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1. Introduction

In this paper, a meromorphic function will always be non-constant and meromorphic in the complex plane C, unless
specifically stated otherwise. In what follows, we assume that the reader is familiar with the elementary Nevanlinna theory,
see [9,14,20]. In particular, for a meromorphic function f , S( f ) denotes the family of all meromorphic functions ω such
that T (r,ω) = S(r, f ) = o(T (r, f )), where r → ∞ outside of a possible exceptional set of finite logarithmic measure. For
convenience, we agree that S( f ) includes all constant functions and Ŝ( f ) := S( f ) ∪ {∞}.

For a meromorphic function f and a set S ⊂ C, we define

E f (S) =
⋃
a∈S

{
z
∣∣ f (z) − a = 0, counting multiplicities

}
,

E f (S) =
⋃
a∈S

{
z
∣∣ f (z) − a = 0, ignoring multiplicities

}
.

We say that f and g share a set S CM, resp. IM, provided that E f (S) = E g(S), resp. E f (S) = E g(S). As a special case, let

S = {a}, where a ∈ Ĉ. If E f ({a}) = E g({a}), resp. E f ({a}) = E g({a}), we say that f and g share the value a CM, resp. IM.
The classical results in the uniqueness theory of meromorphic functions are the 5 IM and 4 CM theorems due to Nevan-

linna [16], see also [9,20]. In 1979, Gundersen [4] proved that 4 IM �= 4 CM and 3 CM + 1 IM = 4 CM. The conclusion
2 CM + 2 IM = 4 CM also given by Gundersen [5], while the case 1 CM + 3 IM still remains an open problem.
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A special topic widely studied in the uniqueness theory is the case when f (z) shares values with its derivatives or
differential polynomials. We recall a result of this type from the preceding literature:

Theorem A. (See [13, Theorem 3].) Let f be a non-constant entire function and a1,a2 be two distinct complex numbers. If f and f ′
share the set {a1,a2} CM, then f takes one of the following conclusions:

(i) f = f ′ ,
(ii) f + f ′ = a1 + a2 ,

(iii) f = c1ecz + c2e−cz , with a1 + a2 = 0, where c, c1, c2 are non-zero constants which satisfy c2 �= 1 and c1c2 = 1
4 a2

1(1 − 1
c2 ).

It is well known that there exists a set S containing seven elements such that if f and g are two non-constant entire
functions and E f (S) = E g(S), then f = g , see [20, Theorem 10.58]. In a special case, Fang and Zalcman [2, Theorem 1]
obtained the following:

Theorem B. There exists a finite set S containing three elements such that if f is a non-constant entire function and E f (S) = E f ′(S),
then f = f ′ .

There exist some uniqueness results related to the case when two functions share common sets. We recall one of them
here:

Theorem C. (See [3].) Let S1 = {1,−1}, S2 = {0}. If f (z) and g(z) are non-constant entire functions of finite order such that f and g
share the sets S1 and S2 CM, then f = ±g or f · g = 1.

Similarly as to the above situations, one may also consider shared value problems for f (z) with its shifts f (z + c) and
their difference polynomials. To this end, we recall a key result [11, Theorem 2], which may be understood as 2 CM + 1 IM
theorem for differences:

Theorem D. Let f be a transcendental meromorphic function of finite order, let c ∈ C \ {0}, and let a1,a2,a3 ∈ Ŝ( f ) be three distinct
periodic functions with period c. If f (z) and f (z + c) share a1,a2 CM, and a3 IM, then f (z) = f (z + c) for all z ∈ C.

In this paper, we investigate the cases when f (z) shares a common set with f (z + c) or �c f := f (z + c) − f (z). In
particular, we offer difference counterparts to Theorems B and C. We also improve a result in [11] related to Theorem D.
Perhaps we could remark here that if we choose g(z) = f (z + c) in Theorem C, then f (z) = ± f (z + c). Indeed, if f (z) · f (z +
c) = 1, then f (z)2 = f (z)/ f (z + c), and so T (r, f ) = m(r, f ) = S(r, f ) by Lemma 3.2 below.

This paper is organized as follows. In Section 2, we state that if an entire function f (z) shares a common set with its
shift f (z + c) or difference operator �c f , then either f (z) satisfies a certain difference equation or f (z) is of a certain
special form. This is a difference counterpart to Theorem A. We also give some results related to Theorems B and C in
Section 2. The proofs of these results will be given in Section 3. Section 4 is then devoted to giving an improvement for a
result in [11]. In Section 5, we give some applications to non-linear difference equations.

2. Main results

Our first result below may be understood as a difference counterpart to Theorem A, where f (z) shares a common set
with its first derivative f ′(z). Here f (z) shares a common set with its shift f (z + c).

Theorem 2.1. Let f (z) be a transcendental entire function of finite order, c ∈ C\{0}, and let a(z) ∈ S( f ) be a non-vanishing periodic
entire function with period c. If f (z) and f (z+c) share the set {a(z),−a(z)} CM, then f (z) must take one of the following conclusions:

(i) f (z) ≡ f (z + c),
(ii) f (z) + f (z + c) ≡ 0,

(iii) f (z) = 1
2 (h1(z) + h2(z)), where h1(z+c)

h1(z) = −eγ , h2(z+c)
h2(z) = eγ , h1(z)h2(z) = a(z)2(1 − e−2γ ) and γ is a polynomial.

Remark 2.2. Suppose f (z) and f (z + c) share the set {a(z),b(z)} CM in Theorem 2.1, where a(z),b(z) ∈ S( f ) are non-
vanishing periodic entire functions with period c. Defining g(z) := f (z) − a(z)+b(z)

2 , we see that g(z) and g(z + c) share the

set { a(z)−b(z)
2 ,

b(z)−a(z)
2 } CM. Therefore, we get either f (z + c) ≡ f (z) or f (z + c) + f (z) ≡ a(z) + b(z) or the last case in

Theorem 2.1 with a(z)−b(z)
2 replacing a(z).

Corollary 2.3. Under the assumptions of Theorem 2.1, if f (z) and f (z+c) share the sets {a(z),−a(z)}, {0} CM, then f (z) = ± f (z+c)
for all z ∈ C.
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If f (z + c) is replaced with �c f in Theorem 2.1, we get the following result:

Theorem 2.4. Let f be a transcendental entire function of finite order, and let a be a non-zero finite constant. If f and �c f share the
set {a,−a} CM, then f (z + c) ≡ 2 f (z).

Remark 2.5. It would be natural to ask what happens if {a,−a} is replaced with {a(z),b(z)} in Theorem 2.4, where
a(z),b(z) ∈ S( f ) are non-vanishing periodic entire functions with period c? This remains open at present.

Theorem 2.6. There exists a set S with two elements such that if f is a transcendental entire function of finite order with at most
finitely many zeros and E f (z)(S) = E f (z+c)(S), then f (z + c) = ± f (z) for all z ∈ C.

Remark 2.7. If the set S has one element only, then Theorem 2.6 is not true. This can be seen by taking f (z) = ez2
. Then

0 is a Picard exceptional value for f (z) and f (z + c), while f (z + c) �= A f (z), where A is any given constant. The assumption
on finitely many zeros cannot be deleted, which can be seen by taking f (z) = sin z. Then f (z) and f (z + π

2 ) share the set

{
√

2
2 ,−

√
2

2 } CM, while f (z + c) �= ± f (z).

3. Proofs of results

Before proceeding to the actual proofs, we recall a few lemmas that take an important role in the reasoning. The first of
these lemmas is a difference analogue of the logarithmic derivative lemma, given by Halburd and Korhonen [6, Corollary 2.2]
and Chiang and Feng [1, Corollary 2.6], independently. Presentations in these references are slightly different. The original
statement [6, Corollary 2.2] reads as follows:

Lemma 3.1. Let f (z) be a non-constant meromorphic function, c ∈ C, δ < 1, and ε > 0. Then

m

(
r,

f (z + c)

f (z)

)
= o

(
T (r + |c|, f )1+ε

rδ

)
(3.1)

for all r outside of a possible exceptional set E with finite logarithmic measure.

Making use of [8, Lemma 2.1], we have T (r +|c|, f ) = (1+o(1))T (r, f ) for all r outside of a possible exceptional set with
finite logarithmic measure, provided that f is of finite order. This implies [7, Theorem 2.1], which can be stated as follows.

Lemma 3.2. Let f (z) be a non-constant meromorphic function of finite order, c ∈ C, δ < 1. Then

m

(
r,

f (z + c)

f (z)

)
= o

(
T (r, f )

rδ

)
= S(r, f ), (3.2)

where S(r, f ) = o(T (r, f )) for all r outside of a possible exceptional set E with finite logarithmic measure.

The following result is an application of Lemma 3.2 to the function f (z) − a(z), see [7, Lemma 2.3].

Lemma 3.3. Let f be a meromorphic function of finite order, and let c ∈ C, n ∈ N. Then for any small periodic function a(z) ∈ S( f )
with period c,

m

(
r,

�n
c f

f (z) − a(z)

)
= S(r, f ).

The next lemma follows by using a similar reasoning as in the proof of [12, Theorem 1], with apparent modifications.
More precisely, we need to replace the differential polynomial of f with the operator �c f and to use Lemma 3.2 or
Lemma 3.3 instead of the logarithmic derivative lemma, if needed. For the convenience of the reader, we give a sketch of
the proof here.

Lemma 3.4. Let f (z) be an entire function of finite order, and let a be a non-zero constant. If f and �c f share the set {a,−a} CM,
then

(�c f − a)(�c f + a) = ( f − a)( f + a)e2γ , (3.3)

where γ is a polynomial such that T (r, e2γ ) = S(r, f ).
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Proof. Let g := �c f . Since f is an entire function of finite order, we have T (r, g) � T (r, f ) + S(r, f ) by Lemma 3.2. Since
f and g share the set {a,−a} CM, we obtain T (r, f ) � 2T (r, g) + S(r, g) by applying the second main theorem. Therefore,
S(r) := S(r, f ) = S(r, g). Differentiating (3.3), we obtain

2gg′ = (
2γ ′( f − a)( f + a) + 2 f f ′)e2γ . (3.4)

Defining

ψ = (e2γ f ′)2 − (g′)2

(g − a)(g + a)
, (3.5)

we get T (r,ψ) = m(r,ψ) = S(r) by repeating the reasoning in [12, pp. 418–419], while making use of Lemma 3.3 again, if
needed.

We now proceed to proving T (r, e2γ ) = S(r).
(A) If ψ = 0, then T (r, e2γ ) = S(r) by (3.5) and Lemma 3.2.
(B) If ψ �= 0, then using a similar discussion as in [12, pp. 419], we first obtain m(r, 1

g±a ) = S(r), and all zeros of
(g − a)(g + a) are simple as long as they are not zeros of ψ . Thus

2T (r, g) = N

(
r,

1

g − a

)
+ N

(
r,

1

g + a

)
+ S(r). (3.6)

Taking derivative in both sides of (3.5) and eliminating e2γ , we get

(
2ψ(2γ ′ f ′ + f ′′) − ψ ′ f ′)(g − a)(g + a) = (

2ψ g f ′ − (4γ ′ f ′ + 2 f ′′)g′ + 2 f ′g′′)g′. (3.7)

From (3.7), we know that a simple zero of (g − a)(g + a) must be a zero of the function 2ψ g f ′ − (4γ ′ f ′ + 2 f ′′)g′ + 2 f ′ g′′ .
Define now

ψ1 := 2ψ g f ′ − (4γ ′ f ′ + 2 f ′′)g′ + 2 f ′g′′

( f − a)( f + a)
. (3.8)

Then T (r,ψ1) = S(r) follows by using Lemma 3.3 and the lemma of logarithmic derivative. If ψ1 �= 0, then from (3.8) and
Lemma 3.2

2T (r, f ) � m
(
r, ( f − a)( f + a)ψ1

) + S(r)

� m(r, f ) + m(r, g) + S(r)

� T (r, f ) + m

(
r, f (z)

(
f (z + c)

f (z)
− 1

))
+ S(r)

� 2T (r, f ) + S(r).

It follows that T (r, f ) = T (r, g) + S(r). By (3.6) we now conclude that

m

(
r,

1

f ± a

)
= S(r). (3.9)

From (3.3), we get

m
(
r, e2γ

)
� m

(
r,

�c f − a

f − a

)
+ m

(
r,

�c f + a

f + a

)

� m

(
r,

�c f

f − a

)
+ m

(
r,

1

f − a

)
+ m

(
r,

�c f

f + a

)
+ m

(
r,

1

f + a

)
+ S(r).

Combining (3.9) and Lemma 3.3, T (r, e2γ ) = S(r) follows.
If ψ1 = 0, we may repeat the reasoning in [12, pp. 420–421] to conclude that T (r, f ) = S(r), a contradiction. This

completes the proof. �
Proof of Theorem 2.1. Recall that the idea of the proof is similar as to the proof of [12, Theorem 1].

Since f (z) is an entire function of finite order and f (z) and f (z + c) share the set {a(z),−a(z)} CM, it is immediate to
conclude that

(
f (z + c) − a(z)

)(
f (z + c) + a(z)

) = (
f (z) − a(z)

)(
f (z) + a(z)

)
e2γ , (3.10)

where γ is a polynomial.
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Since a(z) is a periodic entire function with period c, we infer by Lemma 3.2 that

m

(
r,

f (z + c) − a(z)

f (z) − a(z)

)
= S(r, f ) (3.11)

and

m

(
r,

f (z + c) + a(z)

f (z) + a(z)

)
= S(r, f ). (3.12)

From (3.10)–(3.12), we obtain

T
(
r, e2γ

) = m
(
r, e2γ

) = S(r, f ). (3.13)

Case 1. If e2γ = 1, from (3.10), then we get f (z) ≡ f (z + c) or f (z) + f (z + c) ≡ 0.
Case 2. If e2γ �= 1, let h1(z) := f (z) − e−γ f (z + c) and h2(z) := f (z) + e−γ f (z + c). Then

f (z) = 1

2
(h1 + h2), f (z + c) = 1

2
eγ (h2 − h1). (3.14)

From (3.10), we have

h1(z)h2(z) = a(z)2(1 − e−2γ
)
, (3.15)

which means that

N

(
r,

1

hi

)
= S(r, f ), i = 1,2. (3.16)

From the expressions of h1 and h2, we get T (r,hi) � 2T (r, f ) + S(r, f ), so that S(r,hi) = o(T (r, f )), i = 1,2.
Let α := h1(z+c)

h1(z) and β := h2(z+c)
h2(z) . From (3.16), we have

T (r,α) = m(r,α) + N

(
r,

1

h1

)
= S(r, f ), T (r, β) = m(r, β) + N

(
r,

1

h2

)
= S(r, f ). (3.17)

From (3.14), we get

eγ h2(z) − eγ h1(z) = h1(z + c) + h2(z + c). (3.18)

Dividing (3.18) with h1(z)h2(z), we conclude that

(
α + eγ

)
h1 = (

eγ − β
)
h2. (3.19)

From (3.15) and (3.19), it follows that

(
α + eγ

)
h1(z)2 − (

eγ − β
)
a(z)2(1 − e−2γ

) = 0. (3.20)

Combining (3.13), (3.17) and (3.20), we get α = −eγ and β = eγ . Otherwise, we get T (r,h1) = S(r, f ). Combining (3.14)
and (3.15), we conclude that T (r, f ) = S(r, f ), which is impossible. Thus, we have completed the proof of Theorem 2.1. �
Proof of Corollary 2.3. It suffices to consider the case (iii) in Theorem 2.1. We first assume that f (z0) = 0. Since f (z) and
f (z + c) share 0 CM, then h1(z0) + h2(z0) = 0 and h1(z0 + c) + h2(z0 + c) = 0. Hence

h1(z0 + c)

h1(z0)
· h2(z0)

h2(z0 + c)
= 1.

From h1(z+c)
h1(z) = −eγ and h2(z+c)

h2(z) = eγ , we obtain

h1(z0 + c)

h1(z0)
· h2(z0)

h2(z0 + c)
= −1,

a contradiction. Hence 0 must be the Picard exceptional value of f (z) and f (z + c), which implies that h1(z) + h2(z) �= 0.
Since h1(z) and h2(z) are finite order entire functions, then we can write h1(z) + h2(z) = eP (z) , where P (z) is a polynomial.
Combining this with h1(z)h2(z) = a(z)2(1 − e−2γ ), we get the following equation

a(z)2(1 − e−2γ ) + h2
1 = eP (z) = 2 f (z).
h1
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So we get

N

(
r,

1

h2
1

)
= S(r, f ) and N

(
r,

1

h2
1 + a(z)2(1 − e−2γ )

)
= S(r, f ).

Applying the second main theorem for three small target functions [9, Theorem 2.5] and the standard Valiron–Mohon’ko
theorem [15], we get

T (r, f ) + S(r, f ) = T
(
r,h2

1

)
� N

(
r,h2

1

) + N

(
r,

1

h2
1

)
+ N

(
r,

1

h2
1 + a(z)2(1 − e−2γ )

)
+ S(r,h1) = S(r, f ),

which is a contradiction. So we can remove the case (iii) to get f (z) = ± f (z + c). �
Proof of Theorem 2.4. From Lemma 3.4, we must have T (r, e2γ ) = S(r, f ). If e2γ = 1, thus f (z+c) ≡ 2 f (z). If e2γ �= 1, using
a method similar to the proof of Theorem 2.1, we easily get h1(z+c)

h1(z) = 1 − eγ , h2(z+c)
h2(z) = 1 + eγ , h1(z)h2(z) = a2(1 − e−2γ )

and γ is a polynomial. Then we get

h1(z + c)h2(z + c) = h1(z)h2(z)
(
1 − eγ (z))(1 + eγ (z)) = a2(1 − e−2γ (z+c)).

Thus, by computing, we can get

e2γ (z) + e−2γ (z) − e−2γ (z+c) ≡ 1.

From the above equation and [20, Theorem 1.56], we get e2γ = 1, which is a contradiction to our assumption. That implies
f (z + c) ≡ 2 f (z). Thus, we have completed the proof of Theorem 2.4. �
Proof of Theorem 2.6. Assume that S = {a,−a}, a ∈ C \ {0}. From the proof of Theorem 2.1 above, we have N(r,h1) +
N(r, 1

h1
) = S(r,h1). Since f is an entire function and has finitely many zeros, then we can write 2 f (z) = P (z)eQ (z) =

h1(z) + h2(z), where P (z) and Q (z) are polynomials. Combining this with h1(z)h2(z) = a2(1 − e−2γ ), we get the following
equation

a2(1 − e−2γ ) + h2
1

h1
= P (z)eQ (z) = 2 f (z).

We observe that N(r, 1
h2

1+a2(1−e−2γ )
) = S(r,h1). Using the second main theorem for three small target functions [9, Theo-

rem 2.5], we get T (r,h1) = S(r,h1), a contradiction. So we can remove the case (iii) of Theorem 2.1. �
4. Improvements of Theorem D

Heittokangas et al. [10,11] investigated the cases when f (z) shares three small periodic functions with its shift or its
difference polynomials. As examples, we state the following theorems, in addition to Theorem D above:

Theorem E. (See [11, Theorem 7].) Let f (z) be a transcendental meromorphic function of finite order, c ∈ C, and let a1,a2,a3 ∈ Ŝ( f )
be three distinct periodic functions with period c. If f (z) and f (z + c) share a3 CM, and if

lim sup
r→∞

N(r, 1
f −a1

) + N(r, 1
f −a2

)

T (r, f )
<

1

4
, (4.1)

then f (z) = f (z + c) or f (z) = f (z + 2c) for all z ∈ C.

Theorem F. (See [11, Theorem 8].) Let f (z) be a transcendental meromorphic function of finite order, c ∈ C, and let a1,a2,a3 ∈ Ŝ( f )
be three distinct periodic functions with period c. If f (z) and f (z + c) share a3 IM, and if

N

(
r,

1

f − a1

)
+ N

(
r,

1

f − a2

)
= S(r, f ), (4.2)

then f (z) = f (z + c) or f (z) = f (z + 2c) for all z ∈ C.

It is natural to ask about conditions to imply that f is periodic with period c in the preceding theorems. To this end, we
prove
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Theorem 4.1. Let f be a transcendental meromorphic function of finite order, c ∈ C, and let a1,a2,a3 ∈ Ŝ( f ) be three distinct periodic
functions with period c. If f (z) and f (z + c) share a3 IM, and if

lim sup
r→∞

N(r, 1
f −a1

) + N(r, 1
f −a2

)

T (r, f )
<

1

7
, (4.3)

then f (z) = f (z + c) for all z ∈ C.

To prove Theorem 4.1, we need the following result, given by Sun and Xu [17, Theorem 1]. For convenience of reader, we
recall the proof given in [17].

Theorem G. Let f1 and f2 be meromorphic functions such that

lim sup
r /∈E

N(r, f j) + N(r, 1
f j

)

T (r, f j)
<

1

7
, j = 1,2, (4.4)

where E is a set with finite linear measure. If f1 and f2 share 1 IM, then f1 = f2 or f1 · f2 = 1.

Proof. Define

ψ := f ′′
1

f ′
1

− f ′′
2

f ′
2

− 2 f ′
1

f1 − 1
+ 2 f ′

2

f2 − 1
.

Suppose ψ = 0. Integrating twice results in

1

f1 − 1
= A

f2 − 1
+ B.

If now B �= 0,−1, then N(r,1/( f1 − (B + 1)/B)) = N(r, f2). Thus, an immediate contradiction follows by using (4.4) together
with the second main theorem. A similar reasoning results in a contradiction, unless either A = 1, B = 0, hence f1 = f2, or
A = −1, B = −1 implying that f1 · f2 = 1.

To complete the proof, it remains to show that the case ψ �= 0 is not possible. If ψ �= 0, we conclude that

N1)(r) � N

(
r,

1

ψ

)
� T (r,ψ) � N(r,ψ) + S(r, f1) + S(r, f2)

�
2∑

j=1

(
N(r, f j) + N

(
r,

1

f j

)
+ N0

(
r,

1

f ′
j

)
+ N(2

(
r,

1

f j − 1

)
+ S(r, f j)

)
, (4.5)

where N1)(r), resp. N0(r,
1
f ′

j
), resp. N(2(r,

1
f j−1 ), denotes the counting function of common simple 1-points of f1 and f2,

resp. the zeros of f ′
j which are not the zeros of f j or of f j − 1, resp. the zeros of f j with multiplicity at least 2.

Since f1 and f2 share 1 IM, then

N

(
r,

1

f2 − 1

)
= N

(
r,

1

f1 − 1

)
= N1)(r) +

{
N1)

(
r,

1

f1 − 1

)
− N1)(r)

}
+ N(2

(
r,

1

f1 − 1

)

� N1)(r) + N(2

(
r,

1

f2 − 1

)
+ N(2

(
r,

1

f1 − 1

)
. (4.6)

From (4.6), it is not difficult to conclude that

2∑
j=1

N

(
r,

1

f j − 1

)
� 1

2

2∑
j=1

N

(
r,

1

f j − 1

)
+ N1)(r) +

2∑
j=1

N(2

(
r,

1

f j − 1

)

� N1)(r) + 1

2

2∑
j=1

{
N

(
r,

1

f j − 1

)
+ N(2

(
r,

1

f j − 1

)}
+ 1

2

2∑
j=1

N(2

(
r,

1

f j − 1

)

� N1)(r) + 1

2

2∑
j=1

N

(
r,

1

f j − 1

)
+ 1

2

2∑
j=1

N(2

(
r,

1

f j − 1

)

� N1)(r) + 1

2

2∑
T (r, f j) + 1

2

2∑
N(2

(
r,

1

f j − 1

)
+ S(r, f j). (4.7)
j=1 j=1
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However

N(2

(
r,

1

f j − 1

)
� N

(
r,

f j

f ′
j

)
� T

(
r,

f ′
j

f j

)
� N(r, f j) + N

(
r,

1

f j

)
+ S(r, f j). (4.8)

The second main theorem together with (4.5) implies that

N1)(r) +
2∑

j=1

T (r, f j) �
2∑

j=1

(
2N(r, f j) + 2N

(
r,

1

f j

)
+ N

(
r,

1

f j − 1

)
+ N(2

(
r,

1

f j − 1

)
+ S(r, f j)

)
.

Substituting here (4.7) and (4.8), we obtain

1

2

2∑
j=1

T (r, f j) � 7

2

2∑
j=1

{
N(r, f j) + N

(
r,

1

f j

)
+ S(r, f j)

}
,

outside a set E with finite linear measure, which is a contradiction to the condition (4.4). �
Proof of Theorem 4.1. Suppose that a1,a2,a3 ∈ S( f ). Defining

g(z) := f (z) − a1

f (z) − a2
· a3 − a2

a3 − a1
,

it is immediate to see that T (r, f ) = T (r, g) + S(r, g). Therefore, (4.3) may be expressed as

N

(
r,

1

g

)
+ N(r, g) �

(
λ + o(1)

)
T (r, g), λ ∈

[
0,

1

7

)
. (4.9)

Assume g(z0) = 1. Then either f (z0) = a3 or f (z0) = ∞. In the former case, we easily obtain g(z0 + c) = 1, since f (z)
and f (z + c) share a3 IM. In the latter case, we conclude that a1(z0) = a2(z0), and hence g(z0 + c) = 1. Conversely, if
g(z0 + c) = 1, then g(z0) = 1. So we conclude that g(z) and g(z + c) share 1 IM. The following, we will prove T (r, g) �
(1 + o(1))T (r, g(z + c)). From Lemma 3.2

T (r, g) = m(r, g) + N(r, g)

� m

(
r, g(z + c)

g(z)

g(z + c)

)
+ N

(
r + |c|, g(z + c)

)

� m
(
r, g(z + c)

) + N
(
r + |c|, g(z + c)

) + o
(
T
(
r, g(z + c)

))
,

outside of an exceptional set of finite logarithmic measure, and combining [8, Lemma 2.1], we get N(r + |c|, g(z + c)) =
N(r, g(z + c)) + o(N(r, g(z + c))), again outside of an exceptional set of finite logarithmic measure. Thus

T (r, g) �
(
1 + o(1)

)
T
(
r, g(z + c)

)
. (4.10)

Using the idea due to [11, Theorem 8], by a simple geometric observation and [8, Lemma 2.1], thus (4.9) and (4.10) imply
that

N

(
r,

1

g(z + c)

)
+ N

(
r, g(z + c)

)
� N

(
r + |c|, 1

g

)
+ N

(
r + |c|, g

)

� N

(
r,

1

g

)
+ N(r, g) + o

(
T (r, g)

)

�
(
λ + o(1)

)
T (r, g)

�
(
λ + o(1)

)
T
(
r, g(z + c)

)
. (4.11)

Combining (4.9), (4.11) with Theorem G, g(z) = g(z + c) or g(z) · g(z + c) = 1 follows.
If g(z) · g(z+c) = 1, then g2(z) = g(z)

g(z+c) . From Lemma 3.2, we get m(r, g) = S(r, g). Therefore T (r, g) < 1
7 T (r, g)+ S(r, g),

a contradiction. Thus, we must have g(z + c) = g(z), meaning that f (z + c) = f (z) for all z ∈ C.
It remains to consider the case, say, when a1 = ∞, while a2(z),a3(z) ∈ S( f ). Take d ∈ C \ {a2(z),a3(z)} and denote

h(z) := 1
f (z)−d , b2 := 1

a2(z)−d and b3 := 1
a3(z)−d . Then b2(z),b3(z) ∈ S( f ) are two distinct periodic functions with period c.

Hence h(z) and h(z + c) share b3 IM and satisfy the following

N

(
r,

1

h − b2

)
+ N

(
r,

1

h

)
�

(
λ + o(1)

)
T (r,h), λ ∈

[
0,

1

7

)
.

Using the similar proof as above, thus we have completed the proof. �
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From Theorem 4.1, we easily obtain the following result.

Corollary 4.2. Let f be a transcendental entire function of finite order, c ∈ C, and let a(z),b(z) ∈ S( f ) be two distinct periodic
functions with period c. If f (z) and f (z + c) share a(z) IM, and if

lim sup
r→∞

N(r, 1
f −b(z) )

T (r, f )
<

1

7
,

then f (z) = f (z + c) for all z ∈ C.

5. Some applications to non-linear difference equations

We first give a simple application of Theorem 2.1. From Eq. (5.1) below, we observe that f (z) and f (z + c) share the set
{ a(z)√

2
,− a(z)√

2
} CM. From Theorem 2.1, f (z) must satisfy the case (iii), for otherwise T (r, f ) = S(r, f ), which is a contradiction.

From Eq. (5.1), we have eγ = i or eγ = −i, and hence we get the following result.

Proposition 5.1. Let f be a non-constant finite order entire solution of the non-linear difference equation

f (z)2 + f (z + c)2 = a(z)2, (5.1)

then f (z) = 1
2 (h1(z) + h2(z)), where h1(z+c)

h1(z) = i and h2(z+c)
h2(z) = −i, h1(z)h2(z) = a(z)2 , where a(z) is a non-vanishing small function

to f (z) with period c.

Remark 5.2. It is easy to verify that f (z) = a(z) sin z is a solution of Eq. (5.1), provided c = π
2 . At the same time, we see that

the case (iii) in Theorem 2.1 may appear. Indeed, taking a(z) ≡ 1, we may write f in the form f (z) = 1
2 (−ieiz + ie−iz).

Proposition 5.3. There is no non-constant finite order entire solution of the non-linear difference equation

f (z)2 + (�c f )2 = a2, (5.2)

where a is a non-zero constant.

Proof. Assume that f (z) is a non-constant finite order entire solution of (5.2). From (5.2), we observe that f (z) and �c f
share the set { a(z)√

2
,− a(z)√

2
} CM. Thus f (z + c) ≡ 2 f (z), which implies T (r, f ) = S(r, f ), a contradiction. This completes the

proof. �
The following theorem is related to a conjecture proposed by Yang [19]. Namely, he conjectured that there does not exist

an entire function f of infinite order that satisfies the difference equation

f (z)n + bf (z + c) = h(z), (5.3)

where n � 2, b ∈ C \ {0} and h(z) is an entire function of finite order.

Theorem 5.4. Eq. (5.3) has no entire solutions of infinite order, when N(r, 1
f (z+c) ) � T (r, f ), n � 3 and h(z) is a polynomial.

Proof. Assume that f (z) is an infinite order entire solution of Eq. (5.3). Define f1 := f (z)n and f2 := bf (z + c). Then
f1 + f2 = h(z). Since h(z) is a polynomial, it is a small function to f (z). Applying the second main theorem for three small
target functions [9, Theorem 2.5], we get

nT (r, f ) = T (r, f1) � N(r, f1) + N

(
r,

1

f1

)
+ N

(
r,

1

f1 − h(z)

)
+ S(r, f )

� N

(
r,

1

f

)
+ N

(
r,

1

f (z + c)

)
+ S(r, f )

� 2T (r, f ) + S(r, f ).

Since n � 3, we get T (r, f ) = S(r, f ), which is a contradiction. �
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Remark 5.5. From Theorem 2.1 in [1], we know that N(r, 1
f (z+c) ) � T (r, f ) + O (rρ−1+ε) + S(r, f ), provided that f (z) is of

finite order ρ , while this may false if f (z) is of infinite order. The function f (z) = eez − 1 is an example of the infinite order
case: If ec = 4, then f (z + c) = e4ez − 1. By the Valiron–Mohon’ko theorem [15], we have

T
(
r, f (z + c)

) = 4T (r, f ) + S(r, f ).

From the second main theorem, we obtain

T
(
r, f (z + c)

)
� N

(
r,

1

f (z + c)

)
+ N

(
r,

1

f (z + c) + 1

)
+ N

(
r, f (z + c)

) + S
(
r, f (z + c)

)

� N

(
r,

1

f (z + c)

)
+ S(r, f ).

Hence, N(r, 1
f (z+c) ) � 4T (r, f ) + S(r, f ). In fact, it is not difficult to construct an example of a function f that satisfies

N(r, 1
f (z+c) ) � nT (r, f ) + S(r, f ), provided that f (z) is of infinite order.

Remark 5.6. Suppose h = 0. Then Eq. (5.3) has no entire solutions of finite order, since a contradiction m(r, f ) = S(r, f ) is
immediate. Equation f (z)n − f (z + 1) = 0 of type (5.3) admits an entire solution of infinite order f (z) = eez logn

, see [18,
p. 124].

Remark 5.7. If h(z) is non-zero constant and n = 2, Eq. (5.3) may have an infinite order solution. Indeed, f (z) = 1
eez + eez

is an entire function of infinite order and solves equation f (z)2 − f (z + c) = 2, where ec = −2. Unfortunately, we have not
been able to give an example of infinite order solutions of Eq. (5.3), if h is a non-constant entire function.
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