coomassie blue. western blot analysis was performed using the peroxidase antiperoxidase antibody.

(F) The indicated strains were grown 2 hr in the presence or absence of the 3MB-PP1 inhibitor, lysed, and separated by PAGE. Western blot analyses were

performed with the indicated antibodies.

See also Figure S2.
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The Cdk11-Cyclin L Complex Phosphorylates Subunits
of the Mediator Complex
Taken together, the previous data suggested a connection

between the Cdk11-Lcp1 complex and the kinase submodule

of the Mediator. We hypothesized that Cdk11 could phosphory-

late some Mediator subunits to regulate the association of the

Cdk8 kinasemodule. Indeed, global phosphoproteome analyses

in fission yeast have identified phosphorylation on several Medi-

ator subunits (Beltrao et al., 2009; Wilson-Grady et al., 2008).

Using the integrated fission yeast ORFeome collection (Mat-

suyama et al., 2006), we set up a phosphorylation assay for all

23 Mediator subunits, allowing the precipitation of a tagged

Mediator subunit from fission yeast extract and their use as

a substrate for the Cdk11-Lcp1 kinase complex (Figure S4A).

Six potential substrates (Med14, Med27, Med4, Med7, Med1,

and Med19) were selected in this way and retested individually

as GST-fusion proteins (Figure 3A). The experiments showed

that Med4 and Med27 were readily phosphorylated by Cdk11

in vitro. Similarly to Cdk11, the Med27 protein is not conserved

in budding yeast.

Combining the large-scale phosphoproteome data set and

sequence alignment (Figures S4B and S4C), we determined

that putative phosphoacceptors and in vitro analysis demon-

strated that Cdk11 phosphorylates Med4 on three residues (Fig-

ure 3B: S115, S204, and S218), of which one is evolutionary

conserved (S115), and Med27 on S235, which is also highly

conserved (Figure 3C).

Phosphorylation of Med4 and Med27 by Cdk11-Lcp1
Regulates the Association of the KinaseModulewith the
S-Mediator
We next integrated and tagged the phosphorylation site

mutants in med4 and med27 at their respective endogenous

locus. Quantitative RT-PCR showed that, when combined,

these mutants interfered with the expression of representative

genes similarly to the cdk8 or cdk11 mutants (Figure 4A). Using

the med4 or med27 mutants alone, we noticed a gene-specific

sensitivity to these mutants, but the combined mutations

generally showed synergism. These data were consistent

with a regulation of Cdk8 binding to the S-Mediator by the

Cdk11-Lcp1 complex. We tested this possibility by coimmuno-

precipitation. We first analyzed the integrity of the S-Mediator

by coprecipitating the middle subunit Med7 and the head

subunit Med27 in the presence or absence of Cdk11. As

shown in Figure 4B (left panel), no effect of Cdk11 could be

highlighted. At the contrary, the interaction between the kinase

module subunit Cdk8 and the head subunit Med27 was

completely abrogated when Cdk11 was inactivated (Figure 4B,

middle panel). This role of Cdk11 in Mediator integrity was

likely mediated by phosphorylation of Med27 and Med4 on

the sites identified above (Figures 3 and 4A), because the inter-

action between Cdk8 and either the Med27 or Med4 phos-

phorylation mutants was specifically lost (Figure 4B, right

panel). In contrast, the phosphorylation mutants of Med27

and Med4 still interacted with the middle subunit Med7 (Fig-

ure 4B, right panel). These data indicate that the association

of the kinase submodule and the S-Mediator requires the

phosphorylation of Med27 and Med4 by Cdk11. To confirm
Cell Re
these findings at the chromatin level, we performed ChIP anal-

yses of Cdk8-TAP and Med13-TAP in the presence or absence

of Cdk11. As predicted, the chromatin abundance of these two

components of the kinase submodule was decreased in the

absence of Cdk11 (Figure 4C, left and middle panels). In the

same conditions, the chromatin occupancy of Med7 was not

affected (Figure 4C, right panel).

DISCUSSION

The reversible association between the S-Mediator and the

kinase module is pivotal in gene expression and decides if PolII

is incorporated in active transcription or if its assembly is

repressed (Taatjes, 2010). Here we have identified the fission

yeast Cdk11-Lcp1 complex as a key regulator of that process

through the phosphorylation of the Med27 and Med4 subunits.

Similarly to Cdk8, Cdk11 affects transcription both positively

and negatively (Figure 2), and additional work is needed to

understand the molecular basis of the effect of the Cdk8 sub-

complex on the RNA polymerase II.

Interestingly, neither Cdk11 nor Lcp1 or Med27 are conserved

in budding yeast. Although it was proposed that Med3 is the

ortholog of Med27 in that species (Bourbon, 2008), it lacks the

conserved C-terminal zinc finger of Med27 and the highly con-

served Cdk11 phosphorylation site. Contrary to the expectation

based on the structure of budding yeast Mediator, fission yeast

Med27 was found on the exterior of the complex, close to the

head module (Linder et al., 2008). A similar case was reported

for the mammalian Med29 subunit that physically binds the

head (Sato et al., 2003a). These discrepancies between the over-

all Mediator structures may explain why the Cdk11-Lcp1

complex was lost in budding yeast (Liu and Kipreos, 2000).

Contrary to Med27, the phosphorylation of Med4 exists in

budding yeast and was suggested to modulate the assembly

of the Mediator (Balciunas et al., 2003). It partially depends

upon the Cdk7 ortholog (Guidi et al., 2004), which suggests

amutual targeting ofMediator and the Cdk7-containing complex

transcription factor II H (TFIIH) (Esnault et al., 2008; Guidi et al.,

2004).

Genome-wide studies in both yeasts revealed that Mediator

and the kinase module are present upstream of protein coding

genes, but also interact with the downstream coding region

of many genes (Andrau et al., 2006; Zhu et al., 2006). The

genome-wide occupancy of Cdk11 is consistent with these

previous findings. Moreover, a transient association of the

kinase module was suggested by the reduced occupancy of

Cdk8 (Andrau et al., 2006), which highlights the reversible

nature of the S-Mediator/kinase module interaction. How

dynamic is the association at activated and repressed genes

and how Cdk11 modulates this process requires further

investigations.

The absence of two conserved domains in the fission yeast

Cdk11 and cyclin orthologs and the reported essential roles of

some Cdk11 isoforms in unrelated processes in metazoans

(Petretti et al., 2006; Wilker et al., 2007; Yokoyama et al.,

2008) raise the question of the conservation of the regulation

described here. The well-established connection between

Cdk11 and transcription together with the lethality of null
ports 2, 1068–1076, November 29, 2012 ª2012 The Authors 1071
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Figure 2. The Cdk11 and Mediator-Associated Cdk8 Kinase Regulate a Common Set of Genes

(A) Left: Average ChIP-binding profiles of genes that were significantly bound (binding ratioR2, and p < 0.05) by Cdk11-HA (blue) and Rpb3-HA (red). The 95%

confidence intervals and a graphical representation of the transcribed units (Gene) are displayed. Middle: Plots showing the correlation between binding ratios of

ChIP-on-chips experiments performed with the indicated proteins (based on previous data (Coudreuse et al., 2010), Cdk7 is SpMcs6 and Cdk12 is SpLsk1). The

correlation coefficients for each pair-wise combination are indicated in the bottom right corner of the scatter plots. Right: Occupancy intersection of ChIP-binding

peaks for the Cdk11/Rpb3 combination (ALL) and their repartition between coding regions (CDS) and intergenic regions (IGR) with associated p values obtained

from hypergeometric tests.

(B) ChIP-on-chip occupancy profiles of Rpb3-HA and Cdk11-HA along the SPBC947.04, SPAC1786.02, and SPCC1393.10 genomic regions. Transcripts and

open reading frames (ORFs) are indicated.
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A

B

C

Figure 3. The Cdk11-Cyclin L Complex

Phosphorylates Subunits of the Mediator

Complex

(A) The Lcp1-TAP protein was precipitated and

used on beads for in vitro kinase assay using

various purified GST-fusion proteins as indicated.

The amount of substrates was estimated by

staining of the kinase gel.

(B) The Lcp1-TAP protein was precipitated and

used on beads for in vitro kinase assay using

various wild-type and mutated forms of the GST-

Med4 protein as indicated. The conserved phos-

phorylation site (S115 in fission yeast) is shown on

the right. The amount of substrates was estimated

by staining of the kinase gel.

(C) The Lcp1-TAP protein was precipitated and

used on beads for in vitro kinase assay using the

wild-type and mutated forms of the GST-Med27

protein as indicated. The conserved phosphory-

lation site (S235 in fission yeast) is shown on the

right. The amount of substrates was estimated

by staining of the kinase gel. Note that this site is

not conserved in budding yeast Med3, a putative

ortholog of Med27.

See also Figure S4.
mutants of Cdk8 or Cdk11 at a similar stage in early embryogen-

esis (Li et al., 2004; Westerling et al., 2007) certainly supports

this possibility.
EXPERIMENTAL PROCEDURES

General Methods

Fission yeast growth, microscopy, gene targeting, and mating were per-

formed as described (Bamps et al., 2004; Cassart et al., 2012; Fersht et al.,

2007; Hermand and Nurse, 2007). TAP was performed as described (Dewez

et al., 2008; Guiguen et al., 2007). Kinase assay on GST-CTD were previously
(C) Hierarchical clustering of the 90 mRNAs whose expression is significantly affected in the cdk8::ura4 or th

extract supplemented (YES). The data are presented as a log2 mutant/wild-type ratio of hybridization sig

(p value % 0.05 and R1.5-fold change).

(D) Relative quantification (RQ) of the indicated mRNAs determined by quantitative RT-PCR using the DDct m

double cdk8::ura4 cd11::ura4 mutants. a.u.: arbitrary units.

See also Figure S3.
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described (Coudreuse et al., 2010). Inhibitors of

the analog-sensitive mutant kinase were obtained

from Toronto Research Chemicals. The list of

strains used in this study is shown in Table S1.

The corrected cdk8 open reading frame, taking

into account an intron located in the 30 region, is
shown in Figure S5.

ChIP-on-Chip, ChIP, and Quantitative

RT-PCR

ChIP-on-chips were performed using the Agilent

S. pombe 4 3 44 k microarrays (Whole Genome

ChIP-on-chip Microarray [G4810A], design ID:

015424). The genome-wide binding profiles for

Cdk11 were generated from four independent bio-

logical samples. Chromatin immunoprecipitations

were performed using a Bioruptor (Diagenode)
and Dynabeads (Invitrogen). Total RNA was prepared and purified on

QIAGEN RNeasy. Quantitative RT-PCR was performed using the ABI high

capacity RNA-to-complementary DNA (cDNA). The untreated sample was

used as a reference and the act1 mRNA was used for normalization (Bauer

et al., 2012). More details are provided in the Supplemental Information.

Expression Profiling

Transcriptome analyses were performed on customized 4 3 44 k Agilent

microarrays (Coudreuse et al., 2010). For each sample, 500 ng of total RNA

was converted into labeled cDNA, with nucleotides coupled to a fluorescent

dye (Cy3 or Cy5) using the Low RNA Input Linear Amplification Kit (Agilent

Technologies). Two biological samples were hybridized for eachmutant strain,
e cdk11::ura4 strains. Strains were grown in yeast

nals and are color-coded, as indicated in the key

ethod in wild-type, cdk8::ura4, cd11::ura4, and the

vember 29, 2012 ª2012 The Authors 1073
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with two dye-swap technical replicates per sample. More details are provided

in the Supplemental Information.
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