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Abstract

We show that a complete local rifgcontaining the integers is the completion of a local excellent
integral domain if and only if it is reduced, equidimensional, and no integ&risfa zero divisor.
0 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

In [3], Lech gives necessary and sufficient conditions for a complete local ring to be the
completion of a local integral domain. Specifically, he shows that a complete locd ring
with maximal idealM is the completion of a local integral domain if and only if

(1) unlessM = (0), M is not an associated prime ideal®f and
(2) nointeger off is a zero divisor.

In this paper, we explore the corresponding question for excellent local integral domains.
In other words, our goal is to find necessary and sufficient conditions for a complete local
ring T to be the completion of an excellent local integral domain. We have achieved
our goal in the characteristic zero case, but unfortunately, our proof falls a bit short for
characteristipp. Immediately, one can see that if a complete local ring is the completion
of an excellent integral domain, then it must be reduced, equidimensional, and satisfy the
condition that no integer is a zero divisor. Surprisingly, these three conditions are also
sufficient in the characteristic zero case. In other words, we show that a complete local
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ring T containing the integers is the completion of an excellent local integral domain if
and only if it is reduced, equidimensional, and no integeT a$ a zero divisor. To show
that these conditions are sufficient, we consider the case wherg ifh and the case
where dinl’ > 0 separately. I is a complete local reduced ring of dimension zero, then
it is a field, so is the completion of an excellent local integral domain (namely, itself). For
the other case, suppogeis a complete local reduced equidimensional ring containing
the integers where no integer is a zero divisor &his of dimension greater than zero.
The bulk of this paper is dedicated to this case. In other words, given such & nivey
work to construct a local excellent integral domain whose completidh iShe idea of

the construction is based on the methods used in [1,5]. We start with the prime subring
of T (which will be Z in our case) localized at the appropriate prime ideal. Then, we use a
process of successively adjoining element§'ab this ring. Of course, we want to adjoin
these elements carefully. More specifically, we will always avoid zero divisofs dhis

will force the ring we construct to be an integral domain. Also, we will adjoin elements
of T until we have that for every idedl of T such that/ is not contained in an associated
prime ideal ofT’, our ring contains an element of every coset in the g 7. In other
words, the ring that we construct, callAt, will satisfy the property that if/ is an ideal

of T with J ¢ Q for everyQ € AssT, then the mapt — T/JT is onto. In addition, we

will constructA so that/T N A = I for every finitely generated idedlof A. It turns out

that these two properties are enough to force the completioh tof be 7 and A to be
excellent.

We now make a few comments on notation. All rings in this paper are assumed to be
commutative with unity. When we use the term local ring, we mean a ring that is Noetherian
with exactly one maximal ideal. We will call a ring that is not necessarily Noetherian
but that has exactly one maximal ideal quasi-local. We (@&V) to denote a (quasi-)
local ring T with maximal idealM . Finally, we usec to denote the cardinality of the real
numbers.

2. Theconstruction

Recall that the bulk of our proof will be dedicated to showing thak ils a complete
local ring that contains the integers, is reduced, equidimensional, is of dimension at least
one, and satisfies the property that no integer is a zero divisor, then it is the completion of
an excellent integral domain, call4. We now begin the construction df.

The following proposition is Proposition 1 from [2]. It will be used to show that the ring
A we construct has the desired completion.

Proposition 1. If (R, M N R) is a quasi-local subring of a complete local rid@, M), the
mapR — T/M? is onto andI T N R = I for every finitely generated idedlof R, thenR
is Noetherian and the natural homomorphi®n- T is an isomorphism.

The following two elementary lemmas are needed for the proof of Lemma 4—a key
lemma in our proof. Although they are no doubt well-known, we state them here and
include a proof of Lemma 3.
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Lemma 2. LetT be an integral domain andl a nonzero ideal of’. Then,|I| =|T]|.

Lemma 3. Let (T, M) be a complete local reduced ring of dimension at least one. Let
Q € AssT. Then,|T/Q|=T| > c.

Proof. Since T is reduced, complete and dih> 1, we have|T| > ¢. Now, T/Q
is a complete local domain with diffi/Q) > 1. It follows that |T/Q| > ¢. Define a
map f:T — [[2,T/M' by f(t) = (t + M,t + M2t + M3,..). It is easy to see
that f is injective and hencéT| = supc, |T/M|}. Now, |T/Q| < |T| and |T/Q| >
supc. |T/M[}=|T|,s0|T/Q|=|T|. O

Lemma 4 is really the breakthrough lemma of this paper. We use it to adjoin elements to
a specific subring of" so that the resulting ring contains no zero divisors of our complete
local ringT.

Lemma 4. Let T be a complete local reduced ring of dimension at least one and lhet
an ideal of T such that/ ¢ Q for every Q € AssT. Let D be a subset of’ such that
|ID| < |T/Q|whereQ € AssT. Thenl ¢ | J{r + Q| Q € AssT, r € D}.

Proof. Let AssT = {Q1, Qo, ..., Q,}. By the Prime Avoidance Theoreh | Ji_; Q;.
Letx € I, x ¢ |J!_; Q;. Define a family of mapsf;:{Q;} x D — T as follows. Let
(Qi,r)€e{Qi}xD. Ifr+ Q; ¢ (x+ Q:)(T/Q;), definef; (Q;, r) = 0. On the other hand,
if r+Q; e+ Q;,)(T/Q;),thenchoose an € T such that + Q; = (x + Q;)(s; + Q;).
Define f; (Q;, r) = s;. We note here that the maf is not unique. The important point is
that one element of the cosgt+ Q is chosen and for the proof it does not matter which
one. LetS; = Imagef;. Now,|S;| < |D| < |T/Qi| = [(Qi +( V=1, jz Q;)/Qil- Note that
the last equality holds by Lemma 2 and the fact fDat- ﬂ.’}:L j=i Qjisnotthe zeroideal
of T/Q;. So, there existg ﬂle, j#i Qj suchthat; + Q; # s; + Q; for everys; € S;.
We claimthate 37 _; 1; ¢ ({r+ Q| Q € AssT, r € D}. To see this, suppose) ;_, 1 €
r+ Q; forsomei €{1,2,...,n} and some € D. Then,x Z'}:l ti+Q;=r+ Q; and so
xt;+ Q; =r+ Q;. Itfollows that(x + Q;)(t; + Qi) =r + Q;,s0r + Q; € (x+ Q) T/ Q;.
Hence,(x + Q) (ti + Qi) =r + Q; = (x + Q;)(s; + Q;) for somes; € S;. So, we have
thaty;, + Q; =s; + Q; for somes; € S;, a contradiction. O

Definition. Let (T, M) be a complete local ring. Suppose th&t R N M) is a quasi-local
subring of T such thafR| < |T| andR N Q = (0) for every Q € AssT. Then we callrR
a smallQ-avoiding subring of" and will denote it byS Q A-subring.

S Q A-subrings will be essential in our proof.&is anS Q A-subring ofT then note that
the conditionR N Q = (0) for every Q € AssT gives us thatR contains no zero divisors
of T—certainly a condition that the excellent domain we wish to construct must enjoy.
The cardinality condition will allow us to adjoin an elementRao that the resulting ring
will also not contain zero divisors df. Note that if7 is a complete local reduced ring of
dimension at least one and&fis anSQ A-subring of T, then by Lemma 3, we have that
|R| < |T/Q| foreveryQ € AssT.
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Recall that we want the ring under construction to satisfy the property thaf ifs an
ideal of T with J ¢ Q for every Q € AssT, then the mapA — T'/JT is onto. Lemma 5
allows us to adjoin an element of an arbitrary cosel'gp§ T, which eventually will help
us make the mapt — 7/JT onto as desired. We note here that the proof of Lemma 5
follows closely the proof of Lemma 3 in [5].

Lemma 5. Let (T, M) be a complete local reduced ring of dimension at least oneJLet
be an ideal ofl" such that/ ¢ Q for everyQ € AssT. Let R be anSQA-subring of T
andu + J € T/J. Then there exists an infinitQ A-subringS of T suchthatR C SC T
andu + J is in the image of the map — 7'/J. Moreover, ifu € J, thenS N J # (0).

Proof. Let Q € AssT. Let D(g) be a full set of coset representatives of the cosats)
that make(u + t) + Q algebraic overR. Note that agR| < |T| = |T/Q| > ¢, we have
|D)l <1T/Q|. Let D =Jgeassr Do), and note thatD| < |T/Q|. Now, use Lemma 4
with 7 = J to find anx € J such thatc ¢ | J{QO +r | O € AssT, r € D}. We claim that
S = R[u + x](Ru+x)nm) is the desiredS Q A-subring. Clearly|S| < |T'| for Q € AssT.
Now, supposef € Rlu +x]N Q. Thenf =r,(u + x)" + -+ +r1(u+x) +roe Q
wherer; € R. But, by the wayx was chosen, we have that + x) + Q is transcendental
overR. Hencey; e RN Q = (0) foreveryi =1, 2,...,n, and it follows thatf = 0. So,
SNQ = (0)andS isanSQA-subring. Note that ifi € J, thenu +x € J. Since(u +x)+ Q
is transcendental ovet, we have that + x # 0. It follows thatS N J # (0). O

Lemma 6 will help us to ensure thaf" N A = I for every finitely generated idedl
of A. Recall that this property is needed to apply Proposition 1. We note here that the proof
of Lemma 6 follows the proof of Lemma 6 in [4].

Lemma 6. Let (T, M) be a complete local reduced ring of dimension at least oneRLet
be anSQA-subring of T. Supposd is a finitely generated ideal ok andc € IT N R.
Then there exists afiQ A-subring of7 suchthatR € S € T andc € IS.

Proof. We will induct on the number of generators 6f Supposel = aR. Now, if
a =0, thenc =0 and soS = R is the desiredSQ A-subring of T. So, suppose # 0.
Then,c = au for someu € T. We claim S = R[u]r[unm) iS the desireds Q A-subring.
Clearly, |S| < |T|. Now, supposef € R[u] N Q where Q € AssT. Then, f = r,u" +
o4 ruu+ro € Q. S0,a" f = ry(au)” + -+ + ria""Yau) + roa” and it follows that
a"f =rpc" + -+ r1a"Le 4+ roa™ € Q N R = (0). But, a is not a zero divisor as € R
andRN Q = (0) foreveryQ € AssT . Itfollows that f = 0 and hencé is anSQ A-subring
of T. So, the lemma holds i is principal.

Now, let I be an ideal ofR that is generated by: > 1 elements and suppose that the
lemma holds for ideals ok that are generated by — 1 elements. Lel = (y1, ..., ym)R.
Then we have: = y1t1 + - -+ + ymt,n fOor somer; € T. Note that for any € T, we have
¢ =yit1+ y1yat — y1yat + yot2 + - -+ Ymtm. SO,c = y1(t1 + y2t) + y2(t2 — yat) + y3ta +
oo ymtm . We letxy = 11 + yot andxz = 2 — y1t where the elementwill be chosen later.
Now, let Q € AssT. If (t1 + y2t) + Q = (11 + y2t') + Q, theny»(r —t') € Q. But,y2 € R
andy; # 0, sor —t' € Q. Hencer + Q =+ + Q. It follows that ift + Q £ ¢’ + Q, then
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(t1+y21)+ Q # (11+y2t') + Q. Let Do) be afull set of coset representatives of the cosets
t + Q that makex1 + Q algebraic oveR. Let D = UQeAssT D(p). Note that D| < |T/Q|

for Q € AssT. Now, use Lemma 4 witli = T to find an element € T such that; + Q is
transcendental ovet for everyQ € AssT . Itis easy to see that’ = R[x1](r[xyjnm) iS @n
SQA-subring ofT. LetJ = (yo, ..., ym)R andc* = ¢ — y1x1. Now,c* € JT N R’, so we
may use our induction assumption to conclude that there is@#-subringS of 7 such
thatR’ C S C T andc* € JS. So,c* = y252 + - - - + ymsi fOr somes; € S. It follows that
c=y1x1+ y2x2 + -+ ymsy, € IS and soS is the desiredd Q A-subring. O

Definition. Let 2 be a well-ordered set ande 2. We definey (o) =supgB € £2 | 8 < a}.

Lemma 7 allows us to put many of our desired conditions together. We note here that
the proof of Lemma 7 is based on the proof of Lemma 12 in [4].

Lemma 7. Let (T, M) be a complete local reduced ring of dimension at least oneJLet
be an ideal off" with J ¢ Q for everyQ € AssT and letu + J € T/J. SUpposeR is an
SQ A-subring. Then, there exists &0 A-subringsS of T such that

(1) RSSCT;

(2) if u e JthenSNJ # (0);

(3) u + J isin the image of the map— 7/J; and

(4) for every finitely generated idedlof S, we havel TN S = 1.

Proof. First apply Lemma 5 to find an infinit§ QA-subring R" of T such thatR C
R' C T, u+ J isin the image of the maR’ — T/J, and ifu € J thenR' N J # (0).
We will construct the desired so thatR’ € S c T, which will ensure that conditions
(2)—(3) will hold. Now, let

2 ={,c) | 1is afinitely generated ideal &' andc € IT N R'}.

Letting I = R’, we see that$2| > |R’|. Now, asR’ is infinite, the number of finitely
generated ideals ok’ is |R’|. Hence,|R’| > |§2| and we havgR’| = |£2|. As R’ is an
SQA-subring of T, we have|2| = |R'| < |T|. Well-order £2 so that it does not have a
maximal element and let O denote its first element. We now work to inductively define
a family of SQ A-subrings off’—one for each element g®. Let Ro=R’. Leta € 2. If
y(a) < o andy (o) = (1, ¢) then definer,, to be theS Q A-subring obtained from Lemma 6
so thatRy ) € Ry & T andc € IRy. If y(a) = o, defineRy = (Jz_, Rg. Note that in
either case we havk, is anSQA-subring of7". Let Ry =, o Ra- NOw, [2| < |T| and
|Ry| < |T| for everya € £2, so we have thatR;| < |T|. Also, sinceR, N Q = (0) for
every Q € AssT and for everyx € £2, we have thar1 N Q = (0) for every Q € AssT.

It follows that Ry is an SQ A-subring. Note that iff is a finitely generated ideal a®g
andc € IT N Ro, then(Z, c¢) = y(a) for somea € 2 with y (@) < «. It follows by the
construction that € IR, € IR1. HencelIT N Rg C I R4 for every I which is a finitely
generated ideal aRp.
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In the same manner, construct 8@ A-subringR2 of T so thatRy € R, C T and
IT N Ry C IR, for every finitely generated idedl of R1. Continue to form a chain
RoC R1 C Ry C --- of SQA-subrings ofT so that/T N R, € IR, 1 for every finitely
generated idedl of R,,.

We claim thatS = | 72, R; is the desireds Q A-subring. Clearly$ is anSQ A-subring
andRC SCT.Nowletl =(y1,...,yx)S and letc € IT N S. Then there exists alV
such that, y1,..., yx € Ry. Hencec € (y1,...,yo) TN Ry C (¥1, ..., k) Rn+1 C IS. It
follows that/T N S = I, so condition (4) of the lemma holdso

Now we are in a position to construct a domainthat not only has the desired
completion but also satisfies other interesting properties that will give us our result.

Lemma8. Let (7T, M) be a complete local reduced ring of dimension at least one. Suppose
no integer ofT is a zero divisor. Then there exists a local domaisuch that

(1) A=T;

(2) if P isanonzero prime ideal of, thenT ® 4 k(P) = k(P) wherek(P) = Ap/PAp;

(3) the generic formal fiber ring ofA is semilocal with maximal ideals the associated
prime ideals ofT’;

(4) if I isanonzeroideal off, thenA/I is complete.

Proof. Define
2={u+JeT/J|Jisanideal off with J ¢ Q for everyQ € AssT}.

We claim|$2| < |T|. SinceT is infinite and Noetherian{J | J is an ideal off’ with J ¢ Q
foreveryQ € AssT}| < |T|. Now, if J is an ideal ofT’, then|T/J| < |T|. It follows that
121 <|T].

The rest of the proof only involves minor adjustments to the proof of Lemma 6 in [5].
But, the proof is short and so we include it here.

Well order §2 so that each element has fewer th&r predecessors. Let O denote the
first element of2. We defineRE, to be the prime subring & andRp to beR6 localized at
R{N M. Note thatRg is anS Q A-subring.

We recursively define a family of Q A-subrings as followsRy is already defined. Let
X € 2 and assumeg has been defined for evegy< A. Theny (L) = u + J for some
ideal J of T with J ¢ Q forall Q € AssT. If ¥ (%) < A, use Lemma 7 to obtain afQ A-
subringR;, so thatR, ;) € R, €T, u+ J € ImaggR, — T/J) and for every finitely
generated ideadl of R, we havel T N R; = I. Moreover, ifu € J, we haveR; N J # (0).

If y(A) =2, definer; = Uﬁd Rg. Then, R, is anSQA-subring for everyr € £2. We
claim thatA = [ J, ., Ry is the desired domain.

Now, as eaclr; is anSQA-subring, we have®, N Q = (0) for all 0 € AssT . Hence,
AN Q= (0 forall Q € AssT. Also, if J is an ideal ofT with J ¢ Q for all Q € AssT
then 0+ J € £2. So,y (L) =0+ J for somei € £2 with y(A) < A. By construction,
Ry N J # (0). It follows thatJ N A # (0). Hence, the generic formal fiber ring df is
semilocal with maximal ideals the associated prime ideals.of
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We will now show that the completion oA is T. To do this, we make use of
Proposition 1. Note that a% is reduced and of dimension at least one, we have that
M? is not contained in an associated prime idealZof Hence, by the construction,
the mapA — T/M? is surjective. Letl be a finitely generated ideal of with I =
(y1,...,yk). Letce IT N A. Then{c, y1, ..., yr} C R, for somex € 2 with y(1) < A.

By construction,(y1, ..., yx)T N Ry = (y1, ..., yi)Rx. ASc € (y1,..., )T N R;, we
havec € (y1,...,yx)Ry € I. Hence,IT N A = I. It follows by Proposition 1 thatl is
Noetherian and the completion afis T'.

Now supposd is anonzeroideal ah. LetJ = IT. If J € Q forsomeQ € AssT, then
I CJNACQNA=(0),acontradiction. Hence,  Q for all Q € AssT. It follows by
the construction that the map— T/J is surjective. Hence, the map/I — T/J is an
isomorphism and sd /I is complete.

We now claim that if/ € Q for all Q € AssT, thenJ = (AN J)T. To see this, let
J ¢ Qforall Q € AssT and note that sinc# is not contained in an associated prime ideal
of T, we haveJM ¢ Q for all Q € AssT. So,A — T/JM is onto by our construction.
Consider thel'-modulesJ and(A N J)T. We will show that/ = MJ + (AN J)T. Note
thatMJ 4+ (ANJ)T C J is clear. Now, letc € J. Then sinceA — T/J M is onto, there is
ana € Asuchthau+JM =x+JM.So,x =a+ ) 7, jim; wherej; € J andm; € M.
Also,a=x—)Y"}_4 jimi € J,s0a € (ANJ)T.Hencex € MJ + (AN J)T and it follows
thatMJ 4+ (AN J)T = J. By Nakayama’s Lemma, we have= (AN J)T. So, our claim
that/ = (ANJ)T,if J € Qforall Q € AssT, holds.

Now, suppose thaP is a nonzero prime ideal of andg is a prime ideal ofl’ such
thatg N A = P. Theng C Q, whereQ is an associated prime ideal ®f implies that
gNA=QnA=(0), acontradiction. So, we must hayeZ Q for all 0 € AssT. Hence,

g =(g@N AT = PT and it follows that the only prime ideal &f that lies overP is PT.
Now, by the constructionA — T/PT is onto and sinceA N PT = P, we have that
A/P=T/PT.S0,T ®4k(P)=(T/PT)—5 = (A/P)—5 = Ap/PAp =k(P).

It is interesting to note that we have also shown that there exists a one-to-one
correspondence between nonzero prime idealg aind prime ideals of" that are not
in the generic formal fiber . O

We note here that we did not use the full powerTobeing reduced. We only needed
thatT have no embedded prime ideals. In fact, the previous results hold with the condition
that T be reduced replaced with the weaker condition thatave no embedded prime
ideals. For our final result, however, it will be necessary thae reduced. So to make the
statements of the previous results less cumbersome, we used the stronger condifion that
be reduced.

Finally, we show that the domain constructed in the previous lemma gives us our result.

Theorem 9. Let (T, M) be a complete local ring containing the integers. Tlfels the
completion of a local excellent domain if and only if it is reduced, equidimensional and no
integer ofT is a zero divisor.

Proof. AssumeT is the completion of an excellent domaif, ThenT is clearly reduced.
Now, since A is universally catenary, it is formally catenary (see [6, Theorem 31.7]).
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It follows that A/(0) = A is formally equidimensional. Hence, its completidh, is
equidimensional. NowA must contain the integers. A$ is a domain, it follows that
no integer can be a zero divisor snand hence no integer @f can be a zero divisor ifff.
Conversely, suppos€ is reduced, equidimensional, and no integer7ofs a zero
divisor. If dimT = 0, thenT is a field and so is the completion of itself. If difn> 1, use
Lemma 8 to construct the domain We claim thatA is excellent. To see this, suppose that
P is a nonzero prime ideal of. Then, by Lemma 8, we have th&t®4 k(P) = k(P).
Let L be a finite field extension ok(P). ThenT @4 L =T ®4 k(P) Qkp) L =
(k(P) ®k(py L) = L. So, the fiber oveP is geometrically regular. Now the maximal ideals
of T ®4 k(0) are the associated prime ideals Bf Let Q € AsST. ThenT ®4 k(0)
localized atQ is isomorphic tol'p. SinceT is reduced, it satisfies Serr&’Ro) condition.
Hence, Ty is regular. It follows thatl” ® 4 k(0) is regular. Now, sinc&’ contains the
integers, so doed. It follows thatk((0)) is a field of characteristic zero. Hen@e®4 L
is regular for every finite field extensiah of k((0)). So, all the formal fibers ofA are
geometrically regular. Sinca is formally equidimensional, it is universally catenary. It
follows thatA is excellent. O

Note that if T has characteristip > 0, then theA we construct has the property that
if P is a nonzero prime ideal of then the fiber oveP is geometrically regular. So, the
only obstacle tA being excellent is that the generic formal fiber may not be geometrically
regular. This author sees no reason to believe that the generic formal fiber of the dbomain
we have constructed is geometrically regular. However, it seems believable that one could
modify this construction to ensure that this be true. Since at this point, this author does not
know how to do this, we leave it as an open question.
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