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One of the central questions of Tchebycheff approximation is computing 
the polynomial of best approximation. The underlying idea of the algorithms 
of computation is usually approximation of Tchebycheff norm by other 
norms. 

Consider for example the Polya algorithm. Let f E C[O, 11, let p,(f)c be 
the algebraic polynomial of degree n of best Tchebycheff approximation toJ 
and p,(f), (q > 1) the algebraic polynomial of degree n of best L, 
approximation to 1: Then as was shown by Polya [ I] p,(f), converges 
uniformly to p,(f), as q + + co. The analogue of this theorem for the de la 
Vallee-Poussin (or discrete) algorithm was proved by Motzkin and Walsh 
12. 3 1. Moreover Cheney 141 proved that 

where p,(f), is the best Tchebycheff approximation tofon Y c [0, 11, uA6) 
is the modulus of continuity off and 1 YI = supXpro,,, inf,,=,, 1.y - ~1. Some 
theorems on uniform convergence of de la Vallee-Poussin algorithm for 
classes of continuous functions were proved in 151. 

In the present paper we shall investigate the rate of convergence of Polya 
algorithm. As it was shown by Peetre 161, if f E C[O, l] is continuously 
differentiable then for q > qO 

II P,(f),. - P,(f),llc < CC% f) 7. 

Our aim is to prove a theorem on convergence of Polya algorithm for 
arbitrary f E C[O, I]. Moreover we shall verify the sharpness of our 
estimations. At last we give a theorem on uniform convergence of Polya 
algorithm. 
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In what follows Ci(.. .) and si(. . ) denote positive constants depending 
only on quantities specified in the brackets; while Ci and 9; denote positive 
absolute constants. 

MAIN THEOREMS 

Let f E C[O, 11. We shall use the following notation 

p,(J), and p,(f), are algebraic polynomials of order at most tt of best 
approximation in C and L, norm respectively (n E Z . ). Further define 
E, = E,(q) as the unique solution of the equation 

It can be easily verified that E,(q) monotonously tends to infinity as 
9 + + 03 and 9/E,(q) > C In 9 for 9 > 9”. 

THEOREM 1. Letf E ClO, 11. Then for any 9 > 1 and n E I + , 

(2) 

Let us consider some concrete cases. If wxd) < 6” (0 c: LI Q 1; 0 ( b‘ 6 I ). 
then E,(q) > nq/ln q (q > en). If u,(S) < exp[-a lnb(1/6)1 (0 < b < 1, a > 0), 
then E,(q) > a'~bq/lnl~hq (q > e”). For w,{S) < l/ln”(1/6) (a > 0) we have 
E,(q)Z9”‘““’ (42 1). 

It turned out that estimation (2) is in general the best possible. We shall 
need some additional definitions. Let W be the set of all moduli of continuity 
of continuous functions. cc), , w2 E W are said to be equivalent, written 
u, - WI iff C,w,(6) < w,(6) < Czw,(6) (0 < 6 < 1). 

THEOREM 2. Let n E B +. Then for any to E W there exists a finctiorl 
f E C[O, 1) such that wf- Q and 

‘ml E,(q) II P,u-),- ~- P”u-),llc > 0. w-x (3) 

where E,(q) is the unique solution of ( I ). 
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By this theorem estimation (2) is sharp in general for functions with 
arbitrary moduli of continuity. From Theorems 1 and 2 we obtain following 

COROLLARY. Let f E C(0, 11, 0x8) < 8’ (0 < U < 1; 0 < 6 < t ). 
nE 7 “ +. Then jbr an?? q > en 

II Pn(f)c - Pn(f),llc G C.3h f) y 

and for artjs 0 < u < 1 this order of convergence is in general the best 
possible. 

Finally, we give a theorem on the uniform convergence of Polya’s 
algorithm for Lip a. 

THEOREM 3. For any n E L + , f E C(0, 11 with w,(S) < 6” (0 < 6 < 1; 
O<rx< l)andq>q,(n,a) 

II p,(f),. - p,(f)& < C,(n, a) [y]n”‘+*‘. 

tcshere constants q,(n, u) and C,(n, a) depend on& on n and u. 

PROOF OF THEOREM 1 

Let E, = E,(q) be the unique solution of the equation 

1 *:fi (, 
qle ) -= 

E,, 
(a > 0, q 3 1). 

a (6) 

hence E,(q) defined by (1) equals to E,(q) defined above. Then evidently for 
any 9 >, 1 

min(l, l/a) E,(q) ,< E,(q) < max(l, l/a) E,(q), 

i.e., the solutions of (1) for equivalent moduli are equivalent. 

(7) 

LEMMA 1. For anI* f E C[O, 1 ] such that f(s) = 0 for some s E [0, 11 
and an)! q > 1 

IIf < jlfll + 2 max(13 Q1)) Cl 4 E,(q) ’ 

Proof We shall consider two cases. 
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Case 1. ilfilc < oAeeY). Then if E, 6 I. IlflIe < w,(e “) < w,(l)lE,. On 
the other hand, if E, > 1, lif$. < o,(e “) < wAeeq’“‘) = I/E,. Hence, in this 
case, 

llfil, B 
n-Ml, wA1)) 

E . (9) 
I 

Case 2. llfll(. > u,(e y). Set E”(q) =E,(q), where CI = ilfjl, Then 
E* > I. Indeed, if E* < 1, then by (6) 

By this contradiction we obtain, that E* > 1. Further, without loss of’ 

generality we may assume that lifliC = f(s,) and s, > s. Then obviously 
f(x) > Ilfll(. - w,(s, - x) for x E [s. s, 1. hence setting t = min{x : W,(X) = 
ilfllc} we obtain 

Set now t= max(x : w,(x) = llf~I,./~*}. Since E* > I. we have 0 < t’ 
and (10) imply 

By definition of rand E*. 

Further, (7) implies that 

Using this. (12) and ( 

llfll, > llfll~ 

El 
E* ’ max(1, l/llfllc) 

I 1) we arrive at 

> llfll 
/ c 

_ 2 max(l, qX1)) 

E, ’ 

<I I. This 

(11) 

(12) 

This inequality together with (9) completes the proof of the lemma. 



LEMMA 2. For an.vf E C(0, 11 and 9 > 1, 

IV - P”(f),llC G Ilf - PAf>,llq + C,(n) maxp(qw;l)). (13) 
I 

Proof Set f*(x) = Y(X) - p,(f, x),; J’(x) = f(x) - f(0). Since for any 
polynomial g,, I/ g,/l, < (2(q + 1 ))‘lqn2’” /) g,)(, (see [ 10, p. 251 I). we have 

(In the last inequality we used the fact that for any 0 < 6, < 6,, 246,)/d, > 
~u(6~)/6~. See 110, p. 111 I.) Thus ~~(8) < C,(n)oXJ), where we can put 
C,(n) = 32n” + 1. Further, it is evident that f * has a zero in (0, 11. Thus 
applying tof* Lemma 1 we get 

ilf* IL G IV* II4 + 2C,(n) max(l, wkl)) 
E,,,,(q) T 

where a(n) = l/C,(n). This and (7) imply (13). Q.E.D. 

Now we are able to prove Theorem 1. By the strong unicity theorem 19 1, 

where g, is an arbitrary algebraic polynomial ‘of order at most n. Setting in 
this inequality g, = p,(f), and using (13) we obtain the conclusion of 
Theorem 1. 

PROOF OF THEOREM 2 

Let (0 E W be an arbitrary modulus of continuity. Without loss of 
generality we may asssume that LL) is concave and lim,~.,,, w(a)/6 > 1. 
(Indeed, by a theorem proved in 171 there exists a concave modulus of 
continuity tG such that O/2 <o < Cu and multiplying W by a constant if 
necessary we can achieve that lim,-++,, W(d)/6 > 1, where W - w.) Then ~(6) 
is strictly increasing when 0 < 6 < 6,) and w(a)/6 is decreasing. Therefore the 
equation 

has a unique solution h, = h,(q) if q > q:(o). 



Assume that II = 2m. (The case when n = 2m + I can be settled similarly.) 
Set 1/(4m+4)=b and definefon 10.4bI by 

j‘(s) = co(b) - ta(b -~ x). .YE lO.bl: 

= w(b) - (U(.Y b), XE I/l. 2bl: 

-= --2w(b) x/b + 4w(b). I E 12b. 56/21: 

= m+(b). .\’ E 15b/2, lb/2 1: 

= 2m(b)x/b - 8w(b), .Y E 1 lbl2.46 I. 

Extend f‘(s) to IO. 11 as a I/(m + I)-periodic function. Then evidently 
(0, - (0 and p,,(f’), = 0. Set a, = II ~,(f),ll, 3 F,k) = IS - P,U),/” ’ 
sign(f - p,(f),). By Theorem 1 a,, --) -t 0 as q --$ t CD. hence a4 < o(b) if’ 
4 2 4,b. 0). Further by the characterization theorem for best 
L,-approximations (see 110. p. 75 1) for any q > 1 

II F,(x) dx = 0. (15) 
” 0 

i.e.. 

I. F,(x)dx= / F,,(x) d,u. (16) 
,,,I ‘, 0 

Let us estimate these integrals. 

< 5 (f + UJ ’ dx < ; j” (f + uJy ’ dx. (17) t>o 0 

Let h, = h,(q) be the unique solution of (14). Then using concavity of w(6) 
we have 

I ’ (f + uJ’ ’ dx 
0 

< I ,:-“” (f + uJ-’ dx + j” (f + a,)“-’ dx 
h-ho 

< 
b - ho (o(b) - Wo) + Qq + ho (w(b) + uJ 

w(b) - Wo) 9 dho) 4 
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( C,(w) , - {(u(b) - w(h,) + ~7~)~ + (e-w’h”‘(u(b) + a,)Yl 

< C,(QJ)) w(b) ___ 
4 I (w(b) + uq - ~(h,))~ +- (o(b) + a, - 2 ~(h,))~ 

<y (u(b) + ag - C,(n, W)W(h,))Y, 

where C,(n, w) = min( 1, w(b)/2} and h,(q) is small enough (g > q,(n, w)). 
This and (17) imply 

I’ 
F&Y) d.x ,< “(; w) (w(b) + u, -~ c&z. W)W(h,))Y. 

.,,o 

Now we shall give a lower estimation for -j,,, ,, F,(x) dx. 

(18) 

m-1 F,(x) d.v 
.,. 0 

=-i 
F,(x) dx ~ 1. F,(x) dx 

Ih uq -u,hfcO 

2 
I (-f-%J”-‘dx- 1 /6~ 

% 
a 
u 
-if, ,, C-f + acJ4 ’ d.u 

ad 
i 

lhl2 

(u(b) - uJ- ’ dx - (2uJ- ’ 
5bl2 

= +- (w(b) - uJm ’ - (2~~)~~ ’ > $ (w(b) - uJ ’ (4 > 44(n. WI). 

Combining this inequality with (16) and (18) we obtain 

(w(b) + a4 -- C,(n, w) ~(h,))~ 

2 C,,(n, ~1 q(w(b) - q,)‘~ ’ 3 C,,h ~1 q(4b) - a9)‘, 

Thus 

> (w(b) - qJ 
c 

1 + 
ln C,,(h ok 

4 1 
=w(b)-a, 

+ w(b) 
In C,,h w)q _ a In C,,(h wk 

9 -9 
4 9 
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I.e.. 

aq >, C&L WI c o(h,,) + y 1 (4 > q,(n, CO)). 
Let us consider two cases. 

Case 1. There exists a sequence of positive numbers {S, i --+ + 0 such that 
44) >a. 

Let E* be the unique solution of the equation 

Equivalence of of and w implies that C,,(n, W) E*(q) < E,(q) & 
C,,(n, o) E*(q), where E,(q) is the unique solution of (I). Set l/E* = cu(h,). 
If q is big enough then h, = h,(q) satisfies the relation 

In t = qo(h,) 
I 

(20) 

and h, > h,. we Can choose a SeqUenCe qk + + a satisfying hO(qk) = dA. 
Thus by (14) and (20) 

1 1 

> Tin h,(q,) 
~ = + q/$‘-@,(qk)) (k t k”), 

i.e.. 

w(hO(qk)) > ++,(qk)) =& 3 
C,,(n, JJJ) 

E,(qk) 
(k >, k,,). 

k 

Then by (19) 

hence (3) is verified in this case. 
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Case 2. Let us consider the opposite case. Then u(6) < fi (0 < 6 < 6,). 
But this implies that l/E,(q) < C,,(n, U) In q/q. Thus using (19) we have 

which verities (3) in Case 2. 
The proof of Theorem 2 is completed. 

PROOF OF THEOREM 3 

IV- Pnu-LIIC Q Il./-- Pnu-),/I, + +y 

C,(n) ln 9 

Further, we shall need the following result: for any 0 < F < 1 and 0 < n < 1 

sup sup lip,(f), - g”lI(. < Cd& 4~a’(“+a’l (22) 
1:W/i6)<lV hen, 

V-Knk <lS-P”mcl’c + f 

where IZ, is the set of algebraic polynomials of order at most n and C,,(a, n) 
depends only on n and a. Equation (22) was essentially proved in [ 81 
because it easily follows from Lemmas 2, 3 and 5 of [8]. We shall outline 
the proof. By Lemmas 2 and 3 of [8] iff E C[O, 1 ] satisfies wJ6) < 6” and 
0 < xb”’ < xp . . . < $,“i, < 1 are its points of Tchebycheff deviation (that is, 
(f - p,(f),.)(xj”‘) = ~(-1)’ I]f - p,(f)J,., y = f 1; i = 0, l,..., n + I), then 
.$', - xyj”’ > C,,(n, a)iif - ~,(f)~@“, i = 0, l,..., n. By Lemma 5 of [ 8 ] if 
s,, E n, satisfies relations ~(-l)i+~g,(xi) <fi (V=* 1; ,u>o; 
i = 0. l..... n + l), where O<xx,<.~~<x,,,<l and xi+,-xi>A>O 
(i = 0, 1 ,..., n), then (/g, I/c < c,,(n),~/A”. Take now arbitrary g, E I7, 
satisfTi+y llf- g,ll,. Q Ilf- P,(f)c.l/c + E. Then it is easy to see that 
;Jm;!ks (g, - p,(f),.)(xl”‘) < E (i = 0, l,..., n + 1) hence by previous 
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If ilf - p,(S)clIC > @n+n’ then this implies that iip,,(j& ~ g,//( < 
C&l, a)&“‘(“+“). If, on the contrary. lif - ~,,(f)~ll~ 6 P”“+“), then 

II P,tf)~ ~ g,l/(. < Ilf - P,UM t ilf‘ -- g,/lc. 

6 2 ilf - p,(f), /I(. t t; < 2~“:~” * ‘1’ t c h 3~““” ’ (I’. 

Thus the proof of (22) is completed. 
Using (22) and (21) we immediately obtain (5). Q.E.D. 

Remark. A detailed proof of (22) in the periodic case can be found in 

1111. 
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