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1. Introduction

Directed acyclic graphs (DAGs) are now widely used both as statistical models and as causal models. This double in-
terpretation of DAGs, better known as (causal) Bayesian networks in the Al literature, is the springboard for much of the
research on automated causal discovery and reasoning [12,20,25]. Given a set of variables V, if the causal structure of V
can be properly represented by a DAG, one can try to learn the causal structure from data by exploiting the statistical
implications DAGs have as statistical models. In general the causal structure is underdetermined, as multiple DAGs may be
equally compatible with the correlational pattern suggested by data. But these DAGs usually share common features, which
constitute the aspects of the causal structure that are not underdetermined and are in principle learnable from observational
data. To develop algorithms for inferring these learnable causal features from correlational patterns is an important goal in
the project of automated causal discovery.

Assuming no confounding or selection effect due to unobserved variables, there are causal discovery algorithms that are
provably sound and complete, under some plausible assumptions relating causal structure to probability distribution [7,17,
25,32]. However, the assumption of no latent confounding or selection effect is seldom appropriate, and it is desirable and
even necessary in many situations to relax it. Unfortunately, the problem becomes much more difficult when we drop the
assumption, due to the fact that the causal structure may not be properly representable by a DAG unless latent variables are
explicitly invoked. Not only are DAG models with latent variables hard to handle statistically [5,11], they make an infinite
search space unless we seriously constrain the number of latent variables or the topology of the unknown causal network.
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Fig. 1. A causal mechanism with latent and selection variables.

One way around this is to represent such models without explicitly introducing latent variables, especially if we are
not interested in the latent variables per se. A class of graphical models developed for this purpose is known as ancestral
graph models [23]. As we will describe in more detail, a major virtue of ancestral graphs is that for any DAG with latent
confounding and selection variables, there is a unique maximal ancestral graph (MAG) over the observed variables alone
that represents the conditional independence relations and causal relations entailed by the original DAG. Instead of directly
targeting the causal DAG, which for all we know might involve any number of latent variables, a more tractable goal for
causal discovery is to learn as many features of the causal MAG as possible.

There is a provably sound procedure for this purpose, known as the FCI algorithm [26].] Whether it is complete—that
is, whether it can in principle discover all causal information that is not underdetermined—has been an open problem
[18,25].% In fact, as we will explain later, the algorithm is not complete as it stands. In this paper, we provide additional
orientation rules (i.e., rules for inferring edge marks), and show that the augmented FCI algorithm is complete. The result
amounts to a constructive characterization of common features shared by an equivalence class of MAGs, which should be
useful in any system of causal discovery and reasoning based on ancestral graph models. In this regard, our result generalizes
Meek’s characterization of commonalities shared by Markov equivalent DAGs [17], and builds directly on some earlier results
established in [2].

Causal discovery aside, this paper should be of interest to anyone interested in ancestral graph models, which have
drawn attention from both statisticians and computer scientists [1,2,9,10,23,30,37]. We also suspect that the results of this
paper (and especially some lemmas in Appendix A) will be useful in providing a characterization of equivalence classes of
MAGs in the style of Andersson et al.’s characterization of equivalence classes of DAGs [4].

The rest of the paper is organized as follows. Section 2 introduces the relevant background on ancestral graphs. In
Section 3, we describe the FCI algorithm and report an important step made in [2] towards the completeness result. We
then present additional orientation rules in Section 4, with which we show that the augmented FCI algorithm is complete.
We conclude in Section 5. Most proofs are postponed to the appendices.

2. Ancestral graphs and their interpretations

The following example attributed to Chris Meek in [22] illustrates nicely the primary motivation behind ancestral graphs:

The graph [Fig. 1] represents a randomized trial of an ineffective drug with unpleasant side-effects. Patients are
randomly assigned to the treatment or control group (A). Those in the treatment group suffer unpleasant side-effects
(Ef), the severity of which is influenced by the patient’s general level of health (H), with sicker patients suffering
worse side-effects. Those patients who suffer sufficiently severe side-effects are likely to drop out of the study. The
selection variable (Sel) records whether or not a patient remains in the study, thus for all those remaining in the
study Sel = StayIn. Since unhealthy patients who are taking the drug are more likely to drop out, those patients in the
treatment group who remain in the study tend to be healthier than those in the control group. Finally health status
(H) influences how rapidly the patient recovers (R) [22, p. 234].

This simple case shows how the presence of latent confounders and selection variables matters. The variables of primary
interest, A and R, are observed to be correlated, even though the supposed causal mechanism entails independence between
them. This correlation is not due to sample variation, but rather corresponds to genuine probabilistic association induced by
design—only the subjects that eventually stay in the study are considered. The observed correlation is in effect a correlation
conditional on the selection variable Sel, a canonical example of selection effect. On the other hand, H is a familiar latent
confounder that contributes to “spurious correlation”.

1 FCI stands for fast causal inference, which is probably an overly optimistic name.

2 These authors raised the problem with regard to an older version of the algorithm designed based on a representation called inducing path graphs. There
is a very close relationship between inducing path graphs and MAGs, which is explained in detail in the appendix of [34]. It suffices to note here that the
completeness problem addressed in this paper is an even harder problem than the completeness problem formulated in terms of inducing path graphs.
Also, the FCI algorithm is sometimes claimed to be complete [28], but only in a much weaker sense than what we consider in this paper.
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A main attraction of ancestral graphs is that, without explicitly including latent variables, they can represent conditional
independence relations and causal relations among observed variables when the underlying data generating process involves
latent confounders and/or selection variables. This of course requires a richer syntax than that of DAGs.

2.1. Ancestral graphs

A mixed graph is a vertex-edge graph that can contain three kinds of edges: directed (— ), bi-directed (<) and undi-
rected (—), and at most one edge between any two vertices. The two ends of an edge we call marks or orientations. The
two marks of a bi-directed edge are both arrowheads (>), the two marks of an undirected edge are both tails (—), and a
directed edge has one of each. We say an edge is into (or out of) a vertex if the edge mark at the vertex is an arrowhead
(or a tail).

Two vertices are said to be adjacent in a mixed graph if there is an edge (of any kind) between them. Given a mixed
graph G and two adjacent vertices A, B therein, A is a parent of B and B is a child of A if A— B is in G; A is called a
spouse of B (and B a spouse of A) if A<« B is in G; A is called a neighbor of B (and B a neighbor of A) if A—B is in
G. A path in G is a sequence of distinct vertices (Vo, ..., Vy) such that for 0<i<n—1, V; and V;y; are adjacent in G.
A directed path from V to V,, in G is a sequence of distinct vertices (Vy, ..., V) such that for 0 <i<n—1, V; is a parent
of Viy1 in G. A is called an ancestor of B and B a descendant of A if A= B or there is a directed path from A to B. Let
Ang (B) denote the set of ancestors of B in G. A directed cycle occurs in G when B — A is in G and A € Ang(B). An almost
directed cycle occurs when B <> A is in G and A € Ang(B).

Definition 1. A mixed graph is ancestral if the following three conditions hold:

(al) there is no directed cycle;
(a2) there is no almost directed cycle;
(a3) for any undirected edge V1—V;, V1 and V;, have no parents or spouses.

Obviously DAGs are special cases of ancestral graphs. The first condition in Definition 1 is just the familiar one for
DAGs. Together with the second condition, they define a nice connotation of arrowheads in ancestral graphs: an arrowhead
implies non-ancestorship. The third condition requires that there be no edge into any vertex in the undirected component of
an ancestral graph. This property simplifies parameterization and fitting of ancestral graphs [9,23], but still allows selection
effect to be properly represented.

2.2. Probabilistic interpretation of ancestral graphs

As a statistical model, the vertices of an ancestral graph represent random variables, and the graph is interpreted as
encoding a set of conditional independence® relations by a graphical criterion, called m-separation, which generalizes the
well known d-separation criterion for DAGs [19]. Given a path p in a mixed graph, a non-endpoint vertex V on p is called
a collider if the two edges incident to V on p are both into V; otherwise V is called a non-collider on p. In Fig. 2(a), for
example, B is a collider on the path (A, B, D), but is a non-collider on the path (C, B, D).

Definition 2 (m-separation). In a mixed graph, a path p between vertices X and Y is active (m-connecting) relative to a
(possibly empty) set of vertices Z (X,Y ¢ Z) if

(i) every non-collider on p is not a member of Z;
(ii) every collider on p has a descendant in Z.

X and Y are said to be m-separated by Z if there is no active path between any vertex in X and any vertex in Y relative
to Z.

The probabilistic interpretation of ancestral graphs is given by its (global) Markov property: if X and Y are m-separated
by Z, then X and Y are probabilistically independent conditional on Z. This interpretation is obviously consistent with that
of DAGs, for m-separation reduces to d-separation in the case of DAGs.

The following property is true of DAGs: if two vertices are not adjacent, then there is a subset of other vertices that
m-separates (d-separates) the two. This, however, is not always true of ancestral graphs. For example, the graph (a) in Fig. 2
is an ancestral graph that fails this condition: C and D are not adjacent, but no subset of {A, B} m-separates them.

This motivates the following definition:

3 We refer to the standard notion of conditional independence in probability theory.
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(2) (b)

Fig. 2. (a) An ancestral graph that is not maximal; (b) a maximal ancestral graph.

Definition 3 (maximality). An ancestral graph is said to be maximal if for any two non-adjacent vertices, there is a set of
vertices that m-separates them.

DAGs are all maximal. In fact, maximality corresponds to the so-called pairwise Markov property: every missing edge
corresponds to a conditional independence relation, which is the basis for inferring the adjacency skeleton of the unknown
causal graph in many causal discovery procedures, including the FCI algorithm we will discuss later.

Maximality is closely related to the notion of inducing path. The definition of the latter is quite convoluted, but the basic
motivation is the following question. Partition the set of vertices into V=0 ULUS, and consider m-separation relations
of the form: X and Y are m-separated by ZUS, for X,Y € 0 and Z C O\{X, Y}.* When is it true that X and Y are not
m-separated by ZUS for any Z € O\{X, Y}? The answer is given by the notion of inducing path.

Definition 4 (inducing path). In an ancestral graph, let X, Y be any two vertices, and L, S be two disjoint sets of vertices not
containing X, Y. A path p between X and Y is called an inducing path relative to (L, S) if every non-endpoint vertex on p
is either in L or a collider, and every collider on p is an ancestor of either X, Y, or a member of S.

When L=S=0, p is called a primitive inducing path between X and Y.

An important fact established by Richardson and Spirtes [23, Theorem 4.2] is that X and Y are not m-separated by ZUS
for any Z C V\(LUSU {X,Y}) if and only if there is an inducing path between X and Y relative to (L, S). For example, in
Fig. 1 the path (A, Ef, H, R) is an inducing path relative to ({H}, {Sel}), and A is not m-separated from R by either {Ef, Sel}
or {Sel}. This fact plays an important role below in constructing a MAG that represents a given DAG.

As a special case of this fact, the presence of a primitive inducing path is sufficient and necessary for two vertices not to
be m-separated by any set of other variables in an ancestral graph, which is obviously connected to maximality.

Proposition 1. An ancestral graph is maximal if and only if there is no primitive inducing path between any two non-adjacent vertices
in the graph.

For example, in Fig. 2(a), the path (C, A, B, D) is a primitive inducing path between C and D, so the graph is not
maximal. It is shown in [23, Theorem 5.1] that every non-maximal ancestral graph has a unique supergraph that is ancestral
and maximal, and every non-maximal ancestral graph can be transformed into the maximal supergraph by a series of
additions of bi-directed edges. For example, in Fig. 2, (b) is the unique maximal supergraph of (a), which has an extra
bi-directed edge between C and D. From now on, we focus on maximal ancestral graphs (MAGs).

2.3. Causal interpretation of maximal ancestral graphs

The simple motivating example in Fig. 1 suggests that the correlational structure of a set of observed variables can be
misleading about causal structure for at least two reasons. First, there may be unobserved common causes or confounders
that contribute to the observed association. Second, the samples are representative of but a subpopulation of the population
of interest. The subpopulation, in particular, is characterized by a set of unobserved selection or conditioning variables such
that units in the subpopulation share values of the selection variables. Hence any observed association or independence is
de facto conditional on the selection variables.

One can formally represent such a situation by a causal DAG over the union of three disjoint sets of variables, V=
OULUS, where O denotes a set of observed variables, L denotes a set of latent or unobserved variables, and S denotes a
set of unobserved selection variables to be conditioned upon. The DAG entails a set of conditional independence constraints
among V. Among these constraints, what are in principle observable or testable are ones of the form ALLB|CUS,> where
A, B, C C 0O are disjoint sets of observed variables.

4 These m-separation relations are particularly interesting because L is intended to be a set of latent variables which are marginalized in the observable
distribution, and S is intended to be a set of selection variables upon which the observable distribution conditions.

5 1L is a symbol that denotes probabilistic independence introduced by Dawid [8]. The vertical bar | denotes conditioning. Strictly speaking, we are
conditioning on a specific value or vector of values of S, so it is more accurate to write ALLB|[CUS =s.
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A distinctive virtue of MAGs is that they can represent such in-principle-testable constraints without explicitly introduc-
ing L and S. Given any DAG G over V=0ULUS, there exists a MAG over O alone such that for any three disjoint sets of
variables A,B,C C 0, A and B are entailed to be independent conditional on CUS by G if and only if A and B are entailed
to be independent conditional on C by the MAG. When this is the case, we say the MAG probabilistically represents the DAG.
The following construction gives us such a MAG:

Input: a DAG G over V=0ULUS
Output: a MAG Mg over O

(1) for each pair of variables A, B € 0, A and B are adjacent in Mg if and only if there is an inducing path relative to
(L, S) between them in G;
(2) for each pair of adjacent vertices A, B in Mg, orient the edge between them as follows:
(a) orient it as A— B in Mg if A€ Ang(BUS) and B ¢ Ang (A US);
(b) orient it as A <— B in Mg if B€e Ang(AUS) and A ¢ Ang(BUS);
(c) orient it as A <> B in Mg if A¢ Ang(BUS) and B ¢ Ang(A US);
(d) orient it as A—B in Mg if A€ Ang(BUS) and B € Ang(A US).

It can be shown that Mg is indeed a MAG and probabilistically represents G—it follows from Theorem 4.18 of [23]. More-
over, it is easy to see that Mg also causally represents G in that it retains ancestral relationships in G. So, if G represents
the causal structure for V, it is fair to call Mg the causal MAG for O, in which edges encode causal information about the
presence or absence of causal pathway in the underlying structure. Specifically,

e A — B means that A is a cause of B or of some selection variable, but B is not a cause of A or of any selection
variable;®

e A < B means that A is not a cause of B or of any selection variable, and B is not a cause of A or of any selection
variable;’

e A—B means that A is a cause of B or of some selection variable, and B is a cause of A or of some selection variable.?

Put more simply, the edge marks in a causal MAG represent qualitative causal information: arrowheads represent nega-
tive causal information about “non-cause”, and tails represent positive causal information about “cause”. The positive causal
information is admittedly less informative than one would wish, when the possibility of selection bias is allowed. This re-
flects the fact that the presence of selection bias seriously limits the possibility of inferring useful causal information from
observations. If the only worry is confounding but not selection bias, A — B can be read unambiguously as “A is a cause
of B”. Of course even the disjunctive information may be combined with other information to deduce more useful facts.?
Detailed exploration of how to use the causal information carried by ancestral graphs in causal reasoning is beyond the
scope of this paper.!® Our present concern is to what extent can such information be discovered from the correlational
pattern. It is limited by Markov equivalence.

2.4. Markov equivalence

Two different MAGs carry different causal information, but may share the exact same m-separation structure, and hence
entail the same set of conditional independence constraints. Such MAGs are not distinguishable by correlational pattern
alone.

Definition 5 (Markov equivalence). Two MAGs G1, G» (with the same set of vertices) are Markov equivalent if for any three
disjoint sets of vertices X,Y,Z, X and Y are m-separated by Z in G; if and only if X and Y are m-separated by Z in G.

Several characterizations of the Markov equivalence between MAGs are available [1,27,35,37]. We will rely on the char-
acterization of [27] in this paper.

Definition 6 (unshielded path). In a MAG, a path consisting of a triple of vertices (X, Y, Z) is said to be unshielded if X and
Z are not adjacent. The triple is called an unshielded collider if both the edge between X and Y and the edge between Y
and Z are into Y.

6 By saying A is (or is not) a cause of B, all we mean is that there is (or is not) a directed path from A to B in the underlying causal structure.

7 This, together with the adjacency of A and B in the MAG, implies that there is a latent common cause of A and B.

8 Due to the assumed acyclicity of causal structure, this is equivalent to saying that A is a cause of some selection variable, and B is a cause of some
selection variable.

9 For example, if there is A — B in a MAG, and also another edge into A, then it can be deduced that A is not a cause of any selection variable, but a
cause of B.

10" Some relevant results can be found in [24] and [34].
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Fig. 3. A discriminating path between X and Y for V.

It is well known that two DAGs are Markov equivalent if and only if they have the same adjacencies and the same
unshielded colliders [32]. These conditions are still necessary for Markov equivalence between MAGs, but are not sufficient.
For two MAGs to be Markov equivalent, some shielded colliders may have to be present in both or neither of the graphs.
The next definition is related to this.

Definition 7 (discriminating path). In a MAG, a path between X and Y, p=(X,...,W,V,Y), is a discriminating path
for V if

(i) p includes at least three edges;
(ii) V is a non-endpoint vertex on p, and is adjacent to Y on p; and
(iii) X is not adjacent to Y, and every vertex between X and V is a collider on p and is a parent of Y.

A canonical depiction of an discriminating path is given in Fig. 3. Note that we write a discriminating path in such a
form p=(X,...,W,V,Y); that is, we specify the endpoints and the vertices adjacent to V, the vertex being discriminated.
The ellipsis therein designates any number (possibly zero) of other vertices.

The following proposition is proved by Spirtes and Richardson [27].

Proposition 2. Two MAGS over the same set of vertices are Markov equivalent if and only if

(e1) They have the same adjacencies;

(e2) They have the same unshielded colliders;

(e3) Ifa path p is a discriminating path for a vertex V in both graphs, then V is a collider on the path in one graph if and only if it is a
collider on the path in the other.

Given an MAG G, we denote its Markov equivalence class, the set of MAGs Markov equivalent to G, by [G]. According to
Proposition 2, all members of [G] have the same adjacencies. But between two adjacent vertices, the edge, and hence one
or both of the marks on the edge, may be different in different members of [G]. We call a mark in G invariant if the mark
is the same in all members of [G]. It is the adjacencies and the invariant marks of the unknown causal MAG that we can
hope to discover from the correlational pattern.

3. The FCI algorithm and arrowhead completeness

The MAG representation gives us a relatively tractable problem of causal discovery in the presence of latent confounders
and selection variables: to infer features of the causal MAG from data. In the case of learning causal DAGs (assuming no
latent confounders and selection variables), two assumptions are commonly adopted, known as the Causal Markov Condition
and the Causal Faithfulness Condition. These two conditions amount to assuming that conditional independence relations
that hold in the population distribution are precisely the conditional independence relations entailed by the causal DAG by
d-separation.!! If we assume these two conditions for the underlying causal DAG with latent variables, it follows that there
is an exact correspondence between the observable conditional independence relations among the observed variables and
m-separation relations in the causal MAG, because the causal MAG probabilistically represents the causal DAG.

Under these two assumptions, therefore, one can learn what the m-separation relations are in the causal MAG from the
correlational pattern—facts of conditional independence and dependence. The correlational pattern, in turn, is built based
on statistical tests of conditional independence. The constraint-based approach to causal discovery seeks to employ these
conditional independence or m-separation constraints to recover features of the causal MAG.

In this paper we will sidestep the statistical problem of inferring genuine conditional independence from data, and focus
on the problem of inferring causal information from facts of conditional independence. As an idealization, we will suppose
that a perfect oracle for conditional independence is available, which of course can only be approximated in practice.!?

1" For detailed exposition and discussion of the two conditions, see [20] and [25]. The causal Markov condition generalizes the familiar principle of the
common cause, and as such has been a subject of philosophical debate [3,6,13,15]. Recent reflections on the causal Faithfulness condition include [29] and
[36]. In this paper, we assume the two conditions and explore the consequence.

12 There are of course important practical issues that require further investigations, such as developing more powerful and robust statistical tests of
conditional independence, quantifying uncertainty, and handling inconsistency arising from an imperfect oracle.
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For any query about conditional independence among the given observed variables, the oracle supplies a correct answer
regarding whether the conditional independence in question holds or not. Moreover, given the causal Markov and Faithful-
ness assumptions mentioned above, the unknown true causal MAG should be perfectly consistent with the oracle, in the
sense that the true conditional independence relations as judged by the oracle are precisely the conditional independence
relations entailed by the MAG.

Such an oracle would supply information about the m-separation relations in the true causal MAG, which we denote by
Gr. In general, however, the m-separation relations do not uniquely determine a MAG, but a Markov equivalence class of
MAGs, which we denote by [Gr]. So the causal information that is in principle identifiable given the oracle corresponds to
the invariant features of the true causal MAG, i.e., features shared by all MAGs in [Gr]. The question is how to recover these
features from the oracle.

A provably sound algorithm for this task is known as the FCI algorithm, whose latest version was presented in [26].13
The algorithm consists mainly of two stages. In the first stage, the algorithm determines the adjacencies in the causal MAG.
The inference of adjacencies is based on the fact that two variables are adjacent in a MAG if and only if they are not
m-separated by any set of other variables in the MAG. So the basic idea is to search, for every pair of variables, a set of
other variables that renders them conditionally independent. They are not adjacent if and only if such a set is found. The
FCI algorithm uses several tricks to make this search efficient, the details of which shall not concern us here. Suffice it to
know that it is proved in [26] that given a reliable oracle of conditional independence, the FCI algorithm finds the correct
adjacencies.

Our concern is with the second stage, the stage of inferring edge marks. In this stage, the algorithm executes a set of
orientation rules (i.e., mark inference rules) to introduce arrowheads or tails, with circles (o) representing undetermined
edge marks. The output of the algorithm is referred to as a partial ancestral graph, or a PAG for short.’® It is intended to be
a representation of the Markov equivalence class determined by the oracle of conditional independence.

Definition 8 (partial ancestral graph). Let [G] be the Markov equivalence class of a MAG G. A partial ancestral graph (PAG)
for [G] is a graph P with possibly three kinds of marks (and hence six kinds of edges: —, —, <>, o—, o—o, o), such
that (1) P has the same adjacencies as G (and any member of [G]) does; and (2) every non-circle mark in P is an invariant
mark in [G].

If it is furthermore true that (3) every circle in P corresponds to a variant mark in [G], P is called the maximally
informative PAG for [G].

It is known that the FCI algorithm is sound, which means that given a perfect oracle of conditional independence, the
algorithm outputs a PAG for [Gr], the Markov equivalence class of the true causal MAG. Whether it is also complete is a
matter of whether the output is the maximally informative PAG for [Gr].

We now describe (an equivalent version of) the FCI algorithm from [26], omitting the details of the adjacency stage. (In
stating the orientation rules, a meta-symbol, asterisk (x), is used as a wildcard that denotes any of the three marks.!® More
specifically, if “x” appears in the antecedent of a rule, that means it does not matter whether the mark at that place is an
arrowhead, a tail, or a circle. If “x” appears in the consequent of a rule, that means the mark at that place remains what it
was before the firing of the rule. Greek letters are used to denote generic variables/vertices.)

FCI algorithm

F1 Form a complete graph U on the set of variables, in which there is an edge o—o between every pair of variables;
F2 For every pair of variables o and 8, search in some clever way for a set of other variables that render the two indepen-
dent. If such as set S is found, remove the edge between « and 8 in U/, and record S as Sepset(«, 8);
F3 Let P be the graph resulting from step F2. Execute the orientation rule:
RO For each unshielded triple (¢, v, 8) in P, orient it as a collider ovx— y <—f if and only if y is not in Sepset(c, B).
F4 Execute the following mark inference rules until none of them applies:
R1 If ax— Bo—x*y, and « and y are not adjacent, then orient the triple as ax— § — .
R2 If a — Bx— y or ax— B — ¥y, and « *—o y, then orient @ x—o y as a*x— y.
R3 If ax— B <=y, a*—o06 o—xy, @ and y are not adjacent, and 6 x—o B, then orient 6 x—o B as O*x— B.

13 The algorithm was initially designed based on what is called inducing path graphs [25], and was then reinterpreted in terms of (partial) ancestral
graphs. Not only are ancestral graph models more amenable to statistical analysis than inducing path graphs, causal discovery based on the former can in
principle reveal more causal information than causal discovery based on the latter, for reasons elaborated in [33, Appendix].

4 There is an ambiguity in the original formulation of the algorithm in [25], which, if not interpreted in the right way, suggests a flaw in the algorithm
[16]. But when interpreted as intended, the algorithm is provably correct.

15 PAGs were first invented by Richardson [21] in the context of learning causal models with feedback. They were then reinterpreted to represent the
output from the FCI procedure, and to represent a Markov equivalence class of MAGs.

16 By this we mean the rule in question applies no matter which of the three marks actually appears in the position of . It does not imply that all three
marks can appear in that position.
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R4 fu=(,...,a,pB,y) is a discriminating path between 6 and y for 8, and fo—s y; then if 8 € Sepset(6, y), orient
Bo—sxy as B — y; otherwise orient the triple (o, 8,y) as a < < y.77

RO-R3 are essentially (with slight generalization) the inference rules used in the context of learning causal DAGs, and are
shown to be sound and complete for that purpose [17]. R4 is peculiar to MAGs with bi-directed edges. It is motivated
by condition (e3) for Markov equivalence in Proposition 2 (Section 2.4), and justified by the fact that discriminating paths
behave similarly to unshielded triples in the following way: if a path between X and Y is discriminating for V, then V is a
collider on the path if and only if every set that m-separates X and Y does not contain V; and V is a non-collider on the
path if and only if every set that m-separates X and Y contains V. For a proof of this fact and the soundness of R0-R4
(and of the FCI algorithm), see [26].

To establish completeness, we need to show that the PAG returned by FCI is also maximally informative; that is, every
circle in the PAG corresponds to a variant mark in [Gr]. In other words, we need to show that for every circle in the PAG,
there is a MAG perfectly consistent with the oracle of conditional independence and hence Markov equivalent to Gr, in
which the circle is oriented as a tail; and there is such a MAG in which the circle is oriented as an arrowhead.

This turns out to be a highly non-trivial problem. An important step was made by Ali et al. [2]. Their result amounted
to showing that R0-R4 are complete with respect to invariant arrowheads.!® In other words, for every circle in the PAG
output by FCI, there is a MAG Markov equivalent to Gt in which the circle is marked as a tail.

The present paper aims to establish the full completeness result. The FCI algorithm, as it stands, is not yet complete.
There could be invariant tails that fail to be picked up by R0-R4, as we will illustrate by a simple example shortly. In
the next section we provide extra tail inference rules that we show are able to pick up all (remaining) invariant tails. The
demonstration, unfortunately, is even more difficult than that of arrowhead-completeness.

4. Extra orientation rules and tail completeness

To introduce the extra tail inference rules, we need to note a couple of special paths. In the definitions below, we call a
graph that can contain three kinds of edge marks—arrowhead, tail and circle—a partial mixed graph (PMG).

Definition 9 (uncovered path). In a PMG, a path p = (Vy, ..., V;) is said to be uncovered if for every 1 <i<n—1, V;_; and
Viy1 are not adjacent, i.e., if every consecutive triple on the path is unshielded.

A distinctive property of uncovered path is of course that after RO is executed, every consecutive triple on the path has
a definite status either as a collider or as a non-collider.

Definition 10 (potentially directed path). In a PMG, a path p = (Vy, ..., V,) is said to be potentially directed (abbreviated as
p.d.) from Vg to V, if for every 0 <i <n — 1, the edge between V; and V;; is not into V; or out of V; .

Intuitively, a p.d. path is one that could be oriented into a directed path by changing the circles on the path into
appropriate tails or arrowheads. As we shall see, uncovered p.d. paths play an important role in locating invariant tails.
A special case of a p.d. path is where every edge on the path is of the form o—o; we call such a path a circle path.

Here is the first block of additional rules:

R5 For every (remaining) cwo—oJ, if there is an uncovered circle path p = («, y, ..., 6, B) between « and 8 s.t. «r, 0 are
not adjacent and B, y are not adjacent, then orient ®o—of and every edge on p as undirected edges (—).

R6 If a—Bo—* ¥ (¢ and Yy may or may not be adjacent), then orient fo—sx y as B —x .

R7 If « —o Bo—x Y, and «, y are not adjacent, then orient fo—x y as f —x y.

A pictorial illustration of R5-R7 is given in Fig. 4. These rules are obviously related to undirected edges. R5 lead to
undirected edges, and R6 depend on undirected edges. So if it is known that the true casual MAG does not contain
undirected edges—for example, in those cases where selection bias is known to be absent—these two are not needed.
In that case, moreover, R7 will not get triggered at all, because neither R0-R4 introduced earlier nor R8-R10 to be
introduced shortly can lead to —o edges, which are in the antecedent of R7.

17" See [2] for an alternative and perhaps more efficient formulation of this rule that takes on a special kind of discriminating paths.

18 Ali et al. [2] employed a slightly different graphical object, called Joined Graphs, to represent Markov equivalence classes of MAGs. The difference
between Joined Graphs and PAGs is just that the former only represent invariant arrowheads, and do not distinguish between tails and circles. This makes
Joined Graphs syntactically simpler, at the price of losing information about invariant tails. Our result in this paper can also be seen as an attempt to
distinguish between real tails and pseudo tails in joined graphs.



J. Zhang / Artificial Intelligence 172 (2008) 1873-1896 1881

O AAAAAAAAAAAAAAAAAAAAAAAA
-
OO——0 o B
a p
R5
o o [0 o

Boi*y B?*Y oY —_—y

Fig. 4. Graphical illustrations of R5-R7.

That is why we introduce these three rules as a block. If there is no issue of selection bias, we would only consider
MAGs with directed and bi-directed edges, in which case R5-R7 can be ignored in principle.® The next block of rules, by
contrast, may still be applicable.

R8 If« - B— y or a—op — ¥, and oo~ y, orient o>y as a — y.
R9 If ¢o—>y, and p = («, B,60,...,y) is an uncovered p.d. path from o to y such that y and g are not adjacent, then
orient wo— ¥ as a — y.
R10 Suppose ao—y, B — ¥ <6, p1 is an uncovered p.d. path from « to 8, and p; is an uncovered p.d. path from « to
0. Let u be the vertex adjacent to @ on p1 (i could be g8), and w be the vertex adjacent to & on p; (w could be 0).
If 1 and o are distinct, and are not adjacent, then orient ¢o—>y as o — y.

These rules are visualized in Fig. 5. All of them are about turning partially directed edges o— into directed ones —, which
are valuable because <> and — represent very different causal information.

Call the FCI algorithm supplemented with these rules the Augmented FCI (AFCI) algorithm.?® We first show that these
rules are sound.

Theorem 1. Let Prc be the output of the FCI algorithm, and Parci the graph resulting from applying R5-R10 to Prc until none of
them applies. The extra tails introduced in Pagcy are invariant.

Proof. For each rule, we just need to show that any mixed graph that violates the rule does not belong to [Gr], i.e., is either
not a MAG or not Markov equivalent to Gr. The theorem then follows by a simple induction.

R5: The antecedent of this rule implies that (o, y,...,8, 8,«) forms an uncovered cycle that consists of o—o edges.
Suppose a mixed graph, contrary to what the rule requires, has an arrowhead on this cycle. In light of R1, the cycle must
be oriented as a directed cycle to avoid unshielded colliders not in Gr. But then the graph is not ancestral.

R6: if any graph, contrary to what the rule requires, contains o —p <y, the graph is not ancestral.

R7: Suppose a mixed graph, contrary to what the rule requires, has an arrowhead at 8 on the edge between 8 and y.
Then either o—p<—y is present, in which case the graph is not ancestral; or @« — B<—y is present, in which case the
graph contains an unshielded collider not in Gr.

R8: This rule is analogous to R2. Obviously if a mixed graph, contrary to what the rule requires, contains o« < y, then
either an almost directed cycle is present or there is an arrowhead into an undirected edge, and hence the graph is not
ancestral.

19 We add “in principle” here to caution that this is only true with a prefect conditional independence oracle. In practice, there may be occasions where
R5 and R7 are applicable even though in theory they should never be invoked.

20 we will not worry about implementation here. Note that the antecedent of each rule that involves checking the presence of a certain kind of paths,
like that of R4, can be checked in O (mn) with a generic algorithm for checking ‘reachability’, with m being the number of edges and n being the number
of vertices in the graph. So in big O notation, the time complexity of the AFCI algorithm is the same as that of the FCI algorithm [26].
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Fig. 5. Graphical illustrations of R8-7R10.
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Fig. 6. An example where R9 is needed. (a) is the (unknown) causal MAG. (b) gives the FCI output, to which R9 can be applied (twice) to yield (c).

R9: The essentially same argument for the soundness of R5 applies here.

R10: The antecedent of the rule implies that the triple (i, «,®) is not a collider in Gr, which means at least one of
the two edges involved in the triple is out of & in any MAG in [Gr]. Suppose a graph in [Gr], contrary to what the rule
requires, contains « <> y. Then the edge(s) out of & must be a directed edge for the graph to be ancestral. It follows that
either p; or p; is a directed path in the graph to avoid unshielded colliders not in Gr. In either case, « is an ancestor of y,
and hence the graph is not ancestral; a contradiction. O

Here is a simple example in which R9 is needed. Suppose the true causal MAG is the one in Fig. 6(a). Given an oracle
consistent with this MAG, the FCI algorithm (with R0-R4) gives us the graph in 6(b), to which we can further apply R9
to get more tails, as shown in 6(c) (B — D and C — D). Given the soundness of R9, we know the additional tails are
invariant. So the FCI algorithm with just R0-R4 is not yet complete. In fact, it is not hard to construct cases to show that
all the orientation rules given above except possibly R8 are independent. We do not yet know if R8 is independent—we
can neither construct a case in which only R8 is applicable, nor derive R8 from other rules—but the current proof of
completeness uses R8.

The main result to be established is that R5-R10 are also sufficient for picking up all remaining invariant tails. Let Parc;
denote the output of the AFCI algorithm. We need to demonstrate that for every circle in Pagc, there is a MAG in [Gr] in
which the corresponding mark is an arrowhead. As we shall see, the main difficulty of proving this fact lies with circles on
the o— edges. For circles on the other two kinds of edges, o— and o—o, the argument is quite analogous to the argument
for arrowhead completeness given in [2] or [33]. We will deal with these two first in Section 4.1, and then take up the more
difficult task in Section 4.2 to show that no circle on o— edges in Pagrc hides an invariant tail.

4.1. Circles on o— and o—o edges

Since Parcr is sound, any MAG in [Gr] is a further orientation of Pagcy; that is, all the unambiguous edge marks (arrow-
heads and tails) already in Parc; will be retained in the MAG, and the circles in Pypq are turned into appropriate arrowheads
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or tails in the MAG. Let us call the subgraph of Parc consisting of all the o—o edges in Parc the circle component of Parcy,
and denote it by PIEFC,. The first thing to note is that me has the following property:

Lemma 4.1. For every edge Ao—oB in PEFC,, PXFCI can be oriented into a DAG with no unshielded colliders in which A — B appears,
and can also be oriented into a DAG with no unshielded colliders in which A < B appears.

The proof is given in Appendix A, which makes use of Lemma 5 in Meek (1995). This fact is relevant because of the
following theorem:

Theorem 2. Let H be the graph resulting from the following procedure applied to Parc;:

(1) orient the circles on o— edges in Parcy as tails, and orient the circles on —o edges in Parc; as arrowheads (that is, turn all o—
edges and all —o edges into directed edges — ); and
(2) orient PXFCI into a DAG with no unshielded colliders.

Then H is a member of [GT].

The proof of this theorem is given in Appendix A. The theorem has a couple of important implications. First, it suggests a
way to turn Pagc, a representation of a Markov equivalence class of MAGs, into a representative MAG. What is special about
this construction is that no extra undirected edges or bi-directed edges are introduced. So the outcome is a representative
member of the Markov equivalence class with the fewest undirected edges and bi-directed edges. Such a representative is
conceivably easier to fit and score than other members in the class, in light of the fact that UGs are in general harder to
fit than DAGs and the results presented in [10] suggesting that it is better to have fewer bi-directed edges in fitting a MAG
model. If so, it will be particularly useful for developing score-based causal discovery algorithm based on MAGs.

More importantly for our present purpose, Theorem 2 together with Lemma 4.1 entail that for every circle on a —o
edge or a o—o edge in Pagcy, there is a member in [Gr] in which the corresponding mark is an arrowhead. In other words,
no circle on —o or o—o edges in Paprc; corresponds to an invariant tail. Therefore, what is left to show in order to establish
completeness is just that circles on o— edges in Parc do not hide invariant tails.

4.2. Circles on o~ edges

This last task, however, turns out to be the most difficult to fulfill. Unlike circles on the —o edges of Parc;, which can be
simultaneously turned into arrowheads as we saw in Theorem 2, circles on the o— edges in general cannot be turned into
arrowheads simultaneously in order to make a MAG in [Gr]. The simplest example is X <«oYo—Z, an unshielded path that
can appear in Parq. If we turn both of the circles into arrowheads, a new unshielded collider is created, and the resulting
graph will not belong to [Gr]. By contrast, an unshielded triple such as X—oYo—Z will not appear in Pgc in light of R7.
So we cannot handle o— edges in a wholesale manner.

Let Jo>K denote an arbitrary o— edge in Par. We need to show that there is a MAG in [Gr] in which the edge
appears as J <> K. Our argument consists of two major steps. In the first step, we show that we can orient Pgm—the
circle component of Parc—into a DAG with no unshielded colliders that satisfies certain conditions relative to Jo— K. This DAG
orientation of P/SFC, together with operation (1) in Theorem 2 yield a MAG in [Gr].

This MAG is not yet what we want, because Jo—K is oriented as J — K rather than ] <> K by operation (1) in Theo-
rem 2. In the second step of our argument, we make use of a result on equivalence-preserving mark changes given in [30]
and [35], and prove that the MAG constructed in the first step can be transformed into a MAG containing | <> K through
a sequence of equivalence-preserving changes of — into <». It then follows that the resulting MAG with | <> K is also
Markov equivalent to Gr, which is what we need.

The following definitions specify the conditions we want a DAG orientation of Pgy to satisfy.

Definition 11 (Relevance). Let Jo—K be an arbitrary o— edge in Parc. For any Ao—B in Pk, it is said to be relevant to
Jo—K if

(i) A= ] or there is a p.d. path from J to A in Parc such that no vertex on the path (including the endpoints) is a parent
of K; and
(ii) B=K or B is a parent of K (namely B — K) in Pag.

If Ao—B is relevant to Jo— K, we say that A is circle-relevant to Jo— K, and B is arrowhead-relevant to Jo—K.

Intuitively, relevant edges are those that may have to be turned into bi-directed edges (<>) in order for Jo—K to be
so oriented, on pain of creating almost directed cycles. This is most obvious in Fig. 7(a), in which if Jo—B is oriented as
J — B, then Jo—K cannot be oriented as | <> K, lest an almost directed cycle be created.
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Fig. 7. Configurations of relevance. (a) Jo— B is relevant to Jo—K, because B is a parent of K; (b) Ac—>K is relevant to Jo— K, because there is a p.d. path
from J to A (with no parent of K on the path); (c) Ao—B is relevant to Jo—K, because there is a p.d. path from J to A (with no parent of K on the path)
and B is a parent of K.

Let REL(Jo—K) denote the set of o— edges relevant to Jo—K in Parq. Notice that Jo—K itself belongs to this set,
and we will eventually show that all edges in REL(Jo—K), and so Jo—K in particular, can be turned into bi-directed
edges simultaneously. For easy reference, let us denote the set of circle-relevant vertices by CR(Jo—K), and the set of
arrow-relevant vertices by AR(Jo—K).

Definition 12 (Agreeable orientation). A DAG orientation of P/EFC,—the circle component of Parc—is said to be agreeable to
Jo—K if the following three conditions hold:

Cy For every Ao—>Bo—oC in Papc such that Ao—>B € REL(Jo—K) and C ¢ AR(Jo—K), Bo—oC is oriented as B — C in the
DAG;

Cy For every Co—oAo— B in Parq such that Ao—B € REL(Jo—K) and C is a parent of B (namely C — B) in Parc;, Co—oA
is oriented as C — A in the DAG;

C3 For every Co—oAo—B in Pyrcy such that Ao—>B € REL(Jo—K) and C is not adjacent to B in Parc;, Co—oA is oriented
as C < A in the DAG.

Roughly speaking, C1-Cs are motivated as necessary conditions for orienting a o— edge (relevant to Jo—K) into a bi-
directed edge. This is especially clear for C and Cs3. Regarding a relevant edge Ao— B, if C; is violated, then Ao—B cannot
be turned into a bi-directed edge, on pain of creating an almost directed cycle; similarly if C3 is violated, on pain of creating
a new unshielded collider. The rationale behind C; is less obvious, but is basically along the same line, and will be revealed
in the proof of Theorem 3.

The first question is whether we can orient PEFC, into a DAG with no unshielded colliders that is also agreeable to Jo—K.
As the proof for Lemma 4.1 goes (in Appendix A), the reason why P/gm can be oriented into a DAG with no unshielded
colliders is because ’PXFC[ is chordal (a.k.a triangulated). One way to orient a chordal graph into a DAG free of unshielded
colliders is due to Meek [17]:

Meek’s Algorithm
Input: a chordal unoriented graph U
Output: a DAG orientation of / (with no unshielded colliders)

Repeat

(1) choose a yet unoriented edge Ao—oB in U;
(2) orient the edge into A — B (or A <— B), and close orientations under the following rules:%!
UR; If A— Bo—oC, A and C are not adjacent, orient as B — C.
UR; If A— B — C and Ao—oC, orient as A — C.
UR3 If A— B — C, Ao—eDo—o(C, Bo—eD, and A and C are not adjacent, orient Do—eoC as D — C.

Until every edge is oriented in H.

So the idea is very simple. In each round, choose an arbitrary unoriented edge to orient in any direction, and propagate
the orientation using the three rules. Then repeat this until every edge is oriented. We now adapt the algorithm to fit our
purpose. Given an edge Jo—K in Pagq, let E; (i =1, 2, 3) be the set of o—o edges in Parc; whose orientations are required
by condition C; in Definition 12. (Note that E;’s are not necessarily disjoint.)

21 There is another rule in [17]. However, the antecedent of that rule involves an unshielded collider, which will not be triggered in orienting a chordal
graph into a DAG with no unshielded colliders. So we need not include that one here.
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Orientation algorithm for the circle component of Pyr¢;
Input: Pz, Parc, and an edge Jo—K therein
Output: a DAG orientation of PIEFC, with no unshielded colliders

Let D =Py
Repeat

If some edge in E; is not yet oriented in D

(a) choose such an edge Ao—oB € Eq, and orient it as condition Cy requires;
(b) close orientations under URy, UR,, UR3.

Else If some edge in E is not yet oriented in D;

(a) choose such an edge Ao—oB € E3, and orient it as condition C; requires;
(b) close orientations under URy, UR,, URs3.

Else If some edge in E3 is not yet oriented in D;

(a) choose such an edge Ao—oB € E3, and orient it as condition C3 requires;
(b) close orientations under URy, UR,, URs3.

Else

(a) choose a yet unoriented edge Ao—oB in D;

(b) orient the edge into A — B and close orientations under URy, UR;, URs3.

Until every edge is oriented in D
Return D

This is just a more restricted version of Meek’s algorithm. Therefore, given the correctness of Meek’s algorithm, this
Orientation Algorithm obviously returns a DAG orientation of P/gm with no unshielded colliders. Moreover, we can show
that it is agreeable to Jo—K.

Lemma 4.2. Let D._.k be the DAG output of the Orientation Algorithm. D ,_, x is a DAG orientation of me free of unshielded
colliders and agreeable to Jo—K.

This lemma is the most difficult to establish in the whole argument, and a proof is given in Appendix B. The reason to
take the trouble is that Lemma 4.2 enables us to prove the following fact.

Theorem 3. Let Jo—K be a o— edge in Parcy. Construct H from Pagcy by the following procedure:

(1) orient o~ edges in REL(Jo— K) as <>, and orient other o— edges as —;
(2) orient —o edges in Papc; as —;
(3) orient me into D j,, g with the Orientation Algorithm.

Then H is a member of [GT].

See Appendix B for the proof. As hinted above, the basic idea of the proof is to start with a MAG constructed via the
procedure in Theorem 2, and then show that the MAG can be transformed into the graph constructed here by a sequence
of equivalence-preserving changes of — into <.

The main theorem of this paper readily follows:

Theorem 4 (Completeness). The Augmented FCI algorithm (with the additional tail inference rules R5-R10) is complete, in the sense
that given a perfect conditional independence oracle, the algorithm returns the maximally informative PAG for the true causal MAG.

Proof. Theorem 2 implies that for every circle on o—o and —o edges in the AFCI output, there is a MAG Markov equivalent
to the true causal MAG in which the circle is marked as an arrowhead; Theorem 3 implies that this is also the case for every
circle on o— edges. Hence, no circle in the AFCI output can be an invariant tail. Together with the arrowhead-completeness
result, we have shown that the AFCI algorithm is complete. O

5. Conclusion
Causal discovery from data becomes especially challenging when the possibility of latent confounding and selection bias

cannot be ruled out. Maximal ancestral graphs provide a neat representation of such causal systems without explicitly in-
troducing unobserved variables, which facilitates automated search over (classes of) causal structures based on correlational
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information. We have established a completeness result in this framework, concerning the extent to which causal infor-
mation can be extracted from facts of probabilistic independence and dependence, under the standard causal Markov and
Faithfulness assumptions.

Although we presented the result in the context of the FCI algorithm, its significance goes beyond this particular algo-
rithm, because we have in effect shown that the orientation rules R0-R10 provide a complete characterization of invariant
marks in a Markov equivalence class of MAGs. In particular, given an arbitrary MAG, these orientation rules can be used
to identify its invariant marks. This will be useful in any causal discovery algorithm or causal reasoning system based on
MAGs.

The orientation rules fall naturally into three independent blocks. R0-R4 are arrowhead complete. R5-R7 are relevant
only when selection bias may be present. In fact, it is more common in the literature to consider latent confounding
without selection bias, in which case R5-R7 may be either ignored or serve as a check of the assumption of no selection
bias. Moreover, when there is no selection bias, a directed edge in the causal MAG carries especially clear qualitative causal
information. R8-R10 are then particularly valuable, as they can pick up directed edges missed by R0-RA4.

Besides the constraint-based approach to causal discovery, of which the FCI algorithm is a representative, there is also
the score-based or Bayesian approach to causal discovery in the literature [7,14]. It is an ongoing project to develop a score-
based causal discovery procedure based on MAGs. Not only are the orientation rules relevant to this problem, Theorem 2 in
Section 4.1 is probably also useful for the purpose of scoring an equivalence class of MAGs, in that it gives a procedure for
constructing a representative MAG with the fewest undirected edges and bi-directed edges.

We close by noting two related open problems. First, we have implicitly assumed that no substantial background causal
knowledge is available, and so the causal MAG can only be determined up to Markov equivalence. When prior causal
knowledge or limited experimental control is available, it is possible to discriminate between some Markov equivalent MAGs,
and hence more edge marks than the invariant ones of the true causal MAG may be identifiable. How to adapt the AFCI
algorithm to handle such background knowledge and whether the adapted algorithm is complete are worth investigating.

Second, it should be emphasized that our completeness result is in regard to causal information that can be inferred
from probabilistic independence and dependence facts. But there may be other kind of probabilistic facts that are infor-
mative about causation. In fact, it is well known that causal DAGs with latent variables can entail testable constraints on
the marginal probability of observed variables that do not take the form of conditional independence (see [31] for an illu-
minating discussion). Such constraints are not retained in the MAG representation of the underlying causal structure. This
is a limitation of the MAG framework, and how to effectively employ non-independence constraints in automated causal
discovery remains an intriguing open question.
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Appendix A. Proof of Lemma 4.1 and Theorem 2

We need some utility lemmas about Pagc;.
Lemma A.1. In Parcy, the following property holds:

P1 for any three vertices A, B, C, if Ax— Bo—=x C, then there is an edge between A and C with an arrowhead at C, namely, Ax— C.
Furthermore, if the edge between A and B is A — B, then the edge between A and C is either A — C or Ao—C (i.e, it is not
A< ()

This is a key lemma for proving arrowhead completeness, and only concerns R0-R4, because the extra inference rules
do not supply arrowheads. See the proof of Lemma 4.1 in [2], which is formulated in a different but equivalent way. We
omit details for interest of space.

Lemma A.2. In Pagqy, the following property holds:
P2 For any two vertices A, B, if A—oB, then there is no edge into A or B.

Proof. By P1, for any A—oB in Pagcy, if there is an edge Cx— B, there is also an edge Cx— A. So it suffices to prove that
there is no edge into A. Let E = {X—oY in Parq|3Z s.t. Zx— X is in Papc}. We need to show that E is empty. Suppose
that it is not empty. Let Xo——oYq € E be the first member of E that gets so oriented—i.e., the tail marks on other edges in E,
if any, get oriented after Xgo—oY( is oriented as Xo—oYy. Choose any Zy such that Zp+— Xp is in Papc. Since Xgo—oYy
is oriented as Xo—oYy either by R6 or R7, we consider the two cases one by one:

Case 1: It is oriented by R6. That means there is a vertex W such that W—Xj is in Pagq. But then Zgx— Xg—W violates
(a3) in the definition of ancestral graphs, which contradicts the soundness of Pagc;.
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Case 2: It is oriented by R7. That means, at the time of the orientation, there is a vertex W such that W, Yy are not
adjacent, and there is an edge W —oX( between them. This implies that either W —oXy or W—Xg appears in Parq (as
no arrowhead is added by any of R5-R10). The latter case is again ruled out by (a3) in the definition of ancestral graphs.
In the former case, since Zg+— Xo is in Pagpcy, by P1, Zgx— W is also in Papcy. But then W —oXj is in E and gets oriented
before Xo—oYg does, which contradicts our choice of Xqg—oYjp.

Hence the supposition that E is not empty is false. CP2 holds of Papc;. O

Call (Vo,...,Vy) a tail-circle path from Vg to V, if for every i (0 <i<n—1), the edge between V; and V;y is
Vi—oViyg.

Lemma A.3. In Pagqy, the following hold:

(i) For any A—oB, there is an uncovered tail-circle path from an endpoint of an undirected edge to B that ends with the edge A—oB.
(ii) If p is an uncovered tail-circle path, then no two non-consecutive vertices on p are adjacent.

Proof. Let TC be the set of —o edges in Parc. Order the members of TC by their order of occurrence in the orientation
process. We show (i) by induction.

Base case: Let X—oY be the “first” edge in TC—that is, it gets oriented as such before any other member of TC does. Of
all the mark inference rules, only R6 and R7 could yield —o edges. If X—oY is oriented by R6, then obviously X is an
endpoint of an undirected edge. Suppose X—oY is oriented by R7, which means there is a vertex Z such that Z,Y are
not adjacent, and Z—oXo—oY is the configuration at the point of orienting Xo—oY. If Z—oX remains in Pyrc, then it
belongs to TC, and it occurs earlier than X—oY does, which contradicts our choice of X—oY. So in Pagc it must be Z—X
(because no inference rule will orient —o into — ). Hence X is still an endpoint of an undirected edge. Then X—oY is an
uncovered tail-circle path from an endpoint of an undirected edge to Y.

Inductive step: Suppose the first n edges in TC satisfy (i); consider the n + 15 edge, U—oW, in TC. Again, it is oriented
by R6 or R7. If it is oriented by R6, then U is an endpoint of an undirected edge, and U—oW constitutes an uncovered
tail-circle path from U to W. Suppose it is oriented by R7, then there is a vertex V such that V, W are not adjacent, and
V—oUo—oW is the configuration at the point of orienting Xo—oY. If V—oU remains in Pag, then it is one of the first
n edges in TC. By the inductive hypothesis, there is an uncovered tail-circle path, p, from an endpoint of an undirected
edge to U that includes the edge V—oU. Since V, W are not adjacent, p appended to U—oW constitutes an uncovered
tail-circle path from an endpoint of an undirected edge to W. If, on the other hand, V—oU is not in Pag, then it must be
V—U, which makes U an endpoint of an undirected edge, and U—oW the desired path. Therefore, for every edge in TC,
the property stated in (i) holds.

Next we prove (ii). If p has only one edge, the proposition trivially holds, because there is no pair of non-consecutive
vertices; if p has two edges, the proposition also trivially holds, because p is uncovered, and the only pair of non-consecutive
vertices on p are by definition non-adjacent.

Now suppose the proposition holds for those uncovered circle-tail paths that have fewer than n edges. Consider an un-
covered circle-tail path with n edges: Vo—oV; --- V,_1—oV,. By the inductive hypothesis, the only pair of non-consecutive
vertices that could be adjacent is Vg and V,. By P2 (Lemma A.2), the edge between Vy and V, is not into Vg or Vj. It is
not an undirected edge either, for otherwise the circle at V, on V,_1—oV, should have been oriented by R6. However,
(Vo, V1,..., Vn_1, Vy, Vo) forms an uncovered cycle, so at least one of the o—o edges on the cycle should have been ori-
ented as — by R5 before any—edge appears, which contradicts the fact that there is no—edge on the cycle. So Vo and V;
are not adjacent. O

The main use of Lemma A.3 is to establish two more properties of Parc;.

Lemma A.4. In Parqy, the following property holds:

P3 For any three vertices A, B, C, if A—oBo—xC, then A and C are adjacent. Furthermore, if A—oBo—oC, then A—oC; if
A—oBo—>C, then A — C or Ao—C.

Proof. The first claim is obvious. If A—oBo—xC, but A, C are not adjacent, then the circle at B on Bo—xC should have
been oriented by R7.

Suppose, more specifically, that A—oBo—eC. Consider the edge between A and C. P1 (Lemma A.1) implies that it is
not into C. P2 (Lemma A.2) implies that it is not into A. It is not undirected either, for otherwise the circle at C on Bo—eoC
could be oriented by R6. Hence it is either (1) Ao—C; or (2) Ao—oC; or (3) A—oC. We now show that (1) and (2) are
impossible.

Suppose for contradiction that (1) or (2) is the case. By (i) in Lemma A.3, there is an uncovered tail-circle path p from
E, an endpoint of an undirected edge, to B that includes the edge A—oB. We claim that for every vertex V on p, either
Vo—eC or Vo—~C is present. The argument goes by induction. Obviously B and A satisfy the claim. Suppose, starting from
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B, the nth vertex on p, Vy, satisfies the claim. Consider the n + 1st vertex on p, V1. Since p is a tail-circle path, we have
Vny1——oV,. By the inductive hypothesis, V,o—oC or V,0—C. So, as already established, V41 and C must be adjacent.
Again, P1 implies that the edge between them is not into C. P2 implies that the edge between them is not into V4.
The edge is not undirected either, for otherwise the circle at C on Bo—oC could be oriented by R6. Furthermore, by (ii)
in Lemma A.3, V41 and B are not adjacent. So the edge between V1 and C can’t be V1 —oC, for otherwise the circle
at C on Co—oB could be oriented by R7. It follows that either V;;10—oC or V,410—C. Therefore, every vertex on p, in
particular the endpoint E, satisfies the claim. So either Eo—oC or Eo—C occurs. But E is an endpoint of an undirected
edge, and hence the circle at E on Eo—oC or Eo—C could be oriented. Contradiction.

Hence neither (1) nor (2) is the case, which means A—oC occurs in Pagc.

On the other hand, if it is A—oBo—C that occurs in Pagc, then P2 implies that the edge between A and C is not into
A (due to the presence of A—oB). It follows that the edge mark at C is not a tail, for otherwise either Parc; would not be
sound (with an arrowhead incident to an undirected edge) or P2 would be violated (with an arrowhead incident to a —o
edge). Note moreover that the edge mark at C cannot be a circle, for otherwise P1 would be violated. Hence the edge mark
at C is an arrowhead, and the edge is either A— C or Ao—>C. O

Lemma A.5. In Py, the following property holds:
P4 For any A—oB, there is no tail-circle path from B to A. That is, there is no such cycle as A—oB—oC—o--- —o0A.

Proof. We first argue that if there is any such cycle in Parq, then there is a cycle with only three edges, ie.,
A—oB——oC——oA. To show this, note that for any such cycle ¢ = (Vy, V1, Va,..., Vy, Vo) with more than three edges,
¢ can’t be uncovered, otherwise every edge on ¢ would have been oriented as — by R5. That means there is a consecutive
triple on ¢ which is shielded. Without loss of generality, suppose (Vg, V1, V3) is shielded, i.e.,, Vg and V, are adjacent. The
edge between V( and V3, can’t contain an arrowhead, as Lemma A.2 shows; it can’t be undirected, for otherwise some circle
on ¢ should been oriented by R6; it can’t be o—o, as implied by Lemma A.4 (because Vo—oV1—oV> is present). So it
is either Vo—oV;, or Vo—oVy. In either case, there is a shorter cycle than c that consists of —o edges. Hence we have
established that for any such cycle with more than three edges, there is a shorter one. It follows that if there is such a cycle
at all, there must be one with only three edges.

So, to prove P4, it suffices to show that A—oB—oC—oA is impossible. Suppose for contradiction that A—oB—oC——oA
appears in Parq. By (i) in Lemma A.3, there is an uncovered tail-circle path p from E, an endpoint of an undirected edge,
to B that includes the edge A—oB. We claim that for every vertex V on p between A and E (including A and E), C—oV
is present in Parc. The argument is by induction. The vertex A, by supposition, satisfies the claim. Suppose, starting from
A, the nth vertex on p, Vp, satisfies the claim. Consider the n + 1st vertex on p, Vp41. Since p is a tail-circle path, we
have V;41—oVj,. By the inductive hypothesis, C—oV,. So by Lemma A4, V,+1 and C are adjacent. Lemma A.2 implies
that the edge between them is not into either vertex. The edge is not undirected either, for otherwise the circle at C on
B—oC could be oriented by R6. Furthermore, by (ii) in Lemma A.3, V41 and B are not adjacent. Since B—oC, the edge
between V41 and C must be oriented as C—oV;41. Therefore, every vertex between A and E, in particular the endpoint
E, satisfies the claim. But E is an endpoint of an undirected edge, and hence the circle at E on C—oFE could be oriented.
This is a contradiction. O

With P1-P4, we are ready to prove Lemma 4.1 and Theorem 2.

Lemma 4.1. For every edge Ao—oB in PACFCI, Pgm can be oriented into a DAG with no unshielded colliders in which A — B appears,
and can be oriented into a DAG with no unshielded colliders in which A < B appears.

Proof. Given Lemma 5 in [17]—which showed that all chordal undirected graphs have the desired property—it suffices to
show that PXFCI is chordal. Suppose for the sake of contradiction that there is a chordless cycle with four edges or more in
’P/fm. Let (Vo, V1, V2, V3,..., Vo) be a shortest such cycle, which implies that no two non-consecutive vertices on the cycle
are adjacent in PXFC,. For every such pair of non-consecutive vertices V; and Vj, they are not adjacent in Parc either. The
reason is that V; and V; are connected by a circle path in Parq, given which it is easy to derive from P1 and P3 that if V;
and V; are adjacent in Pyrc, the edge between them must be o—o, and hence they would be adjacent in PEFCI. Therefore,
the cycle remains a shortest chordless cycle consisting of o—o edges in Parc, which should have been oriented by R5.
A contradiction. O

Theorem 2. Let H be the graph resulting from the following procedure applied to Pagc;:

(1) orient the circles on o— edges in Pagrcy as tails, and orient the circles on —o edges in Pagcy as arrowheads (that is, turn all o—
edges and all —o edges into directed edges — ); and
(2) orient Py into a DAG with no unshielded colliders.

Then H is a member of [GT].
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Proof. For interest of space, we will not give all the details, which are easy to construct given the sketch here. (Most details
are also extremely similar to the proof of Theorem 4.2 in [2].) P2 and P4 together ensure that turning all circles on —o
edges into arrowheads will not create any directed cycle or almost directed cycle. P1 and P3 ensure that further turning all
circles on o— edges into tails will not create any directed cycle or almost directed cycle. So after operation 1, no directed
cycle or almost directed cycle is created.

For operation 2, P1 and P3 guarantee that no matter how we orient a o—o edge, it will not yield a directed cycle or
almost directed cycle that involves an edge outside me. So if PEFC, is oriented into a DAG, no directed cycle or almost
directed cycle will be created in H.

Furthermore, no new undirected edges or bi-directed edges are created in constructing H, and hence every undirected
edge and bi-directed edge in H are already in Pagc. It is then easy to show, given the soundness of Pagc, that in H there
is no edge into any vertex incident to an undirected edge, and that there is no inducing path between any two non-adjacent
vertices. Therefore H is both ancestral and maximal.

To show Markov equivalence between H and Gr, we just need to check that the conditions in Proposition 2 are satisfied.
They have the same adjacencies given the correctness of the adjacency inference step in the FCI algorithm. P2 and P3 ensure
that turning all circles on —o edges in Papq into arrowheads will not create any new unshielded collider. P1 implies that
no matter how we orient a o—o edge, it will not create a new unshielded collider that involves an edge outside P/EFC,. So
if PEFC, is oriented into a DAG with no unshielded colliders, no more unshielded colliders than those already in Pagc are
constructed in H. So ‘H and Gr have the same unshielded colliders. Finally, since no new bi-directed edges are created in
constructing H, it is not hard to verify condition (e3) in Proposition 2 concerning discriminating paths. It then follows that
‘H is a member of [Gr]. O

Appendix B. Proof of Lemma 4.2 and Theorem 3

The proof of Lemma 4.2 is the most difficult part of our argument, and requires quite a few utility lemmas. Again, for
interest of space, we will often note and skip easy or similar steps. We begin by noting some facts about (uncovered) p.d.
paths (Definition 10) in Pagc.

LemmaB.l.Ifp=(A,...,B)isap.d. path from A to B in Parc|, then some subsequence of p forms an uncovered p.d. path from A to
B in Parcy.

Proof. The proof is by induction on the length of p. If there is only one edge on p, then it is trivially a (degenerate)
uncovered p.d. path from A to B. If there are two edges on p, namely p = (A, C, B), either it is already uncovered, or it is
covered so that A and B are adjacent. In the latter case, we show that the edge between A and B is not into A or out of B,
and hence it constitutes a desired path between A and B.

We first argue that it is not into A. Suppose for contradiction that the mark at A on the edge between A and B is an
arrowhead. Then the edge between A and C can’t have a circle mark at A, for otherwise by P1 (Lemma A.1), the edge
between C and B has an arrowhead at C, which contradicts the fact that p is potentially directed. It follows that the edge
between A and C must have a tail at A in Pag. Since the edge between A and B is into A, it follows from P2 (Lemma A.2)
that the edge between A and C is A — C. Then the mark at C on the edge between C and B must be an arrowhead, as
implied by R2, a contradiction. So the edge between A and B is not into A.

Next we show that it is not out of B either. Suppose for contradiction that the mark at B on the edge between A and B
is a tail. Then it is either A—B or Ao—B. The former implies that the edge between C and B has a tail at B by R6, which
contradicts the fact that p is potentially directed. So it can only be Ao—B. Then P2 implies that there is no arrowhead into
B. Since p is potentially directed, the edge between C and B is not out of B. Hence the mark at B on the edge between C
and B is a circle. It is then easy to check that the only possible configurations consistent with P1, P2, and the fact that p is
potentially directed are Ao—oCo—oB, or Ao—oC—oB, or A—oCo—oB or A—oC—oB. The first three cases contradict P3
(Lemma A.4), and the last case contradicts P4 (Lemma A.5).

The inductive step is easy. Suppose the proposition holds when the length of p is n —1 (n > 3). Consider the case where
p has n edges. Either p is already uncovered, or there is a triple (X, Y, Z) on the path which is shielded. In the latter case,
by the foregoing argument, the edge between X and Z is not into X or out of Z. So if we replace (X,Y, Z) with the edge
between X and Z on p, we get a subsequence of p which is a p.d. path from A to B with length n — 1. By the inductive
hypothesis, a subsequence of the new path, which is also a subsequence of p, forms an uncovered p.d. path from A to B. O

Lemma B.2. If p is an uncovered p.d. path from A to B in Pagc, then
(i) if there is an o— or —o edge on p, then any o—o edge on p is before that edge, and any — edge on p is after that edge;
(ii) p does not include both a o— edge and a —o edge; and

(iii) there is at most one o— edge on p.

Proof. To see (i) is true, notice that since p is uncovered and potentially directed, any edge after a o~ edge or a — edge
on p must be oriented as — by R1. So no o—o can appear after a o> edge on p, and no — can appear before a o— edge
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on p. The same is true with a —o edge. Since p is uncovered, any edge on p after —o will be oriented as —o or — by
either R7 or R1.

(ii) and (iii) are evident given the argument for (i). For (iii), just note that any edge after a o~ edge on p must be
oriented as a — edge. For (ii), suppose for contradiction that p contains both a o~ edge and a —o edge. Then the —o
edge does not appear after the o— edge on p, because any edge after o~ on p must be oriented as — by R1. On the other
hand, the o— does not appear after the —o edge on p, because any edge after —o on p is either —o or —. This is a
contradiction. O

Lemma B.3. In Pyrq, if there is a circle path—a path consisting of o—o edges—between A and B, then for any other vertex C, Cx— A
ifand only if Cx— B.

Proof. This easily follows from P1. O
Lemma B.4. In Parcy, if there is a p.d. path from A to B, then the edge between A and B, if any, is not into A.

Proof. By Lemma B.1, there is an uncovered p.d. path p from A to B. Suppose for contradiction that there is an edge
between A and B which is into A, namely A<—xB. There can not be a —o edge on p for the following reason: the first
—o edge, if any, is either incident to A or is connected to A by a circle path, according to Lemma B.2. In either case, by
Lemma B.3, there is an edge into the tail endpoint of the —o edge, which contradicts P2 (Lemma A.2).

So, by Lemma B.2, p is of the form: Ao—o---0—0Xo—>Y — --- — B, where it could be that A = X (there is no o—e
edge) and/or X =Y (there is no o— edge) and/or Y = B (there is no directed edge). If Y = B, it is easy to see that P1 is
violated due to the supposed presence of A<—xB. If Y # B, then P1 and the supposed presence of A<—xB entail that there
is an edge between B and Y that is into Y. But Y is an ancestor of B. This contradicts the soundness of Parc. Hence the
initial supposition of A<—B is false. O

Lemma B.5. In Py, if there is a p.d. path from A to B that is into B, then every uncovered p.d. path from A to B is into B.

Proof. Suppose for contradiction that there is an uncovered p.d. path from A to B not into B. Then the last edge on the
path must be o—o. (It is not —o in light of P2, because there is a p.d. path into B.) It then follows from Lemma B.2 that
the path is a circle path. Let C be the vertex adjacent to B on the p.d. path into B, so Cx— B. It follows from Lemma B.3
that Cx— A. But there is a p.d. path from A to C, which contradicts Lemma B.4. O

Corollary B.6. In Parcy, if A, B are adjacent, and there is a p.d. path from A to B that is into B, then the edge between A and B is either
Ao—BorA— B.

Proof. This easily follows from Lemmas B.4, B.5, and A.2. O
Lemma B.7. If there is a circle path between two adjacent vertices in Parcy, then the edge between the two vertices is o—o.
Proof. This is very easy to see given P1 (or Lemma B.3) and P3. O

Lemma B.8. Let u be an uncovered circle path in Parc. If A and B are two non-consecutive vertices on u, then A and B are not
adjacent in Parc.

Proof. It follows from Lemma B.7 and the fact that PXFC, is chordal. O
The next two lemmas are useful facts about edges in REL(Jo—K) (Definition 11).

Lemma B.9. For every Ao— B € REL(Jo— K), there is an uncovered p.d. path u from ] to B in Parcy such that for every vertex V on u
other than B, there is an edge V o— K.

Proof. The lemma holds trivially if A= ] or B =K. Suppose A # J and B # K. By Definition 11, there is a p.d. path from
J to A in Pagq such that no vertex on the path (including the endpoints) is a parent of K. Note that B is not on this p.d.
path, for otherwise there would be a p.d. path from B to A, which, together with the presence of Ao— B, would contradict
Lemma B.4. So we can concatenate the p.d. path with Ao—B to form a p.d. path from ] to B that is into B. In light of
Lemma B.1, it follows that there is an uncovered p.d. path u from J to B such that every vertex on u other than B is not a
parent of K. We can then prove by induction that for every vertex V on u other than B, there is an edge Vo—K in Pagc.
The base case Jo—K is obvious. Suppose it holds of the nth vertex on u, V,. Consider V,,1 # B. Since B # K, by
Definition 11, B is a parent of K. This implies that there is a p.d. path from V,; to K. By Corollary B.6, if V,41 and K are
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adjacent, then the edge is either V41 — K or V110> K. But no vertex on u other than B is a parent of K, so it suffices
to show that V41 is adjacent to K. Suppose otherwise. It is then easy to show that the circle at V, on V,;0—K could have
been oriented by R9, which is a contradiction. Therefore V; 1 and K are adjacent, and the edge is V110> K in Papq. O

Lemma B.10. If Ao~ B € REL(Jo—K), then Ao— K appears in Pagc;.

Proof. The lemma trivially holds if A= ] or B = K. Suppose A # | and B # K. Since Aoc—B € REL(Jo—K), there is an
uncovered p.d. path u from ] to B satisfying the condition of Lemma B.9. By Lemma B.5, we know u is also into B. Let
X#*— B be the last edge on u. By Lemma B.9, we have Xo— K in Pyrc. Also, because B # K, B — K is in Pagcy, so the edge
between X and B can’t be X — B, for otherwise Xo— K could be oriented by R8. It follows that the edge is Xo— B in Pagc.

Note that if A and K are not adjacent, then the path (A, B, X, K) is a discriminating path for X (Definition 7). Hence the
circle on Xo—K could have been oriented by R4, a contradiction. So A is adjacent to K. By Corollary B.6, the edge between
A and K is either A — K or Ao— K. But by Definition 11, A is not a parent of K, so it must be Ao—>K in Papq. O

Our goal is to show that in the course of the Orientation Algorithm, no violation of C;-Cs (Definition 12) would occur.
The next block of lemmas are important steps towards this goal. They amount to showing that if we choose a o—o edge
to orient away from violation of C;-Cs (as the Orientation Algorithm does), that orientation will not trigger any violation of
C1-C3 by applications of UR; alone.

Lemma B.11. For any two vertices B, C € AR(Jo— K), there is no uncovered circle path between B and C consisting of more than one
edge in PAFCI-

Proof. Given Lemma B.8, it suffices to show that B and C are adjacent. This is obviously true if one of B and C is K.
Suppose B # K and C # K, and hence both of them are parents of K by Definition 11. Let A be such a vertex that Ac—B €
REL(Jo—K). It follows from Lemma B.3 that either Ao—>C or A — C is in Pagq. But it can’t be A — C for otherwise
Ao—K (shown to be present in Lemma B.10) could be oriented by R8. So it is Ac—C. Then B and C must be adjacent, for
otherwise Ao—K could be oriented by R10. O

Lemma B.12. Suppose Ao— B € REL(Jo—K). If Ao—oC appears in Parc; and C is a parent of B in Parc (i.e. the edge Ao—oC is
required by condition Cy to be oriented as A <— C), then C is a parent of K in Pagc.

Proof. If B =K, it is trivial. Suppose B # K, and so B is a parent of K. By Lemma B.10, Ac—K is present in Pagc. It follows
that C is adjacent to K, for otherwise (C, B, A, K) would constitute a discriminating path for A in Pagc to orient Ao—K by
RA4. Furthermore, the edge between C and K must be C — K, as required by R2 and R8. Hence C is a parent of K. O

Lemma B.13. Suppose Ao—B € REL(Jo—K), Ao—oC and C is a parent of B in Parc (i.e. the edge Ao—oC is required by condition
C; to be oriented as A < C). Then

(1) if for some D € AR(Jo—K), Co—oD is in Pagcy, then C € AR(Jo— K) (so that the edge Co—oD is not subject to Cy);
(2) Ifu={(C, A, ...) is an uncovered circle path, no vertex on u except possibly C is in AR(Jo—K).

Proof. To show (1), note that if D € AR(Jo—K), then there is some vertex X such that Xo—D € REL(Jo—K). By P1
(Lemma A.1), Xo—>C or X — C is in Papc. By Lemma B.12, C is a parent of K. So it is not X — C in Pagc, otherwise
Xo— K, which is shown to be present by Lemma B.10, could be oriented as X — K by R8. So it must be Xo—C in Pagc.
Since Xo—D € REL(Jo—K) and C is a parent of K, Xo—C satisfies Definition 11, which means C € AR(Jo—K).

To prove (2), suppose for contradiction that some vertex E # C on u is in AR(Jo—K). Obviously E # K, otherwise Ao—E
would be present in Parc; by Lemma B.10, which contradicts Lemma B.3. So E is a parent of K. Now consider the edge
Ao—K, shown to exist by Lemma B.10. Ao—oC is an uncovered p.d. path from A to C, a parent of K by Lemma B.12;
u(A, E) is an uncovered p.d. path from A to E, a parent of K. Since u is uncovered, Ao—K could be oriented as A — K by
R10; a contradiction. O

Lemma B.14. For every uncovered circle path u = (A, ..., E) in Pagq, either the edge incident to A is not required by Cy to be oriented
out of A, or the edge incident to E is not required by Cy to be oriented out of E.

Proof. Suppose for contradiction that the contrary is true. By Lemma B.12, both A and E are parents of K. Let B be the
vertex adjacent to A on u. By supposition and Definition 12, there is a vertex C such that Bo—C € REL(Jo—K) (and A is
a parent of C). Consider Bo—K (cf. Lemma B.10). Bo—oA constitutes an uncovered p.d. path from B to A, a parent of K;
u(B, E) constitutes an uncovered p.d. path from B to E, a parent of K. A and E are not adjacent by Lemma B.8. Thus Bo—K
could be oriented as B — K by R10; a contradiction. O
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Lemma B.15. If Ao—>B € REL(Jo—K), and u = (A, C, ...) is an uncovered circle path such that C is not adjacent to B in Parc (S0
that the edge between A and C is required by Cs to be oriented as A — C), then no vertex on u is a parent of K in Parc.

Proof. Since Ao—>B € REL(Jo—K), by Lemma B.10, Ao—K is present in Parc. Suppose for contradiction that a vertex D
(which could be C) on u is a parent of K. We consider the two possible cases one by one.

Case 1: B=K, and hence K and C are not adjacent (which means D can’t be C in this case). So u(A,D)® D — K is a
p.d. path from A to K such that the vertex adjacent to A on the path, namely C, is not adjacent to K. Let E be the first
vertex after C on the path which is adjacent to K (there must be one, because D is adjacent to K). The edge between E
and K, by Corollary B.6, is either Eo—K or E — K. It follows that (A, C, ..., E, K) forms an uncovered p.d. path from A to
K such that C and K are not adjacent. Hence Ao—K could be oriented as A — K by R9; a contradiction.

Case 2: B — K is in Pagcy. Then u(A, D) is an uncovered p.d. path from A to D, a parent of K, and Ao— B is an uncovered
p.d. path from A to B, a parent of K. Since C and B are not adjacent, the edge Ao— K could be oriented as A — K by R10;
a contradiction. O

Lemma B.16. Suppose Ao—B, Co—>D € REL(Jo—K), A # Candu = (A, ..., C) is an uncovered circle path in Pagc;. Either the vertex
next to A on u is adjacent to B (so that C3 does not require orienting the edge out of A), or the vertex next to C on u is adjacent to D
(so that C3 does not require orienting the edge out of C).

Proof. Suppose for contradiction that the contrary is true. We consider three cases separately and derive a contradiction in
each.

Case 1: B = D. In this case, since D is not adjacent to the vertex next to C on u, u @ Co—B is an uncovered p.d. path
from A to B such that the vertex adjacent to A on the path is not adjacent to B. Hence Ao— B could be oriented by R9 as
A — B, a contradiction.

Case 2: B # D and one of them is K. Without loss of generality, suppose B = K. Since Co—D € REL(Jo—K), and D # K,
by Definition 11, D is a parent of K (B). Then u & Co—D constitutes an uncovered p.d. path from A to D such that the
vertex adjacent to A on the path is not adjacent to B. This is the same situation as Case 1 in the proof of Lemma B.15, which
leads to a contradiction.

Case 3: B # D and neither of them is K. So both B and D are parents of K. Consider the edge Ac— K, which is shown to
be present by Lemma B.10. Since Ao— B is an uncovered p.d. path from A to B, a parent of K, u @ Co—D is an uncovered
p.d. path from A to D, a parent of K, and that the vertex next to A on u is not adjacent to B, the edge Ao—K could be
oriented as A — K by R10, a contradiction. O

Now it is time for our key lemma:

Lemma 4.2. Let D,_.k be the DAG output of the Orientation Algorithm. D ,_,  is a DAG orientation of PXFC, free of unshielded
colliders and agreeable to Jo—K.

Proof. As noted in the main text, the correctness of Meek’s algorithm [17] guarantees that D, is a DAG free of un-
shielded colliders. We need to show that it is also agreeable (Definition 12). In other words, we need to show that no
violation of Cq-C3 occurs in Dy, k. Below we give the details of our argument regarding C;. The argument regarding C;
and that regarding Cs are extremely parallel, of which we omit details.

Note that if any violation were to occur, it could only occur by the end of the third stage of the Orientation Algorithm,
before all o—o edges in E; UEp UE3 get oriented. So it suffices to show that by that stage, no violation of C; occurs. In fact,
we can prove something stronger. We show that for every vertex W € AR(Jo— K), there is no o—o edge that gets oriented
as into W by the end of the third stage. Suppose for sake of contradiction that such an orientation occurs. Let the first
occurrence be Ao—oB being oriented as A — B, where B € AR(Jo—K). We consider all the possible ways in which this
orientation could occur and derive a contradiction in each. (We assume, without loss of generality, that UR; has priority
over UR; and UR3.)

Case 1: Ao—oB is oriented as A — B to satisfy one of C1-Cs. Since B € AR(Jo—K), C; does not dictate this orientation.
Neither does Cy, as entailed by (2) in Lemma B.13. So it is due to C3, which means there is a vertex E such that Aoc—E €
REL(Jo—K) and E, B are not adjacent. Then Lemma B.15 implies that B is not a parent of K. Furthermore, by Lemma B.10,
Ao—K is present in Parcy, which implies that B £ K (because of Ao—eB). It follows that B ¢ AR(Jo—K); a contradiction.

Case 2: Ao—oB is oriented as A — B by an application of UR,.22 That is, there is a vertex C such that Ao—eCo—oB is in
PEFC,, and is oriented as A — C — B before Ao—oB is oriented. Then Co—oB being oriented as C — B would be an earlier
occurrence of orientation into B. This contradicts our choice of Ao—oB.

Case 3: Ao—oB is oriented as A — B by an application of URs. Again, it is easy to see that this contradicts the assumption
that A — B is the first orientation into B.

22 The case with UR; is more complicated, and will be considered last.
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Case 4: Ao—oB is oriented as A — B by an application of UR;. Generically this is the last (and possibly only) step in a
chain of applications of UR; to an uncovered circle path, initiated by a directed edge that is not oriented by UR;. Regarding
this first initiating edge, there are three subcases to consider:

Case 4.1: the first edge is oriented to satisfy one of C;-Cs. It can not be due to Cq, for otherwise there would be an
uncovered circle path in ngm with more than one edge between two vertices in AR(Jo— K), which contradicts Lemma B.11.
The rest goes exactly like the argument in Case 1.

Case 4.2: the first edge is oriented by UR;. That is, there are three vertices X, Y and Z (Z could be A) such that
Xo—oYo—oZ is in PEFC,, and is oriented as X — Y — Z, which in turn orients the edge Xo—oZ as X - Z. And X — Z
initiates a chain of UR; applications on an uncovered circle path u = (X, Z, ..., B) that eventually leads to the orientation of
A — B. We claim that for every vertex V on u between Z and B (including B), there is an edge between Y and V already
oriented as Y — V before X — Z is thus oriented. The argument is by induction. For the base case, let V1 be the first
vertex next to Z on u (Vq is B if Z is A). Y and V1 must be adjacent in PfFCI, for otherwise Zo—oV7 would be oriented
as Z — V1 by URy before Xo—oZ is oriented by UR;, according to our convention for the priority of URy. Since X and V;
are not adjacent (because u is uncovered), Yo—eVq should be oriented as Y — V1 by UR; before X — Z is thus oriented.
The inductive step is extremely similar. Therefore, the claim holds of every vertex V on u between Z and B, including B. In
particular, Y — B is already present before Xo—eZ gets oriented, and hence before Ao—oB gets oriented. This contradicts
our choice of Ao—eB.

Case 4.3: the first edge is oriented by URs. That is, there are four vertices X,Y,Z,W (Z could be A) such that
Wo—oYo—oZ, Wo—oXo—oZ, Xo—oY are in Pffm, and that W, Z are not adjacent. Furthermore, Wo—oYo—oZ is ori-
ented as W — Y — Z, which in turn orients the edge Xo—eoZ as X — Z. This then initiates a chain of URy applications
on an uncovered circle path u = (X, Z, ..., B) that eventually leads to the orientation of A — B. Notice that W, Z are not
adjacent, so (W, X, Z, ..., B) is also an uncovered circle path in PEFC,, which implies that W is not adjacent to any vertex
on u between Z and B. Then we can run the exact same argument as in Case 4.2 to derive a contradiction with our choice
of Ao—eB.

Therefore, there is no occurrence of orienting a o—o edge into W for any W € AR(Jo—K) by the end of the third stage
of the Orientation Algorithm. It follows that no violation of C; occurs in D, .

The arguments regarding C, and C3 are extremely similar, with different utility lemmas cited.>> We omit the details to
save space and tediousness. 0O

To prove Theorem 3, we need two more relatively simple facts about Parcy.

Lemma B.17. For any Ao— B in Pagcy, if there is a p.d. path u other than Ao— B from A to B, then some vertex on u is adjacent to both
A and B.

Proof. The argument is an easy induction on the length of u, with the upshot that if there is no such vertex, Ao—B could
have been oriented by R9. O

Lemma B.18. Suppose C<oAo— B is in Pagc. If C and B are not adjacent, then Ao— B ¢ REL(Jo— K) or Ao—C ¢ REL(Jo—K).

Proof. Suppose for contradiction that Ao—>B € REL(Jo—K) and Ao—C € REL(Jo—K). By Lemma B.10, Ao—K is in Pagq. It
also follows that B # K and C # K, for otherwise B and C would be adjacent. Then, by Definition 11, both B and C are
parents of K, which implies that Ac—K could be oriented by R10 because C and B are not adjacent; a contradiction. 0O

Finally we can prove Theorem 3.

Theorem 3. Let Jo—K be a o— edge in Parcy. Construct H from Pagcy by the following procedure:
(1) orient o~ edges in REL(Jo— K) as <>, and orient other o— edges as —;

(2) orient —o edges in Parc; as —;

(3) orient P into Djo_, k with the Orientation Algorithm.

Then H is a member of [GT].

Proof. By Theorem 2, we can construct a member of [Gr] by turning all o— edges and —o edges into directed edges, and
orienting me into D, k. Denote this member by H j._. k. It suffices to show that H is a MAG and Markov equivalent to
Hjo—k-

23 The argument for Cz is almost identical. The one regarding Cs is slightly more complicated in detail, but has the exact same structure.



1894 J. Zhang / Artificial Intelligence 172 (2008) 1873-1896

Notice that the difference between the two is in regard to edges in REL(Jo—K)—they correspond to directed edges in
'H jo— ., but bi-directed edges in . In what follows, we show that REL(Jo—K) can be transformed to 7 be a series of
changes of directed edges into bi-directed edges, one edge at a time, such that each change will preserve MAG-ness and
Markov equivalence. Our theorem then follows.

To show this, it suffices to establish the following. Let M be any MAG identical to H j,—. x except possibly that some o—
edges in REL(Jo—K) are oriented as <> (instead of —) in M. (Note that H j,_ x is such a MAG.) Let

DIFF = {A — B in M|Ao—B is in Parc; and Ao—B € REL(Jo—K)}.

We show that if DIFF is not empty, then some edge therein can be changed to <> while preserving MAG-ness and Markov
equivalence with M. In other words, as long as M and H are still different, we can identify a directed edge in M that
corresponds to an edge in REL(Jo—K), and safely change it into a bi-directed edge so as to decrease the number of
differences between M and H. If it is true, obviously there is a desired transformation from H j,_x to H.

We now prove it is true. Suppose DIFF is not empty. Let W= {B|3A s.t. A— B € DIFF}. W is also non-empty. Let Y be a
member of W such that no proper ancestor of Y in M belongs to W. Let X be a vertex such that X — Y € DIFF and no proper
descendant of X in M has this property. Let M* be the graph resulting from changing X — Y in M into X < Y. We show
that M* is a MAG, and is Markov equivalent to M.

Obviously no directed cycle is created in this change. It does not create an almost directed cycle unless there is a directed
path from X to Y in M other than the edge X — Y. Suppose for sake of contradiction that there is a directed path from
X to Y in M that does not contain X — Y. The corresponding path in Parc; must be potentially directed. It follows from
Lemma B.17 that some vertex Z on the path is adjacent to both X and Y. Since M is a MAG, we have X - Z — Y in
M, and so the corresponding path (X, Z,Y) in Parc is potentially directed. Notice that the edge between Z and Y can’t
be Z—-oY in Papq according to P2 (Lemma A.2), because Xo—Y is present. So, by the definition of p.d. path, the edge
between X and Z is either Xo—oZ or X — Z or Xo>Z or X—oZ, and the edge between Z and Y is either Zo—oY or
Z — Y or Zo—Y. But none of the 12 combinations is possible. It would be tedious to go through them one by one. So we
will just illustrate the kind of argument we would give by considering whether it is possible for Xo—>Zo—eY to appear in
Parci-

Suppose it is possible. Then Z ¢ AR(Jo—K), for otherwise Xo—Z € REL(Jo—K), and Z is a proper ancestor of Y in M,
which contradicts our choice of Y. However, Zo—eY is oriented as Z — Y, which means that Dj,_.x is not agreeable to
Jo—K (Cq being violated). This contradicts Lemma 4.2. The other 11 cases can be similarly or more easily handled, in each
of which one can derive a contradiction. So the initial supposition of a directed path from X to Y other than X — Y in M
is false, and there is no almost directed cycle in M™ either.

Moreover, there is no configuration in M* that violates (a3) in Definition 1. Suppose the contrary is true. Then the
configuration can only be Z—X <> Y for some Z in M*. But it is obvious that Z—X must be also in Pagc, which means
Xo—Y in Pagc could have been oriented by R6; a contradiction. So M™ is ancestral.

What is left to show is that M* is also maximal, and is Markov equivalent to M. For this purpose, as established by
Zhang and Spirtes [35] (their Lemma 1, see also [30]), it suffices to show the following hold of M:

(T2) For every Z — X in M, there is also an edge Z — Y in M; for every Z <> X in M, there is also an edge Z — Y or
Z <Y in M.
(T3) In M, there is no discriminating path for X on which Y is the endpoint adjacent to X.

We first establish (T2). For every Z — X in M, it corresponds to either Z — X or Zo—>X or Zo—eX or Z—oX in Pagc.
We claim Z and Y are adjacent in any case. In the former two cases, by P1, Z and Y are adjacent (since Xo—Y is in Pagcy).
In the case of Zo—oX, since it is oriented as Z — X in M, Z is adjacent to Y, for otherwise D, is not agreeable to
Jo—K, which contradicts Lemma 4.2. In the case of Z—oX, by P3, Z and Y are adjacent. Moreover, the edge between Z
and Y must be Z — Y in M, because Z — X — Y is in M and M is a MAG.

For every Z <» X in M, it corresponds to either Z <> X or Zo—>X or Z<oX in Pagq. In the former two cases, Z and
Y are adjacent by P1. In the latter case, Z<«oX € REL(Jo—K) by our assumption about bi-directed edges in M. It then
follows from Lemma B.18 that Z and Y are adjacent. So in any case, Z and Y are adjacent in M. Moreover, since M is a
MAG, the edge between Z and Y is either Z— Y or Z <Y in M. (T2) is true.

For (T3), suppose for sake of contradiction that in M there is a path p = (Vg, V1, ..., V4, = X, Y) which is discriminating
for X. Without loss of generality, suppose p is a shortest such path. Below we derive a contradiction by (eventually) showing
that p is already a discriminating path in Parc;, and hence the circle at X on Xo—Y could have been oriented by R4.

Note first that the subpath p(Vy, X) is into X in M, for otherwise there would be a directed path from X to Y other
than the edge X — Y (which follows from the definition of discriminating path). It follows that every edge on the subpath
p(Vq, X) is bi-directed in M.

Next we claim that in Pap the edge between Vg and V is Vox— V4, i.e, is into V1. Suppose for contradiction that
the contrary is true. Then the mark at V; must be a circle. Hence the edge is either Vg—oV{ or Vgo—oVq or Vy<«oV;
in Parc. In each of the three cases we can derive a contradiction. And two facts are useful for showing this: (i) V1 < V3
(V3 could be X) appears in M (as already noted); and (ii) In Parq there isn’'t an edge between Vo and V; that is into V5.
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For otherwise either (Vg, V2,..., V, = X, Y) constitutes a shorter discriminating path in M (if V3 # X), or Xo—Y in Parq
could be oriented as X — Y by R1 (if Vy = X), either of which is a contradiction.

Again, we won’t go through all three cases, and just use the most complicated case to illustrate our argument. Consider
Voo—oV1. Suppose this is true in Parc;. Then V1 <> V3 is not already in Pagc, for otherwise by Lemma B.3, there would also
be an edge V¢ <> V3 in Papc, which contradicts fact (ii). By our assumption about bi-directed edges in M, either Vo>V,
or Vi<oV, appears in Parq and belongs to REL(Jo—K). In the former case (Vi0—V3), Vo must be adjacent to V,, for
otherwise the orientation of Vyo—eVy (into Vg — Vq) is not agreeable to Jo—K (C3 being violated). By Corollary B.6, the
edge between V( and V3 is either Vo — V; or Vgo— V3 in Pagc, which contradicts fact (2). In the latter case (V1<«oV3), by
Lemma B.3, either Vo <= V, or Vg<oV3y is in Parq. Now if Vy is not a parent of K, which means Vo ¢ AR(Jo—K) (Vo #K
because Y belongs to AR(Jo—K) but is not adjacent to Vo by the definition of discriminating path), then the orientation
of Vgo—oVq (into Vo — V1) is not agreeable (C; being violated). So Vg is a parent of K—which also implies that Y # K.
But then the edge V0~ K—which is implied to be present in Parc; by Lemma B.10—could be oriented as V, — K by R10
(because Vy and Y are not adjacent by the definition of discriminating path, and the edge between V, and Vg in Papq
constitutes an uncovered p.d. path from V, to Vy, and the edge between V, and Y constitutes an uncovered p.d. path in
Parc from V;, to Y); a contradiction.

The other two cases can be handled more easily. It follows that the edge between Vo and V1 in Pagc is Vox— V1.

Finally we show that the supposed p would also be a discriminating path for X in Papc;. We prove by induction that
for every 1 <i<n-—1, V;jis a collider on p in Parc and is a parent of Y in Parq. Consider V; as the base case. Since we
have shown that Vyx— V1 appears in Parc;, and Vg is not adjacent to Y, the edge between Vi and Y is Vi — Y in Parqy
in virtue of R1. So Vq is a parent of Y in Parq. Suppose for contradiction that V' is not a collider on p in Pagc. Since we
have Vox— V71 in Parc, and we have Vq <> V3 in M, the edge between V1 and V, must be Vio—V3 in Papc. And by our
assumption about bi-directed edges in M, Vio—V; € REL(Jo—K). Then Lemma B.10 implies that there is an edge Vio—>K
in Parc. But either Y = K or Y is a parent of K in Papc, which implies that V4 is a parent of K or can be oriented as a
parent of K by R8 in Pagcr; a contradiction. So V1 is a collider on p in Parc and is a parent of Y in Pagcy.

The inductive step is very similar, except we will invoke R4 where the base case invoked R 1. Therefore (T3) is also true.
This concludes the proof. O
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