Erratum

Erratum to "The lollipop graph is determined by its Q-spectrum"

Hasti Hamidzade ${ }^{\text {a }}$, Dariush Kiani ${ }^{\text {a,b,* }}$
${ }^{\text {a }}$ Faculty of Mathematics and Computer Science, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
${ }^{\mathrm{b}}$ School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran

ARTICLE INFO

Article history:

Received 2 September 2009
Received in revised form 4 November 2009
Accepted 25 January 2010
Available online 20 February 2010

Keywords:

Lollipop graph
Q-spectrum

Abstract

The proof of Theorem 3.3 in [Y. Zhang, X. Liu, B. Zhang, X. Yong, The lollipop graph is determined by its Q-spectrum, Discrete Math. 309 (2009) 3364-3369] is not correct. Actually, in the development of $P_{A\left(G_{1}\right)}(\lambda)$, the authors missed several products into addition, which makes the rest of the proof invalid. Note that the statement of the theorem is true. Here, we give a correct proof.

© 2010 Elsevier B.V. All rights reserved.

Theorem 3.3. For no two non-isomorphic lollipop graphs, their corresponding line graphs have the same adjacency spectrum.
Proof. By Lemma 2.12 of [1], $P_{A\left(G_{1}\right)}(\lambda)$ can be computed as follows:

$$
\begin{aligned}
P_{A\left(G_{1}\right)}(\lambda)= & \lambda P_{A\left(P_{\left.n-p_{1}-1\right)}\right)}(\lambda) P_{A\left(C_{p_{1}}\right)}(\lambda)-\left(P_{A\left(C_{p_{1}}\right)}(\lambda) P_{A\left(P_{\left.n-p_{1}-2\right)}\right)}(\lambda)+2 P_{A\left(P_{\left.n-p_{1}-1\right)}\right)}(\lambda) P_{A\left(P_{\left.p_{1}-1\right)}\right)}(\lambda)\right) \\
& -2\left(P_{A\left(P_{n-p_{1}-1}\right)}(\lambda)+P_{A\left(P_{n-p_{1}-1}\right)}(\lambda) P_{A\left(P_{p_{1}-2}\right)}(\lambda)\right) .
\end{aligned}
$$

Then, by Lemma 2.11 of [1] and Maple, we have:

$$
\begin{aligned}
& P_{A\left(G_{1}\right)}\left(t^{\frac{1}{2}}+t^{-\frac{1}{2}}\right)=-\frac{1}{\sqrt{t}(t-1)^{2}}\left(\psi_{1}(t)+\psi_{2}(t)+\psi_{3}(t)+\psi_{4}(t)+\psi_{5}(t)+\psi_{6}(t)\right), \text { where } \\
& \psi_{1}(t)=-t^{\frac{n}{2}+\frac{5}{2}}+3 t^{\frac{n}{2}+\frac{3}{2}}+2 t^{\frac{n}{2}+1} \\
& \psi_{2}(t)=2 t^{-\frac{n}{2}+2}+3 t^{-\frac{n}{2}+\frac{3}{2}}-t^{-\frac{n}{2}+\frac{1}{2}} \\
& \psi_{3}(t)=2 t^{\frac{n}{2}-\frac{p_{1}}{2}+\frac{5}{2}}+2 t^{\frac{n}{2}-\frac{p_{1}}{2}+2}-2 t^{\frac{n}{2}-\frac{p_{1}}{2}+\frac{3}{2}}-2 t^{\frac{n}{2}-\frac{p_{1}}{2}+1}, \\
& \psi_{4}(t)=-2 t^{-\frac{n}{2}+\frac{p_{1}}{2}+2}-2 t^{-\frac{n}{2}+\frac{p_{1}}{2}+\frac{3}{2}}+2 t^{-\frac{n}{2}+\frac{p_{1}}{2}+1}+2 t^{-\frac{n}{2}+\frac{p_{1}}{2}+\frac{1}{2}}, \\
& \psi_{5}(t)=-t^{\frac{n}{2}-p_{1}+\frac{5}{2}}-2 t^{\frac{n}{2}-p_{1}+2}-t^{\frac{n}{2}-p_{1}+\frac{3}{2}} \\
& \psi_{6}(t)
\end{aligned},-t^{-\frac{n}{2}+p_{1}+\frac{3}{2}}-2 t^{-\frac{n}{2}+p_{1}+1}-t^{-\frac{n}{2}+p_{1}+\frac{1}{2}} .
$$

Similarly, we obtain $P_{A\left(G_{2}\right)}\left(t^{\frac{1}{2}}+t^{-\frac{1}{2}}\right)$. Note that $P_{A\left(G_{1}\right)}\left(t^{\frac{1}{2}}+t^{-\frac{1}{2}}\right)=P_{A\left(G_{2}\right)}\left(t^{\frac{1}{2}}+t^{-\frac{1}{2}}\right)$. Now, by comparing the largest terms, $p_{1}=p_{2}$ and so $H_{n, p_{1}}$ and $H_{n, p_{2}}$ are isomorphic.

References

[1] Y. Zhang, X. Liu, B. Zhang, X. Yong, The lollipop graph is determined by its Q-spectrum, Discrete Math. 309 (2009) 3364-3369.

[^0]0012-365X/\$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2010.01.013

[^0]: DOI of original article: 10.1016/j.disc.2008.09.052.

 * Corresponding author at: Faculty of Mathematics and Computer Science, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran. E-mail addresses: hamidzade@aut.ac.ir (H. Hamidzade), dkiani@aut.ac.ir (D. Kiani).

