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Abstract

We show that a complete local ringT containing the integers is the completion of a local excel
integral domain if and only if it is reduced, equidimensional, and no integer ofT is a zero divisor.
 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

In [3], Lech gives necessary and sufficient conditions for a complete local ring to b
completion of a local integral domain. Specifically, he shows that a complete local rT

with maximal idealM is the completion of a local integral domain if and only if

(1) unlessM = (0), M is not an associated prime ideal ofT , and
(2) no integer ofT is a zero divisor.

In this paper, we explore the corresponding question for excellent local integral dom
In other words, our goal is to find necessary and sufficient conditions for a complete
ring T to be the completion of an excellent local integral domain. We have ach
our goal in the characteristic zero case, but unfortunately, our proof falls a bit sho
characteristicp. Immediately, one can see that if a complete local ring is the compl
of an excellent integral domain, then it must be reduced, equidimensional, and sati
condition that no integer is a zero divisor. Surprisingly, these three conditions are
sufficient in the characteristic zero case. In other words, we show that a complete
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ring T containing the integers is the completion of an excellent local integral dom
and only if it is reduced, equidimensional, and no integer ofT is a zero divisor. To show
that these conditions are sufficient, we consider the case where dimT = 0 and the case
where dimT > 0 separately. IfT is a complete local reduced ring of dimension zero, t
it is a field, so is the completion of an excellent local integral domain (namely, itself)
the other case, supposeT is a complete local reduced equidimensional ring contain
the integers where no integer is a zero divisor andT is of dimension greater than zer
The bulk of this paper is dedicated to this case. In other words, given such a ringT we
work to construct a local excellent integral domain whose completion isT . The idea of
the construction is based on the methods used in [1,5]. We start with the prime s
of T (which will beZ in our case) localized at the appropriate prime ideal. Then, we u
process of successively adjoining elements ofT to this ring. Of course, we want to adjo
these elements carefully. More specifically, we will always avoid zero divisors ofT . This
will force the ring we construct to be an integral domain. Also, we will adjoin elem
of T until we have that for every idealJ of T such thatJ is not contained in an associat
prime ideal ofT , our ring contains an element of every coset in the ringT/JT . In other
words, the ring that we construct, call itA, will satisfy the property that ifJ is an ideal
of T with J � Q for everyQ ∈ AssT , then the mapA → T/JT is onto. In addition, we
will constructA so thatIT ∩A= I for every finitely generated idealI of A. It turns out
that these two properties are enough to force the completion ofA to beT andA to be
excellent.

We now make a few comments on notation. All rings in this paper are assumed
commutative with unity. When we use the term local ring, we mean a ring that is Noeth
with exactly one maximal ideal. We will call a ring that is not necessarily Noethe
but that has exactly one maximal ideal quasi-local. We use(T ,M) to denote a (quasi-
local ringT with maximal idealM. Finally, we usec to denote the cardinality of the re
numbers.

2. The construction

Recall that the bulk of our proof will be dedicated to showing that ifT is a complete
local ring that contains the integers, is reduced, equidimensional, is of dimension a
one, and satisfies the property that no integer is a zero divisor, then it is the comple
an excellent integral domain, call itA. We now begin the construction ofA.

The following proposition is Proposition 1 from [2]. It will be used to show that the
A we construct has the desired completion.

Proposition 1. If (R,M ∩R) is a quasi-local subring of a complete local ring(T ,M), the
mapR → T/M2 is onto andIT ∩R = I for every finitely generated idealI ofR, thenR
is Noetherian and the natural homomorphism̂R → T is an isomorphism.

The following two elementary lemmas are needed for the proof of Lemma 4—a
lemma in our proof. Although they are no doubt well-known, we state them here
include a proof of Lemma 3.
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Lemma 2. LetT be an integral domain andI a nonzero ideal ofT . Then,|I | = |T |.

Lemma 3. Let (T ,M) be a complete local reduced ring of dimension at least one.
Q ∈ AssT . Then,|T/Q| = |T | � c.

Proof. Since T is reduced, complete and dimT � 1, we have|T | � c. Now, T/Q
is a complete local domain with dim(T /Q) � 1. It follows that |T/Q| � c. Define a
map f :T → ∏∞

i=1T/M
i by f (t) = (t + M, t + M2, t + M3, . . .). It is easy to see

that f is injective and hence|T | = sup{c, |T/M|}. Now, |T/Q| � |T | and |T/Q| �
sup{c, |T/M|} = |T |, so|T/Q| = |T |. ✷

Lemma 4 is really the breakthrough lemma of this paper. We use it to adjoin eleme
a specific subring ofT so that the resulting ring contains no zero divisors of our comp
local ringT .

Lemma 4. Let T be a complete local reduced ring of dimension at least one and letI be
an ideal ofT such thatI � Q for everyQ ∈ AssT . Let D be a subset ofT such that
|D|< |T/Q| whereQ ∈ AssT . ThenI �

⋃{r +Q |Q ∈ AssT , r ∈D}.

Proof. Let AssT = {Q1,Q2, . . . ,Qn}. By the Prime Avoidance Theorem,I �
⋃n

i=1Qi .
Let x ∈ I , x /∈ ⋃n

i=1Qi . Define a family of mapsfi : {Qi} × D → T as follows. Let
(Qi, r) ∈ {Qi}×D. If r +Qi /∈ (x+Qi)(T /Qi), definefi(Qi, r)= 0. On the other hand
if r +Qi ∈ (x+Qi)(T /Qi), then choose ansi ∈ T such thatr +Qi = (x+Qi)(si +Qi).
Definefi(Qi, r) = si . We note here that the mapfi is not unique. The important point
that one element of the cosetsi +Q is chosen and for the proof it does not matter wh
one. LetSi = Imagefi . Now,|Si | � |D|< |T/Qi | = |(Qi +⋂n

j=1, j �=i Qj )/Qi |. Note that
the last equality holds by Lemma 2 and the fact thatQi +⋂n

j=1, j �=i Qj is not the zero idea
of T/Qi . So, there existsti ∈ ⋂n

j=1, j �=i Qj such thatti +Qi �= si +Qi for everysi ∈ Si .
We claim thatx

∑n
j=1 tj /∈

⋃{r+Q |Q ∈ AssT , r ∈D}. To see this, supposex
∑n

j=1 tj ∈
r +Qi for somei ∈ {1,2, . . . , n} and somer ∈D. Then,x

∑n
j=1 tj +Qi = r +Qi and so

xti +Qi = r+Qi . It follows that(x+Qi)(ti +Qi)= r+Qi , sor+Qi ∈ (x+Qi)T /Qi .
Hence,(x + Qi)(ti +Qi) = r + Qi = (x + Qi)(si +Qi) for somesi ∈ Si . So, we have
that ti +Qi = si +Qi for somesi ∈ Si , a contradiction. ✷
Definition. Let (T ,M) be a complete local ring. Suppose that(R,R ∩M) is a quasi-loca
subring ofT such that|R| < |T | andR ∩Q = (0) for everyQ ∈ AssT . Then we callR
a smallQ-avoiding subring ofT and will denote it bySQA-subring.

SQA-subrings will be essential in our proof. IfR is anSQA-subring ofT then note tha
the conditionR ∩Q= (0) for everyQ ∈ AssT gives us thatR contains no zero divisor
of T—certainly a condition that the excellent domain we wish to construct must e
The cardinality condition will allow us to adjoin an element toR so that the resulting ring
will also not contain zero divisors ofT . Note that ifT is a complete local reduced ring
dimension at least one and ifR is anSQA-subring ofT , then by Lemma 3, we have th
|R|< |T/Q| for everyQ ∈ AssT .
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Recall that we want the ringA under construction to satisfy the property that ifJ is an
ideal ofT with J � Q for everyQ ∈ AssT , then the mapA→ T/JT is onto. Lemma 5
allows us to adjoin an element of an arbitrary coset ofT/JT , which eventually will help
us make the mapA → T/JT onto as desired. We note here that the proof of Lemm
follows closely the proof of Lemma 3 in [5].

Lemma 5. Let (T ,M) be a complete local reduced ring of dimension at least one. LJ
be an ideal ofT such thatJ � Q for everyQ ∈ AssT . LetR be anSQA-subring ofT
andu+ J ∈ T/J . Then there exists an infiniteSQA-subringS of T such thatR ⊆ S ⊆ T

andu+ J is in the image of the mapS → T/J . Moreover, ifu ∈ J , thenS ∩ J �= (0).

Proof. Let Q ∈ AssT . LetD(Q) be a full set of coset representatives of the cosetst +Q

that make(u + t) + Q algebraic overR. Note that as|R| < |T | = |T/Q| � c, we have
|D(Q)|< |T/Q|. LetD = ⋃

Q∈AssT D(Q), and note that|D|< |T/Q|. Now, use Lemma 4
with I = J to find anx ∈ J such thatx /∈ ⋃{Q+ r | Q ∈ AssT , r ∈ D}. We claim that
S = R[u + x](R[u+x]∩M) is the desiredSQA-subring. Clearly,|S| < |T | for Q ∈ AssT .
Now, supposef ∈ R[u + x] ∩ Q. Then f = rn(u + x)n + · · · + r1(u + x) + r0 ∈ Q

whereri ∈ R. But, by the wayx was chosen, we have that(u+ x)+Q is transcendenta
overR. Hence,ri ∈ R ∩Q= (0) for everyi = 1,2, . . . , n, and it follows thatf = 0. So,
S∩Q= (0) andS is anSQA-subring. Note that ifu ∈ J , thenu+x ∈ J . Since(u+x)+Q

is transcendental overR, we have thatu+ x �= 0. It follows thatS ∩ J �= (0). ✷
Lemma 6 will help us to ensure thatIT ∩ A = I for every finitely generated idealI

of A. Recall that this property is needed to apply Proposition 1. We note here that the
of Lemma 6 follows the proof of Lemma 6 in [4].

Lemma 6. Let (T ,M) be a complete local reduced ring of dimension at least one. LR
be anSQA-subring ofT . SupposeI is a finitely generated ideal ofR and c ∈ IT ∩ R.
Then there exists anSQA-subring ofT such thatR ⊆ S ⊆ T andc ∈ IS.

Proof. We will induct on the number of generators ofI . SupposeI = aR. Now, if
a = 0, thenc = 0 and soS = R is the desiredSQA-subring ofT . So, supposea �= 0.
Then,c = au for someu ∈ T . We claimS = R[u](R[u]∩M) is the desiredSQA-subring.
Clearly, |S| < |T |. Now, supposef ∈ R[u] ∩ Q whereQ ∈ AssT . Then,f = rnu

n +
· · · + r1u + r0 ∈ Q. So, anf = rn(au)

n + · · · + r1a
n−1(au) + r0a

n and it follows that
anf = rnc

n + · · · + r1a
n−1c + r0a

n ∈ Q ∩ R = (0). But, a is not a zero divisor asa ∈ R

andR∩Q= (0) for everyQ ∈ AssT . It follows thatf = 0 and henceS is anSQA-subring
of T . So, the lemma holds ifI is principal.

Now, let I be an ideal ofR that is generated bym> 1 elements and suppose that t
lemma holds for ideals ofR that are generated bym− 1 elements. LetI = (y1, . . . , ym)R.
Then we havec = y1t1 + · · · + ymtm for someti ∈ T . Note that for anyt ∈ T , we have
c = y1t1 + y1y2t − y1y2t + y2t2 + · · ·+ ymtm. So,c = y1(t1 + y2t)+ y2(t2 − y1t)+ y3t3 +
· · ·+ymtm. We letx1 = t1 +y2t andx2 = t2 −y1t where the elementt will be chosen later
Now, letQ ∈ AssT . If (t1 + y2t)+Q= (t1 + y2t

′)+Q, theny2(t − t ′) ∈Q. But,y2 ∈R

andy2 �= 0, sot − t ′ ∈ Q. Hencet +Q= t ′ +Q. It follows that if t +Q �= t ′ +Q, then
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(t1+y2t)+Q �= (t1+y2t
′)+Q. LetD(Q) be a full set of coset representatives of the co

t +Q that makex1+Q algebraic overR. LetD = ⋃
Q∈AssT D(Q). Note that|D|< |T/Q|

for Q ∈ AssT . Now, use Lemma 4 withI = T to find an elementt ∈ T such thatx1 +Q is
transcendental overR for everyQ ∈ AssT . It is easy to see thatR′ =R[x1](R[x1]∩M) is an
SQA-subring ofT . LetJ = (y2, . . . , ym)R

′ andc∗ = c− y1x1. Now,c∗ ∈ JT ∩R′, so we
may use our induction assumption to conclude that there is anSQA-subringS of T such
thatR′ ⊆ S ⊆ T andc∗ ∈ JS. So,c∗ = y2s2 + · · · + ymsm for somesi ∈ S. It follows that
c = y1x1 + y2x2 + · · · + ymsm ∈ IS and soS is the desiredSQA-subring. ✷
Definition. LetΩ be a well-ordered set andα ∈Ω . We defineγ (α)= sup{β ∈Ω | β < α}.

Lemma 7 allows us to put many of our desired conditions together. We note her
the proof of Lemma 7 is based on the proof of Lemma 12 in [4].

Lemma 7. Let (T ,M) be a complete local reduced ring of dimension at least one. LJ
be an ideal ofT with J � Q for everyQ ∈ AssT and letu+ J ∈ T/J . SupposeR is an
SQA-subring. Then, there exists anSQA-subringS of T such that

(1) R ⊆ S ⊆ T ;
(2) if u ∈ J thenS ∩ J �= (0);
(3) u+ J is in the image of the mapS → T/J ; and
(4) for every finitely generated idealI of S, we haveIT ∩ S = I .

Proof. First apply Lemma 5 to find an infiniteSQA-subringR′ of T such thatR ⊆
R′ ⊆ T , u + J is in the image of the mapR′ → T/J , and if u ∈ J thenR′ ∩ J �= (0).
We will construct the desiredS so thatR′ ⊆ S ⊂ T , which will ensure that condition
(1)–(3) will hold. Now, let

Ω = {
(I, c) | I is a finitely generated ideal ofR′ andc ∈ IT ∩R′}.

Letting I = R′, we see that|Ω | � |R′|. Now, asR′ is infinite, the number of finitely
generated ideals ofR′ is |R′|. Hence,|R′| � |Ω | and we have|R′| = |Ω |. As R′ is an
SQA-subring ofT , we have|Ω | = |R′| < |T |. Well-orderΩ so that it does not have
maximal element and let 0 denote its first element. We now work to inductively d
a family of SQA-subrings ofT—one for each element ofΩ . LetR0 = R′. Let a ∈ Ω . If
γ (α) < α andγ (α)= (I, c) then defineRα to be theSQA-subring obtained from Lemma
so thatRγ (α) ⊆ Rα ⊆ T andc ∈ IRα . If γ (α) = α, defineRα = ⋃

β<α Rβ . Note that in
either case we haveRα is anSQA-subring ofT . LetR1 = ⋃

α∈Ω Rα . Now, |Ω |< |T | and
|Rα| < |T | for everyα ∈ Ω , so we have that|R1| < |T |. Also, sinceRα ∩ Q = (0) for
everyQ ∈ AssT and for everyα ∈ Ω , we have thatR1 ∩Q = (0) for everyQ ∈ AssT .
It follows thatR1 is anSQA-subring. Note that ifI is a finitely generated ideal ofR0
andc ∈ IT ∩ R0, then(I, c) = γ (α) for someα ∈ Ω with γ (α) < α. It follows by the
construction thatc ∈ IRα ⊆ IR1. HenceIT ∩ R0 ⊆ IR1 for everyI which is a finitely
generated ideal ofR0.



226 S. Loepp / Journal of Algebra 265 (2003) 221–228

d

pose

ed

[5].

he

t

In the same manner, construct anSQA-subringR2 of T so thatR1 ⊆ R2 ⊆ T and
IT ∩ R1 ⊆ IR2 for every finitely generated idealI of R1. Continue to form a chain
R0 ⊆ R1 ⊆ R2 ⊆ · · · of SQA-subrings ofT so thatIT ∩ Rn ⊆ IRn+1 for every finitely
generated idealI of Rn.

We claim thatS = ⋃∞
i=1Ri is the desiredSQA-subring. Clearly,S is anSQA-subring

andR ⊆ S ⊆ T . Now let I = (y1, . . . , yk)S and letc ∈ IT ∩ S. Then there exists anN
such thatc, y1, . . . , yk ∈ RN . Hencec ∈ (y1, . . . , yk)T ∩RN ⊆ (y1, . . . , yk)RN+1 ⊂ IS. It
follows thatIT ∩ S = I , so condition (4) of the lemma holds.✷

Now we are in a position to construct a domainA that not only has the desire
completion but also satisfies other interesting properties that will give us our result.

Lemma 8. Let (T ,M) be a complete local reduced ring of dimension at least one. Sup
no integer ofT is a zero divisor. Then there exists a local domainA such that

(1) Â= T ;
(2) if P is a nonzero prime ideal ofA, thenT ⊗A k(P )∼= k(P ) wherek(P )=AP/PAP ;
(3) the generic formal fiber ring ofA is semilocal with maximal ideals the associat

prime ideals ofT ;
(4) if I is a nonzero ideal ofA, thenA/I is complete.

Proof. Define

Ω = {
u+ J ∈ T/J | J is an ideal ofT with J �Q for everyQ ∈ AssT

}
.

We claim|Ω | � |T |. SinceT is infinite and Noetherian,|{J | J is an ideal ofT with J �Q

for everyQ ∈ AssT }| � |T |. Now, if J is an ideal ofT , then|T/J | � |T |. It follows that
|Ω | � |T |.

The rest of the proof only involves minor adjustments to the proof of Lemma 6 in
But, the proof is short and so we include it here.

Well orderΩ so that each element has fewer than|Ω | predecessors. Let 0 denote t
first element ofΩ . We defineR′

0 to be the prime subring ofT andR0 to beR′
0 localized at

R′
0 ∩M. Note thatR0 is anSQA-subring.
We recursively define a family ofSQA-subrings as follows.R0 is already defined. Le

λ ∈ Ω and assumeRβ has been defined for everyβ < λ. Thenγ (λ) = u + J for some
idealJ of T with J �Q for all Q ∈ AssT . If γ (λ) < λ, use Lemma 7 to obtain anSQA-
subringRλ so thatRγ (λ) ⊆ Rλ ⊆ T , u + J ∈ Image(Rλ → T/J ) and for every finitely
generated idealI of Rλ we haveIT ∩Rλ = I . Moreover, ifu ∈ J , we haveRλ ∩ J �= (0).
If γ (λ) = λ, defineRλ = ⋃

β<λ Rβ . Then,Rλ is anSQA-subring for everyλ ∈ Ω . We
claim thatA= ⋃

λ∈Ω Rλ is the desired domain.
Now, as eachRλ is anSQA-subring, we haveRλ ∩Q= (0) for all Q ∈ AssT . Hence,

A ∩Q = (0) for all Q ∈ AssT . Also, if J is an ideal ofT with J � Q for all Q ∈ AssT
then 0+ J ∈ Ω . So, γ (λ) = 0 + J for someλ ∈ Ω with γ (λ) < λ. By construction,
Rλ ∩ J �= (0). It follows thatJ ∩ A �= (0). Hence, the generic formal fiber ring ofA is
semilocal with maximal ideals the associated prime ideals ofT .
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We will now show that the completion ofA is T . To do this, we make use o
Proposition 1. Note that asT is reduced and of dimension at least one, we have
M2 is not contained in an associated prime ideal ofT . Hence, by the construction
the mapA → T/M2 is surjective. LetI be a finitely generated ideal ofA with I =
(y1, . . . , yk). Let c ∈ IT ∩ A. Then{c, y1, . . . , yk} ⊆ Rλ for someλ ∈ Ω with γ (λ) < λ.
By construction,(y1, . . . , yk)T ∩ Rλ = (y1, . . . , yk)Rλ. As c ∈ (y1, . . . , yk)T ∩ Rλ, we
havec ∈ (y1, . . . , yk)Rλ ⊆ I . Hence,IT ∩ A = I . It follows by Proposition 1 thatA is
Noetherian and the completion ofA is T .

Now supposeI is a nonzero ideal ofA. LetJ = IT . If J ⊆Q for someQ ∈ AssT , then
I ⊆ J ∩A⊆Q∩A= (0), a contradiction. Hence,J �Q for all Q ∈ AssT . It follows by
the construction that the mapA → T/J is surjective. Hence, the mapA/I → T/J is an
isomorphism and soA/I is complete.

We now claim that ifJ ⊆ Q for all Q ∈ AssT , thenJ = (A ∩ J )T . To see this, le
J �Q for allQ ∈ AssT and note that sinceM is not contained in an associated prime id
of T , we haveJM � Q for all Q ∈ AssT . So,A → T/JM is onto by our construction
Consider theT -modulesJ and(A ∩ J )T . We will show thatJ =MJ + (A ∩ J )T . Note
thatMJ + (A∩ J )T ⊆ J is clear. Now, letx ∈ J . Then sinceA→ T/JM is onto, there is
ana ∈A such thata+ JM = x + JM. So,x = a+ ∑n

i=1 jimi whereji ∈ J andmi ∈M.
Also,a = x−∑n

i=1 jimi ∈ J , soa ∈ (A∩J )T . Hence,x ∈MJ + (A∩J )T and it follows
thatMJ + (A∩ J )T = J . By Nakayama’s Lemma, we haveJ = (A∩ J )T . So, our claim
thatJ = (A∩ J )T , if J �Q for all Q ∈ AssT , holds.

Now, suppose thatP is a nonzero prime ideal ofA andq is a prime ideal ofT such
that q ∩ A = P . Thenq ⊆ Q, whereQ is an associated prime ideal ofT , implies that
q ∩A=Q∩A= (0), a contradiction. So, we must haveq �Q for all Q ∈ AssT . Hence,
q = (q ∩A)T = PT and it follows that the only prime ideal ofT that lies overP is PT .
Now, by the construction,A → T/PT is onto and sinceA ∩ PT = P , we have tha
A/P ∼= T/PT . So,T ⊗A k(P )∼= (T /PT )

A−P ∼= (A/P)
A−P ∼=AP/PAP = k(P ).

It is interesting to note that we have also shown that there exists a one-t
correspondence between nonzero prime ideals ofA and prime ideals ofT that are not
in the generic formal fiber ofA. ✷

We note here that we did not use the full power ofT being reduced. We only neede
thatT have no embedded prime ideals. In fact, the previous results hold with the con
that T be reduced replaced with the weaker condition thatT have no embedded prim
ideals. For our final result, however, it will be necessary thatT be reduced. So to make th
statements of the previous results less cumbersome, we used the stronger conditioT
be reduced.

Finally, we show that the domain constructed in the previous lemma gives us our

Theorem 9. Let (T ,M) be a complete local ring containing the integers. ThenT is the
completion of a local excellent domain if and only if it is reduced, equidimensional an
integer ofT is a zero divisor.

Proof. AssumeT is the completion of an excellent domain,A. ThenT is clearly reduced
Now, sinceA is universally catenary, it is formally catenary (see [6, Theorem 31



228 S. Loepp / Journal of Algebra 265 (2003) 221–228

t

at

ls

. It

at
e
cally

ain
could

es not

n this

c. 337

1183,

–2195.
It follows that A/(0) ∼= A is formally equidimensional. Hence, its completion,T , is
equidimensional. Now,A must contain the integers. AsA is a domain, it follows tha
no integer can be a zero divisor inA and hence no integer ofT can be a zero divisor inT .

Conversely, supposeT is reduced, equidimensional, and no integer ofT is a zero
divisor. If dimT = 0, thenT is a field and so is the completion of itself. If dimT � 1, use
Lemma 8 to construct the domainA. We claim thatA is excellent. To see this, suppose th
P is a nonzero prime ideal ofA. Then, by Lemma 8, we have thatT ⊗A k(P )∼= k(P ).
Let L be a finite field extension ofk(P ). Then T ⊗A L ∼= T ⊗A k(P ) ⊗k(P ) L ∼=
(k(P )⊗k(p) L)∼= L. So, the fiber overP is geometrically regular. Now the maximal idea
of T ⊗A k(0) are the associated prime ideals ofT . Let Q ∈ AssT . Then T ⊗A k(0)
localized atQ is isomorphic toTQ. SinceT is reduced, it satisfies Serre’s(R0) condition.
Hence,TQ is regular. It follows thatT ⊗A k(0) is regular. Now, sinceT contains the
integers, so doesA. It follows thatk((0)) is a field of characteristic zero. HenceT ⊗A L

is regular for every finite field extensionL of k((0)). So, all the formal fibers ofA are
geometrically regular. SinceA is formally equidimensional, it is universally catenary
follows thatA is excellent. ✷

Note that ifT has characteristicp > 0, then theA we construct has the property th
if P is a nonzero prime ideal ofA then the fiber overP is geometrically regular. So, th
only obstacle toA being excellent is that the generic formal fiber may not be geometri
regular. This author sees no reason to believe that the generic formal fiber of the domA

we have constructed is geometrically regular. However, it seems believable that one
modify this construction to ensure that this be true. Since at this point, this author do
know how to do this, we leave it as an open question.
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