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Addition of ATP leads to the accumulation of the permeant anion PCB~ by sub-bacterial vesicles from
Vibrio alginolyticus. This accumulation is caused by Ay generation by ATPase, the effect being inhibited
by CCCP, gramicidin D and DCCD. dy values may be increased by incubation of sub-bacterial vesicles
at room temperature and with the protein fraction isolated according to Beechey et al. [(1975) Biochem.
J. 148, 533-537] from another portion of the sub-bacterial vesicles. 4y generation is observable only in the
presence of Mg?™ at high concentrations (optimum = 30 mM). Proceeding from experimental data we assu-
me that Mg2* reduces passive H* conductivity of the vesicle membranes. Thus, a Ay-generating ATPase
has been shown for the first time in V. aigino/yticus membranes.

Membrane potential; ATPase; (Vibrio alginolyticus)

1. INTRODUCTION

Bacterial cytoplasmic membranes sustain
AfiNa* [1-3]. As a rule, AgZNa" generation is due
to the transformation of the primary AgH™ by an
Na*/H™ antiport system. Recently it was shown
that the Vibrio alginolyticus respiratory chain
forms AgNa* without participation of the proton-
motive force [4,5]. V. alginolyticus cells use the
AigNa* for motility [6,7], solute transport [8,9)
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and ATP synthesis at alkaline pH [10-12]. On the
basis of these data, the Na* cycle was postulated as
an alternative or an addition to the H* cycle
[12,13]).

At the same time, indications were obtained that
V. alginolyticus possesses not only AgNa* but also
AaH" generators operative at neutral pH. It was
shown that at neutral pH, energy-linked processes
are sensitive to the protonophore CCCP and an O
pulse leads to a CCCP-sensitive H* efflux, the pro-
cess being accelerated by the permeant cation
tetraphenylphosphonium [5). The primary Na*
pump was demonstrated for membrane prepara-
tions [6,7,14,15] and intact cells [4,5]. AgH?
generation was, however, observed in intact cells
only [5,8]. ATP-dependent Ay generation by
isolated membranes has not yet been
demonstrated.

Here, we have obtained the first evidence for 4y
formation during ATP  hydrolysis by V.
alginolyticus sub-bacterial vesicles.
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2. MATERIALS AND METHODS

The bacterial strain used was V. alginolyticus
138-2, which was kindly supplied by Dr H. Tokuda
(Chiba University, Chiba, Japan). Bacteria were
grown in a complex medium [15] with peptone and
were harvested at the late-logarithmic phase. The
sub-bacterial vesicles were isolated as described in
[6], with some modification. Here 30 mM MgSQO,
was included in the media starting from the
spheroplast stage. The protein fraction was obtain-
ed after treatment of V. alginolyticus sub-bacterial
vesicles with chloroform essentially as in [16]. The
PCB~ concentration was monitored with a
phospholipid-impregnated Synpore filter (CSSR)
[17]. The Na™ content was analyzed by flame
photometry.

3. RESULTS

Previously, we demonstrated that the procedure
for preparation of sub-bacterial vesicles generated
NADH-, but not ATP-driven Ay [6,7]. The con-
tinued presence of 30 mM MgSO, in the medium
starting from the stage of spheroplasts allows one
to obtain vesicles capable of Ay generation cou-
pled to ATP hydrolysis. Energy-dependent PCB~
accumulation by the vesicles is shown in fig.1.
Gramicidin D and the protonophore CCCP, but
not the electroneutral Na*/H™* antiporter monen-
sin, prevent PCB™ uptake. Preincubation of sub-
bacterial vesicles with the well-known ATPase in-
hibitor, DCCD, also prevents PCB™ accumula-
tion. Thus, PCB~ uptake after ATP addition
reflects Aw (plus inside vesicles) generation by
ATPase.

The amplitude of the ATP-driven Ay varied in
different experiments. The originally low response
of some preparations can be increased in two ways
(fig.2): (i) by incubation of the vesicles at room
temperature (at 25°C maximal activation is
achieved over 60 min); (ii) by vesicle preincubation
with a protein fraction isolated according to
Beechey et al. [16] from another portion of the
sub-bacterial vesicles. As can be seen from fig.2, a
dramatic increase in PCB™ uptake is observed in
both cases.

A decrease in Na* concentration from 20 mM to
30 uM (the concentration in the medium without
Na* additions) does naot affect the amplitude of
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Fig.1. ATP-dependent PCB~ accumulation by sub-
bacterial vesicles. The incubation medium contained
50 mM Hepes-NaOH (pH 7.5), 0.1 M sucrose, 30 mM
MgSOy, 1 uM PCB™, 0.25-0.30 mg protein of sub-
bacterial vesicles per ml, The reaction was started by the
addition of 1 mM Mg-ATP (at the arrow). Additions:
(1) none, (2) 2 uM gramicidin D, (3) 2 uM monensin, (4)
80 uM DCCD, (5) 1 uM CCCP.
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Fig.2. Increase in magnitude of Aw after incubation at
room temperature and with the protein fraction
obtained according to Beechey et al. [16]. Sub-bacterial
vesicles (37 ul, 25 mg protein per ml) were preincubated
for 1 h with 17 ul incubation medium at 0°C (1) or 28°C
(2), with 17 gl protein fraction (PrF) at 0°C (3) or 28°C
(4). (5) As (4), but protein fraction was preincubated for
1.5 h at 0°C. The reaction was started by addition of
2mM Mg-ATP (arrow). Incubation mixture, as
indicated in the legend to fig.1.
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Fig.3. Ay dependence on Na' concentration. The
incubation medium contained 20 mM Tris-H>S0O. {pH
7.5), 0.1 M sucrose, 30 mM MgSQ., 10 mM (NH4)2804,
1 uM PCB™ with (2,4) or without (1,3) 10 mM Na,SO..
The sub-bacterial vesicles were washed with 10 mM
Hepes-Tris (pH 7.5), 0.1 M sucrose, 30 mM MgSO;,
and activated, for 1 h at 25°C. Additions: 1 mM ATP
(ammonijum salt), 1 mM NADH (ammonium salt),
2.5 UM HQNO.

ATP-dependent PCB™ uptake (fig.3). At the same
time, under these conditions NADH-dependent
PCB~ accumulation is drastically inhibited ac-
cording to our previous data [6,7].

The present experiments were performed at pH
7.5, however it is well known that Na*-dependent
energetics are much more expressive at alkaline pH
[5,9]. Therefore, all experiments were repeated at
pH 8.5 or with sub-bacterial vesicles obtained from
cells grown at pH 8.5. Practically the same results
were obtained in both cases (not shown).

As mentioned above, Mg®* at high concentra-
tions is necessary for ATP-dependent Ay
measurements. The optimal concentration of
MgS0O, is 30 mM; Na.SO4 at equal ionic strength
cannot be substituted for MgSO4 (not shown). To
clarify the role of Mg?*, we compared the Ay sup-
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Fig.4. Mg?* effect on Ay supported by NADH

oxidation. Incubation medium: 50 mM Hepes-NaOH

(pH 7.5), 0.1 M sucrose, 1 uM PCB~, with (1-3) or

without (4—6) 30 mM MgSQa. Sub-bacterial vesicles

preincubated for 1 h at 25°C and then indicated 15 min

with 40 uM DCCD. Additions: 1 mM NADH, 2.5 yM
HQNO, 5§ uM CCCP.

- ported by NADH oxidation in media with and

without MgSQy. As can be seen from fig.4, the in-
clusion of MgS0, in the medium dramatically in-
creases the amplitude of the NADH-dependent
response and the degree of PCB™ uptake inhibition
by CCCP. The most simple explanation of this fact
would be an Mg**-exerted decrease in ion conduc-
tivity of the membrane. To confirm this assump-~
tion we investigated the influence of DCCD, which
reduces the proton conductivity [6,7], on the
amplitude of the NADH-dependent response.
Despite the very different initial amplitudes, in the
presence of DCCD practically the same response
was observed in media with and without MgSQ,
(fig.4). Thus, Mg>" does not increase the Ay value
of DCCD-treated membranes. It seems that Mg?*
and DCCD exert the same action on the membrane
conductivity. Thus, the effect of Mg?* at high con-
centrations on Ay generation may be accounted
for by the reduction of passive proton leakage.

4. DISCUSSION

The addition of ATP to sub-bacterial vesicles
causes a decrease in PCB ™ concentration in the ex-
ternal medium. Gramicidin D, CCCP and DCCD
prevent PCB™ uptake by vesicles. Thus, we have
demonstrated for the first time the existence of an
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ATPase, which can generate Ay, in isolated V.
alginolyticus membranes.

ATP-dependent Ay  generation may be
measured only in the presence of Mg>* at high con-
centrations. The experiments shown in fig.4 enable
us to assume that Mg?* reduces the proton conduc-
tivity of the membrane. It should be noted that the
Mg®" concentration optimal for measurements ap-
proaches quite closely that in the cells of V.
alginolyticus [18].

The reason for the influence of Mg?* on proton
conductivity is not clear thus far. Probably, Mg?*
at high concentrations provides a tight connection
between the ATPase and membrane proton chan-
nel. Three lines of evidence support this specula-
tion. (i} Sub-bacterial vesicles washed with
Mg?*-free medium [6,7] irreversibly lose the ability
to gencrate ATP-dependent Ay. (ii) Even if the
washing and incubation media contain 30 mM
MgSQ,, part of the membrane-bound ATPase is
probably lost and can be restored by incubation
with the ATPase-enriched protein fraction (fig.2).
(iii) DCCD at the same concentration inhibits
ATP-dependent Ay generation and cxerts a cou-
pling effect on the Ay formed during NADH ox-
idation. Therefore, a partial dissociation of the
membrane-ATPase compiex may occur; Mg”* may
prevent this process.

According to [10,11], 4aNa* is utilizable for the
CCCP-resistant ATP synthesis by V. alginolyticus
cells. In this respect the nature of the ATPase
transferring cation is of particular interest. It was
shown that 30 xM-20 mM Na™ does not exert a
pronounced effect on the amplitude of Aw. V.
alginolyticus cells maintain the intracellular Na*
concentration at a level of tens of millimoles per
litre [8,18]. It is hard to envisage that the K, of the
Na*-transferring enzyme is as small as 1% of the
Na* intracellular concentration. Thus, ATP-
dependent Ay formation was hardly due to activi-
ty of an Na*-ATPase. However, our data do not
exclude the possibility of two ATPase types (e.g.
H*-ATPase and Na*-ATPase) in V. alginolyticus
cells and selective Na*-ATPase damage during
preparation of sub-bacterial vesicles. The latter
seems to be rather probable since V. alginalyticus
is known to produce several proteinases [19].
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