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SUMMARY

Circadian clocks are coupled to metabolic oscilla-
tions through nutrient-sensing pathways. Nutrient
flux into the hexosamine biosynthesis pathway trig-
gers covalent protein modification by O-linked b-D-
N-acetylglucosamine (O-GlcNAc). Here we show
that the hexosamine/O-GlcNAc pathway modulates
peripheral clock oscillation. O-GlcNAc transferase
(OGT) promotes expression of BMAL1/CLOCK
target genes and affects circadian oscillation of
clock genes in vitro and in vivo. Both BMAL1 and
CLOCK are rhythmically O-GlcNAcylated, and this
protein modification stabilizes BMAL1 and CLOCK
by inhibiting their ubiquitination. In vivo analysis of
genetically modified mice with perturbed hepatic
OGT expression shows aberrant circadian rhythms
of glucose homeostasis. These results establish the
counteraction between O-GlcNAcylation and ubiqui-
tination as a key mechanism that regulates the circa-
dian clock and suggest a crucial role for O-GlcNAc
signaling in transducing nutritional signals to the
core circadian timing machinery.

INTRODUCTION

Almost all mammalian cells contain a self-sustained circadian

(about 24 hr) clock that runs in tight synchrony with environ-

mental cues including light and food (Bass and Takahashi,

2010). While the master pacemaker residing in the hypothalamic

suprachiasmatic nucleus (SCN) is entrained directly by light,

peripheral circadian oscillators can be entrained by diurnal

feeding (Schibler and Sassone-Corsi, 2002). Among various

macronutrients, glucose is a particularly potent entraining cue

for peripheral clocks (Stephan and Davidson, 1998). Cellular

nutrient sensors such as nuclear receptors have been proposed

as mechanisms for entrainment by food (Asher and Schibler,

2011; Yang, 2010; Yang et al., 2006), but the molecular basis

for glucose-mediated entrainment remains a mystery.

Circadian timekeeping occurs at the cellular level by virtue

of transcriptional-translational autoregulatory feedback loops
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(Mohawk et al., 2012). The transcriptional activators BMAL1

and CLOCK drive expression of Period (Per1 and Per2) and

Cryptochrome (Cry1 and Cry2) genes. PER and CRY proteins

accumulate progressively and in turn inhibit BMAL1/CLOCK

activity, thus generating the approximate 24 hr cycle of clock

gene expression. The pace of oscillation of this autofeedback

loop is controlled by various regulatory mechanisms including

posttranslational modifications of clock proteins (Bass and

Takahashi, 2010).

Cells possess a distinct form of posttranslational modifi-

cation that is highly sensitive to nutrient availability. Glucose

flux via the hexosamine biosynthesis pathway leads to intracel-

lular glycosylation by addition of b-D-N-acetylglucosamine

(GlcNAc) to many cytoplasmic and nuclear proteins at the

hydroxyl groups of serine and threonine residues (Hanover

et al., 2012; Hart et al., 2011). This widespread and dynamic

glycosylation is mediated by O-linked GlcNAc transferase

(OGT) and O-GlcNAcase (OGA), which catalyze sugar addi-

tion and removal, respectively. O-GlcNAc modification is

increasingly recognized as a key regulator of diverse cellular

processes. O-GlcNAcylation of a number of transcription

factors mediates the effects of glucose on transcription of

genes involved in key metabolic processes (Hart et al., 2011).

A recent study has shown that O-GlcNAcylation links the

cardiomyocyte circadian clock to metabolic outputs (Durgan

et al., 2011). In Drosophila, O-GlcNAcylation of the PER

protein has been shown to contribute to setting the clock

speed (Kim et al., 2012). The present study provides direct

evidence that glucose availability regulates cellular clock oscil-

lation through the hexosamine/O-GlcNAc pathway. We further

demonstrate that BMAL1 and CLOCK are key targets of

O-GlcNAcylation, and this modification inhibits ubiquitination

and degradation of these proteins. Accordingly, this work

establishes a new mechanism for metabolic entrainment of

the circadian clock by covalent modification of core clock

components.
RESULTS

The Hexosamine/O-GlcNAc PathwayModulates Cellular
Clock Oscillation
In light of the important role of food-derived signals for peripheral

clock entrainment, we examined whether the nutrient-sensing
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Figure 1. The Hexosamine/O-GlcNAc Pathway Modulates Cellular Clock Oscillation

(A) Average real-time bioluminescence from synchronized U2OS-B6 cells stably expressing aBmal1-luciferase construct in the presence or absence of azaserine

(n = 5). The vertical bar represents relative luminescence (Rel. Lum.). Circadian parameters were calculated by JTK_CYCLE.

(B) qRT-PCR analysis of synchronized U2OS-B6 cells (n = 3; 5G/25G, 5/25 mM glucose; AZA, azaserine).

(C) Immunoblot analysis of synchronized U2OS-B6 cells (n = 3 per lane).

(D) qRT-PCR analysis of synchronized U2OS-B6 cells transfected with GFAT1 siRNA (n = 3).

(E) qRT-PCR analysis of OGT knockdown on clock oscillation in synchronized U2OS-B6 cells (n = 3).

(F) Average real-time bioluminescence of OGT knockdown on clock oscillation in synchronized U2OS-B6 cells (n = 5). siCTL, scrambled siRNA; siGFAT1,

GFAT1 siRNA; siOGT, OGT siRNA. All data are shown as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 by ANOVA with Bonferroni’s post hoc

test or two-tailed Student’s t test.
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hexosamine pathway affects circadian oscillation. After dexa-

methasone synchronization, U2OS cells (U2OS-B6) stably

expressing a Bmal1-luciferase reporter construct were grown

in high (25 mM) glucose culture medium containing D-luciferin

and monitored by the real-time bioluminescence recording

system. Addition of azaserine, an inhibitor of hexosamine

biosynthesis (Figure S1A), increases the period length and

decreases the amplitude of Bmal1 oscillation (Figure 1A). D-

glucosamine is able to fuel the cellular pool of UDP-GlcNAc,

the donor substrate of O-GlcNAcylation (Figure S1A). Addition

of D-glucosamine dramatically delays the phase of Bmal1

oscillation (Figure S1B). These data indicate a role for the

hexosamine pathway in circadian regulation.

To substantiate our observations, we examined the oscillation

of endogenous clock genes in synchronized U2OS-B6 cells.

Compared with low (5 mM) glucose, high glucose increases

the amplitude of Bmal1 and Cry1 messenger RNA (mRNA)

oscillation, whereas azaserine suppresses them (Figure 1B).
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Immunoblot analysis shows that low glucose and azaserine

also decrease BMAL1 protein levels as compared with high

glucose (Figure 1C). Although the glucose concentrations do

not affect the phase of Bmal1 mRNA cycling (Figure 1B), low

glucose delays the phase of BMAL1 protein accumulation

(Figure 1C), suggesting that glucose can regulate BMAL1 levels

posttranscriptionally.

GFAT1 is the first and rate-limiting enzyme in hexosamine

biosynthesis and the target of azaserine. The small interfering

RNA (siRNA)-mediated knockdown of GFAT1 decreases

expression of Bmal1 and Cry1 (Figures 1D and S1C), which is

also seen in the cells transfected with OGT siRNA (Figures 1E

and S1D). Consistently, OGT knockdown reduces BMAL1

protein abundance (Figure S1E). Furthermore, OGT knockdown

dramatically decreases the amplitude of the Bmal1-luciferase

rhythm (Figure 1F). Taken together, these data demonstrate

that the hexosamine/O-GlcNAc pathway regulates cellular

clock oscillation.
c.



Figure 2. OGT Promotes Expression of

BMAL1/CLOCK Target Genes

(A) Diurnal levels ofGfat1 andOgtmRNA in mouse

livers (n = 4). Data were normalized to that of

u36b4.

(B) qRT-PCR analysis of U2OS cells infected with

the adenovirus expressing OGT (n = 3).

(C) qRT-PCR analysis of OGTflox/Y mouse primary

hepatocytes transduced with the adenoviral

vector expressing Cre recombinase (n = 3).

(D) Per2-luciferase assays of HeLa cells transiently

expressing OGT, Myc-BMAL1, and Myc-CLOCK

constructs (n = 3). GFP was used to equalize the

total plasmid amount. Luminescence signals were

normalized to that of GFP control groups. Immu-

noblot analysis of cell lysates is shown to confirm

overexpression of OGT.

(E) Chromatin immunoprecipitation (ChIP)-qPCR

analysis of mouse primary hepatocytes using an

O-GlcNAc antibody (n = 3). ChIP with mouse IgG

was used as the negative control. The diagram of

assayed DNA regions is shown on the right. qPCR

signals were normalized to those from genomic

DNA inputs. All data are shown as mean ± SEM.

*p < 0.05, **p < 0.01, ***p < 0.001; two-tailed

Student’s t test.
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OGT Promotes Expression of BMAL1/CLOCK Target
Genes
To further dissect the circadian function of hexosamine

signaling, we examined the rhythmicity of expression of key

genes in this pathway. In mouse livers, diurnal levels of Gfat1

transcripts are ultradian with a 12 hr period, whereas Ogt

transcripts oscillate in a circadian manner (Figure 2A). Oga

expression exhibits a weak diurnal rhythm (Figure S2A).

To investigate whether rhythmic hexosamine signaling affects

expression of clock genes, we analyzed endogenous gene

expression in U2OS cells transiently expressing GFP or OGT

from recombinant adenovirus vectors. The results show that

OGT significantly increases expression of Per2 and Cry1 (Fig-

ure 2B). In contrast, Cre-induced homologous recombina-

tion in OGTflox/Y mouse primary hepatocytes that eliminates

OGT expression decreases expression of BMAL1/CLOCK

target genes, including Per1, Per2, Cry1, and Rorc genes

(Figure 2C). Luciferase reporter assays using a Per2-luciferase

construct reveal that OGT promotes BMAL1/CLOCK-mediated

activation of Per2 transcription, whereas the catalytically dead

OGTE899A/E900A (OGTEE/AA) has no effect (Figures 2D, S2B, and

S2C). These results indicate that OGT increases BMAL1/CLOCK

transcriptional activity by an enzymatic mechanism and thereby

promotes expression of BMAL1/CLOCK target genes.

Rhythmic O-GlcNAcylation Stabilizes BMAL1
and CLOCK by Inhibiting Their Ubiquitination
The circadian Dbp gene contains the conserved E-box motifs

recognized by BMAL1/CLOCK (Ripperger and Schibler, 2006).

Chromatin immunoprecipitation using an anti-O-GlcNAc anti-

body reveals that O-GlcNAcylated proteins associate with the

Dbp E-box region (Figure 2E). This suggests that the BMAL1/

CLOCK complex itself could be O-GlcNAcylated. To test this

possibility, we immunoprecipitated epitope-tagged BMAL1

and CLOCK proteins expressed in synchronized U2OS cells
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and assayed the O-GlcNAc levels of BMAL1 and CLOCK over

a complete circadian cycle. Immunoblot analysis reveals that

both BMAL1 and CLOCK are O-GlcNAcylated rhythmically

(Figure 3A). O-GlcNAcylation of endogenous CLOCK proteins

is decreased by azaserine treatment (Figure S3A), support-

ing the importance of the hexosamine pathway in circadian

regulation.

It has been known that OGT can modulate protein stability

(Dey et al., 2012; Ruan et al., 2012). Whether OGT regulates

CLOCK stability was tested by treating HEK293T cells express-

ing Myc-tagged CLOCK in the presence or absence of exoge-

nous OGT with cycloheximide (Figure 3B). OGT overexpression

increases the estimated half-life of CLOCK proteins. In line

with this, we found that OGT overexpression decreases the

steady-state ubiquitination of CLOCK (Figure 3C).

As shown in Figure 3A, BMAL1 is also O-GlcNAcylated. The

Database of O-GlcNAcylated Proteins and Sites (dbOGAP)

predicts S418 in mouse BMAL1 as a putative modification site

(Wang et al., 2011) (Figure S3B). Mutation of S418 to alanine

(S418A) decreases, but does not abolish, O-GlcNAcylation of

BMAL1 (Figure 3D). To investigate whether O-GlcNAc modifica-

tion on BMAL1 regulates its stability, Myc-tagged wild-type (WT)

BMAL1 or S418A mutant was transiently expressed in HEK293T

cells in the presence or absence of exogenous OGT and treated

with cycloheximide (Figure 3E). The BMAL1 S418A mutant

degrades faster than the WT protein, and OGT overexpression

increases the half-life of BMAL1, as it does on CLOCK (Figures

3B and 3E). To test whether O-GlcNAcylation regulates BMAL1

stability by inhibiting ubiquitination, HEK293T cells transiently

expressing Myc-tagged BMAL1 WT or S418A were treated

with the proteasome inhibitor MG132 in the presence or absence

of the OGA inhibitor PUGNAc. Elevation of global O-GlcNAc

levels by PUGNAc leads to decreased ubiquitination, and

BMAL1S418A hasmore attached ubiquitins thanWT (Figure 3F).

Per2-luciferase reporter assays show that BMAL1 S418A
etabolism 17, 303–310, February 5, 2013 ª2013 Elsevier Inc. 305



Figure 3. O-GlcNAcylation Stabilizes CLOCK and BMAL1 by Inhibiting Ubiquitination

(A) CircadianO-GlcNAc levels of BMAL1/CLOCK in synchronized U2OS cells transiently expressing Myc-tagged BMAL1 or CLOCK.O-GlcNAc levels normalized

to levels of BMAL1 and CLOCK proteins are shown below the BMAL1 blot.

(B–C) HEK293T cells were transfected with Myc-CLOCK in the absence or presence of Flag/HA (FH)-tagged OGT. (B) Immunoblot analysis of CLOCK upon

cycloheximide (CHX) treatment. Half-lives of Clock are shown. (C) Immunoblot analysis of ubiquitination of CLOCK. Cells were pretreated with MG132 and

subjected to immunoprecipitation.

(D) HEK293T cells were transfected with Myc-taggedWT or S418A mutant BMAL1.O-GlcNAcylation of BMAL1 was determined when pretreated with or without

PUGNAc.

(E) Stability of WT and S418A BMAL1 in the absence or presence of FH-OGT was determined by CHX treatment of transfected HEK293T cells.

(F) Immunoblot analysis of ubiquitination of BMAL1 WT and S418A in HEK293T cells. Cells were pretreated with MG132 and subjected to immunoprecipitation.

(G) Immunoblot analysis of Myc-tagged BMAL1/CLOCK upon CHX treatment in the presence or absence of Flag-BAP1.
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exhibits impaired transcriptional activity compared to WT when

coexpressed with CLOCK (Figure S3C).

The nuclear deubiquitinase BRCA1-associated protein 1

(BAP1) has recently been characterized as an OGT-binding

protein that removes the ubiquitin markers on other associated

proteins (Dey et al., 2012; Ruan et al., 2012). It follows that
306 Cell Metabolism 17, 303–310, February 5, 2013 ª2013 Elsevier In
OGT-targeted proteins are likely to be regulated by BAP1. Coex-

pression of BAP1 in HEK293T cells transiently expressing Myc-

tagged BMAL1 or CLOCK reveals that BAP1 stabilizes both

proteins (Figure 3G). Based on these results, we conclude that

OGT stabilizes BMAL1 and CLOCK through directO-GlcNAcyla-

tion, which prevents ubiquitination and subsequent degradation.
c.
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Hepatic Manipulation of OGT Perturbs the Diurnal
Rhythm of Glucose Homeostasis
In line with the results from U2OS cells (Figure 1C), immunopre-

cipitation analysis ofO-GlcNAcylated proteins frommouse livers

shows diurnal variations in O-GlcNAcylation of BMAL1 and

CLOCK that peak in the fed/dark phase (Figure 4A). Consistently,

O-GlcNAcylation of hepatic BMAL1/CLOCK is increased by re-

feeding, confirming that O-GlcNAcylation of clock proteins is

responsive to food availability (Figure S4A). To determine

whether O-GlcNAcylation regulates circadian clocks in vivo,

we generated liver-specific OGT overexpression mice by tail-

vein injection of recombinant adenovirus (Figure 4B). Analysis

of circadian transcripts in livers of these mice shows that OGT

overexpression advances the phase of Bmal1 and Clock and

increases expression levels of Per2, Cry1, Rorg, and Dbp during

the peak phase (Figures 4B and S4B and Table S1), supporting

the notion that O-GlcNAcylation increases BMAL1/CLOCK-

mediated E-box-dependent transcription.

To study the effects of O-GlcNAc deficiency on clock oscilla-

tion, we generated liver-specific OGT knockout mice by tail-

vein injection of the recombinant adenovirus expressing Cre

recombinase into OGT-floxed mice. Immunoblot analysis

shows that BMAL1 and CLOCK exhibit decreased O-GlcNAc

levels in mouse livers (Figure S4C). The oscillation of Bmal1

transcripts exhibits decreased amplitude due to reduced peak

levels (Figure 4C). However, Per2 and Cry1 oscillation is

unchanged (Figure S4D), suggesting the existence of com-

pensatory mechanisms. Together, these results indicate that

O-GlcNAcylation regulates circadian rhythms of clock gene

expression in vivo.

Nutrient-dependent peripheral clock entrainment allows

metabolic tissues to optimize the timing of their metabolic

processes. Accordingly, we examined whether glucose-respon-

sive O-GlcNAc signaling in the liver affects diurnal rhythms of

glucose metabolism. The results show that overexpression of

OGT boosts the diurnal rhythm of blood glucose, whereas

control mice maintain a weak diurnal variation of circulating

glucose (Figure 4D). Knockout of OGT advances the circulating

glucose rhythm by 6–8 hr and induces hyperglycemia in the

daytime (Figure 4E). To assess the circadian metabolic effects

of reduced O-GlcNAc signaling, we assayed the circadian

responses of OGT deficient animals to intraperitoneal injection

of a bolus of glucose. While control mice exhibit diurnal changes

in glucose tolerance, depletion of OGT exacerbates the already

poor glucose tolerance at ZT1 (1 hr into the light phase), which is

not seen at ZT13 (Figure 4F). Gluconeogenesis is known to be

circadian. qRT-PCR analysis of liver transcripts shows that

rhythmic expression of gluconeogenic genes is perturbed

by OGT overexpression or depletion (Figures S4B and S4D).

This indicates that O-GlcNAc signaling is important for diurnal

regulation of glucose metabolism in vivo and supports the

conclusion that OGT acts as a nutrient-sensing mediator that

resets peripheral circadian clocks.

DISCUSSION

Here we have shown that the hexosamine/O-GlcNAc pathway

regulates the circadian clock in peripheral tissues. It has

been known for a decade that diurnal variation in nutrient
Cell M
availability can override the light/dark cycle to entrain circadian

rhythms in peripheral tissues (Damiola et al., 2000; Stokkan

et al., 2001). How metabolic signals entrain the circadian

clock remains a central question in circadian biology (Bass

and Takahashi, 2010). Among macronutrients, glucose has

a prominent role in metabolic entrainment (Hirota et al., 2002;

Stephan and Davidson, 1998). Extracellular glucose levels

modulate intracellular UDP-GlcNAc and subsequent O-GlcNAc

levels through the hexosamine biosynthesis pathway (Fig-

ure S1A). OGT overexpression increases the amplitude of

clock oscillation in vivo (Figure 4B), whereas OGT knockout

decreases O-GlcNAcylation and protein abundance of BMAL1

and CLOCK as well as Bmal1 oscillation (Figures 4C and

S4B). Notably, depletion of OGT in liver fails to perturb

oscillation of the core oscillator genes Per and Cry (Figure S4D).

This conundrum may be explained by the dominant effect

of cryptic oscillating systemic cues (Hughes et al., 2012;

Kornmann et al., 2007). For instance, Hughes et al. (2012) found

that recovery of the SCN clock in clock mutant mice is

sufficient to reestablish the circadian rhythm of the liver clock.

Whether O-GlcNAc signaling is integral to food entrainment

in peripheral clocks is an important subject for further

investigation.

We further demonstrate that O-GlcNAcylation on BMAL1

and CLOCK prevents their protein degradation by inhibiting

ubiquitination. The control of BMAL1/CLOCK protein stability

is emerging as a critical layer of regulation on the amplitude

and phase of clock oscillation (Cardone et al., 2005; Lee et al.,

2008; Sahar et al., 2010; Stratmann et al., 2012). We have

demonstrated that O-GlcNAcylation stabilizes BMAL1/CLOCK

and thereby increases BMAL1/CLOCK-mediated transcription

of genes in the negative limb of the clock such as Per and Cry

(Figures 3 and 4). O-GlcNAcylation of PER and other compo-

nents could further stabilize the negative limb (Kim et al.,

2012). Together, our study helps establish a framework for

understanding the crosstalk between different protein modifica-

tions on the positive limb of the circadian clock and provide

a potential mechanism for food entrainment.

In the physiological context, perturbation of O-GlcNAc

signaling in liver affects the diurnal rhythm of glucose homeo-

stasis (Figures 4D–4F). OGT has been established as

a suppressor of insulin signaling and a mediator of glucocorti-

coid transrepression and gluconeogenesis (Dentin et al., 2008;

Housley et al., 2009; Li et al., 2012; Ruan et al., 2012; Yang

et al., 2008). Thus, changes in plasma glucose rhythm are likely

due to the combined effects of OGT on the circadian clock and

nutrient/hormone signaling.

In summary, the present study establishes the crosstalk

between O-GlcNAcylation and ubiquitination as a key molec-

ular mechanism underlying metabolic entrainment of the

circadian clock, supporting the concept that various post-

translational modifications on the clock proteins integrate

environmental and physiological cues to control circadian

rhythms. Diurnal rhythms of O-GlcNAc signaling have broad

implications for the circadian regulation of physiological

processes in peripheral tissues, and the O-GlcNAc cycling

enzymes OGT and OGA are thus potential drug targets for

treating disorders at the interface of nutrient metabolism and

circadian rhythms.
etabolism 17, 303–310, February 5, 2013 ª2013 Elsevier Inc. 307



Figure 4. OGT Regulates Expression of Clock Genes and Glucose Homeostasis in Mouse Livers
(A) Diurnal O-GlcNAc profiles of BMAL1/CLOCK in mouse livers (n = 3 per time point). Results of densitometry analysis are shown on the right.

(B) Diurnal gene expression profiles of male mouse livers transduced with Ad-OGT (n = 4 per time point). Data were normalized to u36b4.

(C) Diurnal gene expression profiles of Ogt-floxed female mouse livers transduced with Ad-Cre (n = 3 per time point). Data were normalized to Gapdh.

(D) Diurnal plasma glucose levels in male mice overexpressing OGT in livers (n = 7).

(E) Diurnal plasma glucose levels in female OGTflox/flox mice overexpressing Cre in livers (n = 12).

(F) Diurnal plasma glucose responses to intraperitoneal glucose tolerance tests (GTT) at week 12 in male mice expressing scrambled shRNA (shCTL) or OGT

shRNA (shOGT) in the liver (n = 7). Average areas under curve (AUC) of GTT curves are shown on the right. All data are shown asmean ± SEM. *p < 0.05, **p < 0.01,

***p < 0.001; ANOVA with Bonferroni’s multiple comparison test.
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EXPERIMENTAL PROCEDURES

Cell Culture

U2OS, HeLa, and HEK293T cells were maintained in high glucose Dulbecco’s

modified Eagle’s medium (DMEM) with 10% fetal bovine serum (FBS). U2OS-

B6 cells were maintained in high glucose DMEM with 2 mg/ml of Puromycin

(Sigma-Aldrich) and 10% FBS. Primary hepatocytes were isolated by Yale

Liver Center Core Facility and plated in DMEM with 10% FBS, 2 mM sodium

pyruvate, 1 mM dexamethasome, and 0.1 mM insulin on Collagen I coated

plates. U2OS-B6 cells were transfected by Lipofectamine 2000 (Invitrogen).

U2OS, HeLa, and HEK293T cells were transfected with FuGENE HD (Prom-

ega). For time course studies of BMAL1/CLOCK O-GlcNAc modification,

U2OS cells were transfected upon confluence, cultured for 2 days, then

shocked by 100 nM dexamethasone for 90 min and switched to fresh high

glucose DMEM with 10% FBS. For expression assays, primary hepatocytes

and U2OS cells were infected with adenoviruses in serum-free DMEM con-

taining 0.5% BSA. Azaserine (20 mM), D-glucosamine (5 mM), PUGNAc

(10 mM, 16 hr), MG132 (20 mM, 4 hr), and Cycloheximide (100 mg/ml) were

added to the cultures as indicated.

Real-Time Recordings of Bioluminescence

At 48 hr after transfection, cells were shocked for 90 min at 37�C in a final

concentration of 100 nM dexamethasone. Following dexamethasone shock,

the medium was replaced with high glucose phenol red-free DMEM (GIBCO;

supplemented with 10% FBS, 10 mM HEPES [pH 7.3], nonessential amino

acids, sodium pyruvate, and 100 mM D-Luciferin). The plate was sealed with

a plastic cover and read in a temperature-controlled TECAN M200 Luminom-

eter with iTecan Software (Tecan Group, Ltd) (Vollmers et al., 2008). Lumines-

cence for each well was integrated over 5 s and read at 30 min intervals for

5 days at a temperature setting of 37�C. LumiCycle data were statistically

assessed for rhythmicity using JTK_Cycle (Hughes et al., 2010) using a period

length window of 18–40 hr. Analyses used 3 days of data spanning 24–96 hr

after changing to the assay culture media. JTK_Cycle was implemented in

R (364 v2.12.1) (Hughes et al., 2010; Miyazaki et al., 2011). All scripts are

available on demand.

RNA Extraction, cDNA Synthesis, and Real-Time Quantitative PCR

Procedures were described previously (Ruan et al., 2012). qPCR data were

normalized to either u36b4 orGapdh as indicated. Primer sequences are listed

in Table S2.

Antibodies, Immunoprecipitation, and Immunoblotting

Anti-Flag (F3165) and anti-b-Actin (A5441) antibodies were from Sigma-

Aldrich. Anti-Bmal1 (A302-616A) and anti-Clock (A302-617A) were fromBethyl

Laboratories. Anti-O-GlcNAc (RL2, ab2739) and anti-OGT (ab50270) were

from Abcam. Anti-Ub (P4D1, sc-8017) and anti-Myc (9E10, sc-40) antibodies

were from Santa Cruz Biotechnology. Anti-HA antibody (12CA5) was from

Roche. Procedures for immunoprecipitation and immunoblotting assays

were described previously (Ruan et al., 2012).

Chromatin Immunoprecipitation

Procedures were described previously (Ruan et al., 2012). The 30 UTR of

Dbp was used as the negative control. A small aliquot of untreated sonicated

chromatin was reverse crosslinked and used as the total input DNA control.

Animal Studies

All procedures have been approved by the Institutional Animal Care and

Use Committee of Yale University. Male C57Bl/6 mice (10 weeks old) were

purchased from NCI/NIH. Female OGTflox/flox (5 months old) mice were gener-

ated previously (Shafi et al., 2000; Watson et al., 2010). Mice were maintained

under 12 hr light/12 hr dark cycle with free access to food andwater. Recombi-

nant adenoviruses (23 109 plaque-forming units [pfu] formales, 53 108 pfu for

females) were delivered by systemic tail-vein injection to mice. At 3–6 days

after viral infection, mice were subjected to glucose tolerance tests. Ad libitum

fed male mice were injected intraperitoneally with glucose (1.5 g/kg body

weight) at ZT1 or ZT13. Blood glucose was measured from tail-vein blood

collected at the designated times using Nova Max Glucometer. Tissues

were collected for RNA and protein isolation.
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Statistical Analysis

Data are presented as means ± SEM. Statistical analysis was performed

with GraphPad Prism by ANOVA using Bonferroni’s post hoc test or t test

where appropriate. Statistical analysis was accepted as significant if p value

was <0.05.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures, two tables, and Supplemental

Experimental Procedures and can be found with this article online at http://dx.

doi.org/10.1016/j.cmet.2012.12.015.
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