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SUMMARY

Antigen-presenting cells (APCs) in the gut are apt
at oral tolerance establishment at steady state and
immunity after infection; complex tasks in an envi-
ronment exposed to the inflammatory burden of the
microbiota. Here we show an unanticipated division
of labor among APCs for the establishment of oral
tolerance. Chemokine receptor CX3CR1+ macro-
phages were found to take up soluble fed antigens
and quickly transfer them to CD103+ dendritic cells
(DCs). Antigen transfer occurred via a mechanism
that was Connexin 43-dependent and required
membrane transfer, indicating a physiological role
of gap junctions in antigen presentation. Deletion of
Connexin 43 in APCs affected antigen transfer and
resulted in the inability of CD103+ DCs to acquire
and present antigens in vivo, to drive T regulatory
cell differentiation and to induce tolerance to food
antigens. This functional cooperation between intes-
tinal phagocytes might be a mechanism to avoid the
exposure of tolerogenic DCs to the intestinal micro-
biota.

INTRODUCTION

Oral tolerance is a process that allows an individual to be repeat-

edly exposed to the same food antigen (Ag) without evoking an

immune response, even when the Ag is delivered systemically

in combination with a strong adjuvant (Mowat, 2003). This pro-

cess occurs in mesenteric lymph nodes (MLN) and requires the

migration of chemokine receptor CCR7+ antigen-presenting

cells (APCs) from the intestine (Worbs et al., 2006). Besides

classical CD11c� macrophages, at least four populations of

APCs—expressing CD11c—are found in the small and large

intestine having different origin and function (Coombes and Pow-

rie, 2008; Farache et al., 2013b; Pabst and Bernhardt, 2010). A

monocytic precursor gives rise to either resident CD11c+macro-

phages or inflammatory dendritic cells (DCs) depending on the

condition found in the colon at the time of recruitment (Rivollier

et al., 2012; Zigmond et al., 2012). These cells express the che-

mokine receptor CX3CR1 at high or intermediate amounts,

respectively. CD11c+CX3CR1hiF4/80+ monocyte-derived mac-
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rophages are anti-inflammatory in nature (Rivollier et al., 2012).

They express a high quantity of interleukin-10 (IL-10), which is

required for restimulation of T regulatory cells in situ (Hadis

et al., 2011) and inhibit T cell proliferation via a contact-depen-

dent mechanism (Kayama et al., 2012). CD11c+CX3CR1hi cells

are sessile under steady-state conditions (Schulz et al., 2009)

but can migrate out of the intestine if the microbiota is affected

by antibiotic treatment (Diehl et al., 2013). By contrast, inflamma-

tory DCs (CD11c+CX3CR1int) develop during colonic intestinal

inflammation, produce large quantities of interleukin-12 (IL-12),

IL-23, inducible nitric oxide synthase (iNOS), and tumor necrosis

factor (TNF) and are capable of migrating to the draining lymph

node and activating T helper 1 (Th1) T cells (Rivollier et al., 2012).

A second population of bona fide migratory DCs is most

abundant at steady state and is characterized by the expression

of CD103. CD11c+CD103+ DCs can be further divided into

CD11b+ and CD11b� cells (Bogunovic et al., 2009).

CD11b�CD103+ cells are most likely derived from contami-

nant-isolated lymphoid follicles (Bogunovic et al., 2009).

Conversely, CD11b+CD103+ cells are present in the lamina

propria (LP) of the small and large intestine and migrate to the

draining lymph nodes for the induction of T regulatory (Treg) cells

via the release of retinoic acid (RA) and transforming growth

factor-b (TGF-b) (Coombes et al., 2007; Sun et al., 2007) and

the activity of Indoleamine 2,3-dioxygenase, an enzyme involved

in tryptophan catabolism (Matteoli et al., 2010). Furthermore,

CD11b+CD103+ DCs are required for the maintainance of

mucosal Th17 T cells (Persson et al., 2013; Schlitzer et al., 2013).

CD103+ DCs derive from a blood pre-DC precursor (Bogu-

novic et al., 2009; Varol et al., 2007) that expresses the a4b7

integrin and homes preferentially to the gut (Zeng et al., 2012).

The tolerogenic function of CD103+ DCs, as well as the expres-

sion of the aE integrin (CD103), are imparted by factors released

by intestinal epithelial cells (Iliev et al., 2009a; Iliev et al., 2009b).

For the above reasons, and because they are capable of

migrating out of the LP to the MLN (Bogunovic et al., 2009;

Schulz et al., 2009) CD103+ DCs are most likely the major player

in tolerance induction.

APCs are also directly involved in Ag capture from the luminal

content, via the extension of dendrites between epithelial cells

(Rescigno et al., 2001) particularly in the upper part of the small

intestine (SI) (Chieppa et al., 2006). CX3CR1+ cells are most

efficient in sending protrusions out into the lumen and capture

bacteria (Niess et al., 2005) and fungi (Vallon-Eberhard et al.,

2006). By contrast, CD103+ DCs are less frequent at extending

protrusions at steady state, capture primarily bacteria and are
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inefficient in taking up soluble proteins, presumably because

they lack mannose receptors (Farache et al., 2013a). Thus, it is

not clear how do the CD103+ DCs acquire the Ag for oral toler-

ance induction.

In thismanuscript, we analyzedwhich cell types are involved in

the uptake of soluble Ags. We found that both intestinal epithelial

cells and CX3CR1+ macrophages, but not CD103+ DCs, are very

efficient at Ag capture from the lumen. However, only CX3CR1+

macrophages transfer the Ag to CD103+ DCs via a Connexin-43

(gap junction) mediated mechanism. When this transfer is in-

hibited by genetic deletion of Cx43 in CD11c+ APCs, T regulatory

cell differentiation and oral tolerance fail to be established.

RESULTS

CX3CR1+ Cells Are Responsible for Antigen Uptake in
the Small Intestine
The establishment of tolerance to food antigens relies on the

ability of APCs to migrate through the lymphatics to the draining

lymph nodes (Worbs et al., 2006). As CD103+ DCs are capable of

migrating out of the gut and driving the development of Treg cells

(Coombes et al., 2007; Sun et al., 2007), it is likely that these cells

take up the Ag from the periphery and migrate to the MLN for

the establishment of oral tolerance. However, CD103+ DCs,

although being endowed with the capacity to contact directly

the intestinal lumen, have been shown to be very inefficient in

taking up soluble Ags (Farache et al., 2013a). Hence, we evalu-

ated which subset of lamina propria phagocytes was respon-

sible for the uptake of luminal Ags. We took advantage of

Cx3cr1GFP/+ genetically-targeted mice (Jung et al., 2000), which

allow the efficient in vivo tracking of CX3CR1-expressing cells.

Cx3cr1GFP/+ mice were subjected to intestinal ligation and a

fluorescent-labeled protein, Ovalbumin (OVA) conjugated with

Alexa Fluor (AF) 647, was injected into the intestinal loop. After

2 hr, the loop was resected and tissues fixed and processed

for imaging analysis.

As depicted in Figure 1A, the Ag colocalized preferentially with

the CX3CR1+ cells positioned in the apical part of the villi. The

three-dimensional reconstruction of the villi clearly revealed

that spots were preferentially located in the cytosol of

CX3CR1+ cells, but not in other CD11c+ cells present in the LP

(Figure 1B).

This initial observation was confirmed in a time-course exper-

iment, where OVA-AF647 was orally administered. Small

intestines were collected at different time points after feeding

and processed for flow cytometry analysis; after gating on

CD11c+I-A-I-Ehi cells, CX3CR1 and CD103 markers were used

to discriminate between the two main subsets of APCs in the

SI, namely CD11c+CX3CR1hi macrophages and CD103+ DCs

(Figure 1C). A higher percentage of OVA+ cells was observed

in the CX3CR1hi and CX3CR1int subsets, whereas CD103+ cells

were almost negative. The kinetic of antigen uptake was rapid,

with a peak at 3 hr after Ag administration (Figure 1D).

Furthermore, Ag uptake was unevenly distributed along the

different tracts of the small bowel. Indeed, in the duodenum,

Agwas equally taken up byCX3CR1hi andCD45� epithelial cells,

whereas in the jejunum and ileumCD45� epithelial cells outnum-

bered CX3CR1int and CX3CR1hi cells in Ag uptake, reaching

almost 95%–99% of OVA-AF647+ cells (Figure 1E).
Hence, we show that CX3CR1+ lamina propria cells are

involved in Ag uptake and accumulation in discrete intracellular

compartments in the small intestine visible by immunofluores-

cence. Epithelial cells are the major player in Ag uptake in the

jejunum and ileum, but the antigen is not localized or quickly

degraded, and it is detectable only by cytofluorimetry. CD103+

DCs do not seem to be involved in Ag uptake because

they are negative both by immunofluorescence and by flow

cytometry.

Lack of CX3CR1 Affects Antigen Uptake and Oral
Tolerance Induction
APCs can extend protrusions into the intestinal lumen for bacte-

rial uptake (Chieppa et al., 2006; Farache et al., 2013a; Niess

et al., 2005; Rescigno et al., 2001). In macrophages, the exten-

sion of the luminal projections is dependent on the expression

of CX3CR1. Indeed, Cx3cr1GFP/GFP mice, which have both

copies of the Cx3cr1 gene substituted by the gene coding for

GFP, cannot extend the protrusions (Niess et al., 2005). Hence,

we analyzed whether the presence of CX3CR1 was required

for the uptake of soluble Ags, thus indicating direct uptake by

these cells. Cx3cr1GFP/+ and Cx3cr1GFP/GFP mice were fed with

ovalbumin-AF647; after 1 hr, their intestines were removed and

processed for flow cytometry staining.

The poor ability of Ag uptake by CD11b�CD103+ and CD11b+

CD103+ DCs was confirmed and no difference was observed

between CX3CR1-sufficient and -deficient mice (Figure 2A–B).

In contrast, both CX3CR1int and CX3CR1hi cells showed a

marked and statistically significant decrease in the uptake of

OVA in Cx3cr1GFP/GFP compared to Cx3cr1GFP/+ mice (Fig-

ure 2B), suggesting the involvement of CX3CR1 receptor and

luminal projections in the sampling and uptake of soluble Ags

from the gut lumen.

We then analyzed which cells could present the Ag after

uptake. Intestinal lamina propria APC subsets were sorted

fromOVA-fedCx3cr1WT andCx3cr1GFP/GFP mice and cocultured

with CFSE-labeled naive (CD25�CD4+) OT-II T cells. OT-II T cells

recognize theOVA323–339 peptide in association withmajor histo-

compatibility complex (MHC) class II molecules. The sorting

strategy differed as we could not use Cx3cr1GFP to distinguish

among the different subsets in wild-type (WT) animals, but we

sorted the cells based on the expression of I-A-I-E, CD11c,

CD11b, CD103, and F4/80 (see Figure S1A available online).

T cell priming was measured as dilution of the CFSE dye due

to T cell proliferation. As shown in Figure 2C, consistent with

data in the literature (Rivollier et al., 2012), CD11b+CD103+

DCs from WT mice displayed superior ability to prime naive

T cells compared to CD11b�CD103+, CD11c+F4/80+ (the equiv-

alent of CD11c+CX3CR1hi macrophages) and CD11c�F4/80+

(classical CD11c� macrophages). In contrast, in Cx3cr1GFP/GFP

mice, the priming ability of CD11b+CD103+ DCs was completely

abolished (Figure 2D). Because we could not observe any differ-

ence in antigen presentation between CD103+ DCs isolated from

Cx3cr1WT andCx3cr1GFP/GFPmice (Figure S1B), the abolishment

in antigen presentation was not due to defects in T cell priming.

However, as the limit of detection of antigen presentation was

1 mg (Figure S1B), we cannot exclude that some Ag was still

transferred but we could not functionally detect it. This result

indirectly indicates that CD103+ DCs receive the Ag from
Immunity 40, 248–261, February 20, 2014 ª2014 Elsevier Inc. 249
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Figure 1. CX3CR1+ Cells Are Responsible for Antigen Uptake in the Small Intestine

(A) A loop in the intestine of a Cx3cr1GFP/+ mouse was injected with OVA-AF647. Sections represent CX3CR1 (green), OVA (gray), CD11c (red), and DAPI (blue).

Scale bar represents 10 mm. Images are representative of two independent experiments, n = 2.

(B) Three-dimensional reconstruction of the SI villus with Imaris 6.1.0. The white grid marks the 3D volume, green marks CX3CR1+ cells, red CD11c+ cells. White

dots stand for ovalbumin.

(C) OVA-AF647 or DPBS were i.g. administered to Cx3cr1GFP/+ mice and intestines were collected at the indicated time points. Percentage of OVA+ cells in

CD103+, CX3CR1int, and CX3CR1hi subsets is shown in (D). Results are representative of two independent experiments, each performed with three mice per

group. Data are shown as mean ± SD.

(E) Duodenum, jejunum, and ileum were separately collected. Ovalbumin+ cells were gated and percentages of each subset among total OVA+ cells are rep-

resented; n = 4.
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CX3CR1+ cells because when the latter fail to take up the Ag, this

affects antigen presentation by CD103+ DCs.

As Ag uptake in the SI lamina propria is impaired in

Cx3cr1GFP/GFP mice, we wondered whether the establishment
250 Immunity 40, 248–261, February 20, 2014 ª2014 Elsevier Inc.
of oral tolerance to fed Ags would be affected as well. Hence,

we evaluated a delayed type hypersensitivity (DTH) response

to OVA in C57BL/6, Cx3cr1GFP/+, and Cx3cr1GFP/GFP mice after

administration of the same Ag via the oral route. Mice were given
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Figure 2. Lack of CX3CR1 Affects Antigen Uptake and Oral Tolerance Establishment

(A) Cx3cr1GFP/+ and Cx3cr1GFP/GFP mice were i.g. administered with OVA-AF647. After 1 hr, intestines were processed for flow cytometry analysis. SI APCs were

divided in four subsets, based on their expression of CD103, CX3CR1, and CD11b. Histograms show OVA-AF647 fluorescence for each subset.

(B) Data of experiment in (A) are presented as mean ± SD of the MFI (OVA-Vehicle) and are representative of two independent experiments, four mice per

group.**p < 0.01; ***p < 0.001; n.s. not significant.

(C)Cx3cr1WT andCx3cr1GFP/GFPmicewere fedwith 15mgOVA and after 4 hr APC subsets were sorted and coculturedwith CFSE-labeled naive T cells for 4 days.

CFSE dilution was evaluated by flow cytometry.

(D) Results in (C) are shown as mean ± SD of the percentage of DAPI�CFSElo cells in the CD3+CD4+ gate. ***p < 0.001; n.s. not significant.

(E) For C57BL/6, Cx3cr1GFP/+, and Cx3cr1GFP/GFP mice, DTH response was evaluated. After 24 hr from i.f. challenge with heat-aggregated OVA, footpad swelling

wasmeasured as difference in the thickness of OVA-challenged and DPBS-injected control footpad for eachmouse. Results are displayed asmean ± SD and are

representative of two independent experiments, four to eight mice per group. ***p < 0.001; n.s. not significant.

(F) Splenocytes isolated from DPBS- or OVA-fed C57BL/6,Cx3cr1GFP/+, andCx3cr1GFP/GFP mice were restimulated in vitro with OVA. Supernatant was collected

after 4 days and IFN-g measured by ELISA. *p < 0.01; n.s. not significant. See also Figure S1.
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OVA intragastrically (i.g.) at days �13, �10, and �7, immunized

subcutaneously (s.c.) with OVA and complete Freund’s adjuvant

(CFA) at day 0 and challenged in the footpad (i.f.) with heat-

aggregated OVA at day 7. Footpad swelling was measured after

24 hr.

Tolerance to OVA was efficiently established in C57BL/6

and at intermediate degree, in Cx3cr1GFP/+ mice where oral

administration of OVA resulted in a decreased DTH response.

Conversely, Cx3cr1GFP/GFP mice displayed impaired induction

of oral tolerance, because no significant difference was

observed between vehicle- and OVA-fed mice (Figure 2E).

Accordingly, splenocytes from OVA-fed C57BL/6 and

Cx3cr1GFP/+ mice restimulated with OVA in vitro showed a

decrease in interferon-g (IFN-g) secretion compared to control

mice, whereas no difference was observed in splenocytes

derived from Cx3cr1GFP/GFP mice (Figure 2F).

Therefore, we have shown that CX3CR1-deficient mice

display decreased Ag uptake by CX3CR1+ cells in the small

intestine and fail to develop tolerance to fed antigens in a

CX3CR1 dose-dependent fashion.

CX3CR1+ Macrophages and CD103+ DCs Express
Connexins and Communicate via Gap Junctions
We have shown above that none or little Ag was detected in

CD103+ DCs by flow cytometry staining; however, lamina

propria CD11b+CD103+ cells displayed the highest capability

to present Ags to naive OT-II T cells. As in the absence of

CX3CR1+macrophage protrusions, CD103+ DCs lost their ability

to present Ags, we hypothesized that the CX3CR1+ cells might

be able to exchange antigenic material with CD103+ cells.

Because we could not detect the whole protein, we considered

the possibility that the antigen might be transferred in the form of

processed peptides.

Gap junctions (GJs) are channels spanning between adjacent

cells that allow intercellular communication, which is their better-

known function (Mesxe et al., 2007). GJs play a role also in antigen

presentation as they mediate the transfer of small peptides

between bone-marrow-derived dendritic cells (Matsue et al.,

2006) and sustain cross-presentation in acceptor cells (Neijssen

et al., 2005; Saccheri et al., 2010). We found that LP CX3CR1+

macrophages and CD103+ DCs were in close contact in vivo

and their membranes juxtapose similarly to cells communicating

via GJs and display long interaction plaques (Figure S2A).

Hence, we asked whether APCs in the gut might exchange

material via GJs. CD11c+ cells were enriched from the small

intestines of C57BL/6 mice and were either loaded with calcein

(a GJ diffusible dye) or labeled with the membrane-dye DDAO,

which cannot diffuse through GJ. Donor (Calcein+) and acceptor

(DDAO+) cells were cocultured, and calcein transfer to DDAO+

cells was evaluated by flow cytometry. As shown in Figures 3A

and 3B, calcein was transferred to DDAO+CD11c+ cells and

the process was affected by pretreatment of cells with 1-Hepta-

nol, a GJ-blocking agent. Maximal inhibition was obtained at a

concentration of 5 mM of 1-Heptanol. This concentration was

only marginally affecting DC viability (Figure S2B). We could

not further inhibit the dye transfer among cells via the use of

heptanol. This might suggest that other routes are also used

for transferring material than just GJs, or it might highlight a lim-

itation of the in vitro assay due to the limited survival of isolated
252 Immunity 40, 248–261, February 20, 2014 ª2014 Elsevier Inc.
intestinal APCs in vitro leading to phagocytosis of dead cells

during the assay.

GJs are made by hemichannels (connexons) whose major

constituents are connexin (Cx) proteins (Mesxe et al., 2007). We

first evaluated which of the 20 different murine connexins were

expressed in intestinal tissues (Figure S2C and 3C). We found

that six connexins were mostly expressed in the different

segments of the gut (Gjb2, Gjb3, Gjb1, Gja6, Gja1, and Gjc1;

Figure S2C). Hencewe evaluated the relative expression of these

connexins in CD11c+ APCs isolated from the small intestine,

MLNs, spleen, or Peyer’s Patches. As shown in Figure 3C, intes-

tinal APCs expressed a peculiar panel of the six connexins, with

Gjb1 and Gja1 mostly expressed in all APCs.

We next sorted the different subsets of MHC-II+CD11c+ cells

from the small intestine of Cx3cr1GFP/+ mice and evaluated the

expression of the six connexins.

While Gjb2, Gjb3, and Gja6 were evenly distributed in all the

subsets, other Connexins displayed a subset-specific expres-

sion. For instance, Gjb1 and Gjc1 were almost exclusively

expressed by CX3CR1int and CX3CR1hi subpopulations; differ-

ently, Gja1 (the gene coding for Cx43) was mainly expressed

by CX3CR1int and CX3CR1hi macrophages and CD11b+CD103+

DCs (Figure 3D), the subsets we thought might interact with each

other in vivo. Indeed, when we analyzed the expression of Cx43

in the different subsets by immunofluorescence in vivo, we found

that CX3CR1+ macrophages and CD103+ DCs had several

points of interaction marked by Cx43 (Figures 3E and 3F).

Therefore, we have shown that intestinal APCs can interact

with each other via GJs and that the expression of connexins

is tissue- and subset-specific. Moreover, Cx43 is mostly ex-

pressed by the subsets we supposed to interact in vivo and is

localized at cell-to-cell interaction sites.

Gja1–/– APCs Differentiate Correctly and Are Proficient
in Antigen Presentation
We have shown that Gja1 is concomitantly expressed by

CX3CR1+ (both CX3CR1int and CX3CR1hi) and CD11b+CD103+

DCs. To test the role of GJs, and in particular of connexin 43,

in antigen transfer among APCs in the gut, we bred Gja1fl/fl

mice to transgenic Itgax-cre mice to obtain mice (hereafter indi-

cated asGja1fl/fl Itgax-cre) in which Gja1was genetically deleted

only in CD11c+ cells (including both CX3CR1+ and CD103+

APCs), due to the deletion of exon 2 in the Gja1 gene. As shown

in Figures S3A and S3B, crossing of Gja1fl/fl mice with Itgax-cre

mice led to efficient deletion of the Gja1 gene. Efficient recombi-

nation of theGja1 locus was achieved in all the different intestinal

subsets (Figure S3C). Lack of connexin 43 has been associated

with evident defects of the hematopoietic stem cell compart-

ment during embryonic development (Montecino-Rodriguez

et al., 2000). In our model Gja1 deletion occurred later during

DC development, particularly when CD11c begins to be ex-

pressed, i.e., at the stage of pre-DCs. Nonetheless, we asked

whether deletion of the Gja1 gene in DCs might result in alter-

ations of peripheral DC subsets.

We first analyzed small intestines of Gja1WT and Gja1fl/fl Itgax-

cre mice. Cells were harvested from the organs and stained to

evaluate the expression of CD45.2, CD11c, MHC-II, CD103,

and CD11b markers and to distinguish the three main subsets

of MHC-II+CD11c+ cells.
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Figure 3. CX3CR1+ Macrophages and CD103+ DCs Express Connexins and Communicate via Gap Junctions
(A) DDAO+ cells were cocultured with not labeled control cells or calcein-loaded cells. Transfer of the dye to DDAO+ cells was subsequently evaluated by flow

cytomtery. When indicated, increasing concentrations of 1-Heptanol were added.

(B) Mean ± SD of the geometric mean of FL-1 (Calcein) fluorescence for DDAO+CD11c+ cells is indicated. Pooled results from three independent experiments are

shown, each of them performed with CD11c+ cells obtained from four C57BL/6 mice.

(C) Connexin genes were filtered based on their relative expression to the housekeeping gene and represented as color-coded plot following the scale (from blue

to red). Results represent the mean of expression values obtained for three different mice.

(D) Expression of the panel of six connexins was evaluated in sorted subsets of DCs and macrophages from the small intestine of Cx3cr1GFP/+ mice

(CD11b�CD103+, CD11b+CD103+, CX3CR1int, and CX3CR1hi). Expression results are relative to the the housekeeping Rlp32 gene and are represented as

mean ± SD of three samples derived from independent sortings. *p < 0.05; **p < 0.01; ***p < 0.001.

(E) Immunofluorescence staining of a small intestine tissue section for CD103, CX3CR1, and Cx43. The image represents DAPI (blue), CX3CR1 (green), Cx43

(red), and CD103 (gray). Scale bar represents 5 mm.

(F) Three-dimensional reconstruction with Imaris 6.1.0. of the small intestinal tissue stained with anti-CD103 and anti-Cx43. The white grid marks the 3D volume,

green marks CX3CR1+ cells, yellow CD103, red Cx43. See also Figure S2 and Table S1.
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Figure 4. Gja1–/– APCs Differentiate Correctly and Are Proficient in Antigen Presentation

(A) Cells were obtained from the small intestine ofGja1WT andGja1fl/fl Itgax-cremice. The graph represents themean ± SD of the percentage ofMHC-II+CD11c+ in

the gate DAPI-CD45.2+.

(B) MHC-II+CD11c+ are characterized based on their expression of CD103 andCD11b.Mean percentage of each subset relative toMHC-II+CD11c+ gate is shown

for Gja1WT and Gja1fl/fl Itgax-cremice. Results are shown as mean ± SD and are representative of two independent experiments, seven mice per group. n.s. not

significant.

(C) Small intestines from Gja1WT and Gja1fl/fl Itgax-cre mice were processed and expression of CD86, CD40, and CD83 costimulatory markers was evaluated.

Histograms of CD86, CD40, and CD83 expression for each subset are shown. The gray line represents the isotype control, the blue line stands for Gja1WT, the

green for Gja1fl/fl Itgax-cre.

(D) Expression of CD86, CD40, and CD83 is reported as difference in the geometric mean between stained sample and isotype control for each subset. Data are

representative of two independent experiments, three to four mice per group. *p < 0.05.

(E) BM-DCs were incubated with OVA-AF647 for the indicated time points. Uptake of OVA was evaluated by flow cytometry and expressed as geometric mean

(FL-4) in the MHC-II+CD11c+ gate. Results are shown as mean ± SD and are representative of two independent experiments; ***p < 0.001.

(F) BM-DCswere loadedwith OVA or OVA peptides and cocultured with CFSE-labeled naive OT-I or OT-II T cells. Proliferation of T cells is shown as dilution of the

CFSE dye. Results represent the mean ± SD of the percentage of CFSElo cells in the gate of DAPI�CD4+ or DAPI�CD8a+. See also Figure S3.
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As shown in Figures 4A and 4B, no significant differences were

observed both in the percentage of MHC-II+CD11c+ cells and

in the relative abundance of the single subsets. In addition, we

evaluated the expression of costimulatory molecules, such as
254 Immunity 40, 248–261, February 20, 2014 ª2014 Elsevier Inc.
CD86, CD40, and CD83 in small intestinal subsets, as inhibition

of Cx43 by a mimetic Cx peptide in bone-marrow-derived

dendritic cells (BM-DCs) has been associated with a down-

regulation of costimulatory molecules, even in the presence of
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lipopolysaccharide (LPS) or IFN-g (Matsue et al., 2006). As

shown in Figures 4C and 4D, we did not observe significant

differences in the expression of costimulatory molecules, except

for a slight reduction in CD86 expression in CD11b+CD103�

cells.

Furthermore, we evaluated whether lack of Cx43 was

impinging on the ability of dendritic cells to endocytose antigens

and prime naive T cells. BM-DCs were generated ex vivo and

loaded with OVA-AF647. At different time points, cells were

harvested and uptake of the fluorescent Ag was evaluated by

flow cytometry.

As shown in Figure 4E, Gja1�/� DCs did not display major de-

fects in antigen uptake. Moreover, when BM-DCs were loaded

with OVA or OVA peptides and cocultured with naive OT-I or

OT-II T cells, no difference in CD4+ or CD8+ T cell priming was

observed between Gja1+/+ and Gja1�/� BM-DCs (Figure 4F).

Hence, Gja1 deletion does not affect the DC balance in peri-

pheral organs, the expression of costimulatory molecules by

LP APCs, and the uptake of Ag and priming ability by ex vivo

generated BM-DCs.

Connexin 43 Expression by APCs Is Required for
Effective Antigen Transfer
We recently showed that, when appropriately stimulated to ex-

press Cx43, tumor cells can transfer preprocessed antigenic

peptides to DCs via GJs and this is the major mechanism of

cross-presentation in vivo (Saccheri et al., 2010). Analogously,

as we found division of labor between CX3CR1+ macrophages

that take up luminal Ags and CD103+ DCs that efficiently present

them to T cells, we hypothesized that they might exchange anti-

genic material via GJs. To define whether Cx43 was involved in

this process, we fed Gja1WT and Gja1fl/fl Itgax-cre mice with

OVA and sorted APC subsets from the small intestine after

4 hr. Subsequently, they were cocultured with CFSE-labeled

naive OT-II T cells, and the capacity to present in vivo captured

Ags was assessed as induction of T cell proliferation.

CD11b+CD103+ DCs isolated from Gja1WT mice confirmed

their superior ability to prime T cells compared to the other

subsets. Conversely, CD11b+CD103+ DCs isolated from Gja1fl/fl

Itgax-cre mice completely lost their capacity to present the

Ag to T cells compared to the WT counterpart (Figures 5A

and 5B). Of note, F4/80+CD11c+ macrophages from Gja1fl/fl It-

gax-cre displayed increased T cell priming ability, suggesting

that when they are unable to transfer the Ag to neighboring

CD103+ DCs, they can accumulate it and efficiently present it.

The lack of antigen presentation by Gja1�/� CD103+ DCs

was not due to intrinsic defects of T cell priming due to deficiency

of connexin 43, because when OVA323–339 was exogenously

provided, all the intestinal APC subsets were efficiently capable

of priming T cells (Figure 5C). Hence, we have shown that Cx43

is required for efficient transfer of antigenic material to CD103+

DCs. This indicates that in vivo GJs have a physiological role in

allowing transfer of antigenic material among cells for T cell

priming.

Cx43 Allows Transfer of Surface Proteins to CD103+

DCs
One important issue that rises from these results is how MHC

class II peptides are transferred from a donor to an acceptor
cell. Indeed, while for MHC class I crosspresentation, peptides

might be exchanged via GJs from the cytosol of a donor cell to

that of an acceptor cell and then be loaded on MHC class I after

transport via transporter for antigen presentation (TAP) into the

endoplasmic reticulum (Neijssen et al., 2007), how are peptides

loaded on MHC class II molecules? An intriguing possibility is

based on a recent report that whole GJ plaques can be trans-

ferred (Baker et al., 2008) from one of the two contributing cells

in a preferential manner (Falk et al., 2012). Hence, we evaluated

whether Cx43 was indeed exchanged together with MHC

molecules from a donor to an acceptor cell. We generated a

HeLa cell line overexpressing GFP-labeled murine Cx43 and

coincubated it with Gja1+/+ or Gja1�/� APCs. We then analyzed

the proportion of GFP-Cx43 associated with the acceptor cell

and because we used a human cell line, we could also evaluate

the transfer of HLA class I molecules to the mouse acceptor

cells. HeLa cells do not express HLA class II molecules. We

found that when lamina propria APCs were incubated with cells

overexpressing GFP-labeled Cx43, they could acquire Cx43 as

shown by cytofluorimetry (Figure 6A) and immunofluorescence

(Figure 6B). In the immunofluorescence, it is clear that DDAO+

DCs are decorated with Cx43-GFP at the site of interaction

with GFP+ HeLa cells. We did not permeabilize the cells and

assessed that together with Cx43-GFP, the acceptor cells ac-

quired also surface HLA-ABC molecules from the donor cells,

ruling out a simply phagocytic process (Figure 6C). Consis-

tently, GFP� APCs, as well as APCs incubated with the parental

HeLa cell line, not expressing murine Cx43, were lacking the

expression of HLA. The transfer of cell membranes required

cell contact, because it was not occurring when the cells were

physically separated with a transwell (Figure 6D), suggesting

that it is not dependent on exosome release by the donor cell.

The transfer was decreased when the acceptor cells were not

expressing Cx43 and was associated only to the CD11b+

CD103+ DC subset (Figure 6E), suggesting that there is a still-

unknown mechanism associated to CD103+ DCs and not to

CX3CR1+ macrophages that controls the transfer and defines

a directionality. This is consistent with the finding that

CX3CR1+ macrophages lose the ability to present the lumen-

derived OVA peptides as presumably they transfer them to

the acceptor cell.

Cx43 Expression by Intestinal APCs Is Required for the
Conversion of Ag-Specific TregCells andOral Tolerance
Establishment
Because CD11b+CD103+ DCs have been regarded as the only

migratory subset able to polarize Treg cells in the MLN at

steady state, we asked whether in the absence of Ag transfer

between macrophages and DCs, Treg cell polarization was

affected. Hence, Gja1WT and Gja1fl/fl Itgax-cre mice were in-

jected intravenously (i.v.) with CFSE-labeled CD45.1+ naive

OT-II T cells and subsequently fed with OVA on 2 consecutive

days. After 4 days, MLNs and spleens were removed and

Treg cell conversion was evaluated by flow cytometry (Fig-

ure 7A). As shown in Figures 7B and 7C, a decrease in the

percentage of Treg cells was observed in the MLN of Gja1fl/fl

Itgax-cremice. This correlated with an increase in the frequency

of OT-II T cells in Gja1fl/fl Itgax-cre mice (Figure 7C, second

panel), suggesting that at the concentration used, the Ag could
Immunity 40, 248–261, February 20, 2014 ª2014 Elsevier Inc. 255
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Figure 5. Connexin 43 Expression by APCs Is Required for Effective Antigen Transfer

(A) Gja1WT and Gja1fl/fl Itgax-cre mice were i.g. administered with 15 mg OVA and after 4 hr APC subsets were sorted and cocultured with CFSE-labeled naive

CD25�CD4+ OT-II T cells for 4 days. CFSE dilution was evaluated by flow cytometry. OVA323–339-loaded APCs are used as positive controls.

(B) Results in (A) are shown as mean ± SD of the percentage of DAPI�CFSElo cells in the CD3+CD4+ gate. ***p < 0.001; n.s. not significant.
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reach the draining lymph node (presumably in a free form);

however, this was not sufficient to drive Treg cell induction,

confirming previous data that CCR7-dependent migration of

antigen-loaded DCs is required for a regulatory tolerogenic

response (Worbs et al., 2006).

Given the reduction of CD4+ Treg cells in themesenteric lymph

nodes, we hypothesized that also tolerance induction might be

impaired in Gja1fl/fl Itgax-cre mice.

To evaluate a possible contribution ofGja1 deletion in CD11c+

cells in oral tolerance induction, we administered OVA i.g. to

Gja1WT and Gja1fl/fl Itgax-cre mice and then carried out a DTH
256 Immunity 40, 248–261, February 20, 2014 ª2014 Elsevier Inc.
response. Thus, mice were administered three times with 1 mg

OVA every second day and immunized s.c. with OVA mixed to

CFA after 7 days.Mice were then challenged i.f. with heat-aggre-

gated OVA or DPBS as a control, and footpad swelling was

measured as a readout for the DTH after 24 hr.

As expected, decrease in the footpad swelling of control

Gja1WT mice was reported after OVA feeding, compared to

vehicle-fed mice. Conversely, Gja1fl/fl Itgax-cre mice showed

impairment in oral tolerance establishment, as no significant

difference was observed between ovalbumin- and vehicle-fed

mice (Figure 7D).
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Altogether, these results indicate that, when Gja1 is deleted in

CD11c+ cells, APCs cannot exchange antigenic material, and

this results in defects in Treg cell differentiation and oral toler-

ance establishment, a further indication of a physiological role

of GJ in Ag transfer and presentation.

DISCUSSION

Here we have described that APCs in the gut are highly

specialized in function, but cooperate for the establishment

of oral tolerance. We have shown that soluble food Ags are

taken up by CX3CR1+ macrophages and by epithelial cells,

but not by CD103+ DCs. Interestingly, uptake of antigen by

CX3CR1+ cells was observed primarily in the upper part of

the small intestine (duodenum), where the mucus layer is

more patchy. However, CD103+ cells could present the Ag.

Because we could never detect the whole OVA in CD103+

DCs, the Ag must have been transferred—in an undetectable

and presumably processed form—to the latter. Data in the liter-

ature have shown that mice lacking CX3CR1 are not capable of

extending protrusions into the gut lumen (Niess et al., 2005).

Hence, we thought we had a major tool to assess whether

these cells were required for taking up fed antigen and for

eventually transferring it to CD103+ DCs. We found that in

mice lacking CX3CR1 (Cx3cr1GFP/GFP mice), CX3CR1+ cells

were devoid of antigen. This correlated with the failure of

CD103+ DCs to acquire the antigen and to mount oral tolerance

toward it. This indirectly indicates that CD103+ DCs do not

acquire the antigen from cells other than the CX3CR1+ cells.

A recent publication has shown that deficiency of CX3CR1

results in defects in oral tolerance establishment because mac-

rophages are unable to produce IL-10 and to restimulate T reg-

ulatory cells (Hadis et al., 2011). Here, we have integrated this

finding by showing that deficiency of CX3CR1 also results in

the reduced ability of taking up the antigen and of transferring

it to CD103+ DCs.

It has been recently suggested that Goblet cells can serve as

a gateway for the uptake of small antigens (McDole et al.,

2012). These cells have also been shown to be in close interac-

tion with CD103+ cells and to handle them the captured antigen

(McDole et al., 2012). However, the interaction between Goblet

cells and CD103+ DCs has been shown to be a rare event (Far-

ache et al., 2013a) and might be relevant particularly at high

concentration of the antigen. Our finding of a requirement for

CX3CR1 to take up the antigen and for the subsequent transfer

to CD103+ DCs suggests that transfer of antigen between

Goblet cells and CD103+ cells is dispensable for oral tolerance

induction.

Because we could not detect the whole Ag in CD103+ DCs,

either via immunofluorescence or via cytofluorimetry, but we

could observe antigen presentation after in vivo administration

of OVA, we supposed that the Ag might be transferred in a

processed or undetectable form. Even though DCs have

been shown to connect via the formation of long-range

tunneling nanotubules (Watkins and Salter, 2005), we found

that the transfer of the antigenic peptides depended on the

expression of Cx43 in APCs, thus suggesting a contribution

of GJs rather than nanotunneling in Ag transfer. GJs are

involved in a series of intercellular communication processes
and have been shown to participate in several immunological

functions in vitro, including the transfer of antigenic peptides

(Mendoza-Naranjo et al., 2007; Neijssen et al., 2005), the acti-

vation of DCs (Matsue et al., 2006) and T cells (Mendoza-Nar-

anjo et al., 2011), the function of Treg cells (Bopp et al., 2007),

and the interaction between Treg cells and DCs (Luckey et al.,

2012). We have previously shown that GJs are required for

efficient induction of antitumor immunity in vivo as silencing

of connexin 43—the major component of GJ—in tumor cells

abolishes the development of systemic antitumor immunity

(Saccheri et al., 2010). Here we found that mice lacking

Cx43 only in APCs were uncapable of mounting oral tolerance

in response to administration of OVA. This correlated with the

inability of CD103+ DCs to acquire the antigen in vivo and to

present it to T cells. We also found that when CX3CR1+ mac-

rophages could not transfer the antigen to CD103+ DCs, they

were much better at antigen presentation, indicating that at

steady state they are incapable of presenting the Ag primarily

because they quickly transfer it to adjacent CD103+ DCs. One

question that remained unsolved was how the antigen entered

the MHC class II presentation pathway. One possibility is

related to the recent findings that whole GJ plaques could

be transferred from one of the two contributing cells (Baker

et al., 2008) in a preferential manner (Falk et al., 2012). Endo-

cytosed vesicles can then be targeted for macroautophagy

and lysosomal degradation, and this might allow loading of

peptides on MHC II molecules. Alternatively, during the inter-

nalization of the plaque, MHC class II-peptide complexes

might be transferred to the acceptor cell membrane. We

found that when LP APCs are incubated with cells overex-

pressing GFP-labeled Cx43, they can receive Cx43, as well

as MHC molecules, from the donor cell. This process is a

characteristic associated only to the CD103+ DCs, suggesting

that there is a directionality in the transfer of the GJs. The

finding that HLA molecules from the donor cell could be de-

tected on the surface of the acceptor cell suggests that the

whole complex can be acquired and exposed by the donor

cell. This is reminiscent of a mechanism of transfer of pre-

formed peptide-MHC complexes between neighboring cells

called trogocytosis (Joly and Hudrisier, 2003) that is used to

crossdress DCs for induction of immunity to viruses (Smyth

et al., 2012; Wakim and Bevan, 2011). We now propose

that this mechanism is dependent on Cx43 and is a physio-

logical mechanism required to transfer antigens between gut

APCs that are specialized in their function. This process might

require a functional pore because it is inhibited by the GJ

blocker heptanol.

In conclusion, we show an unanticipated functional coop-

eration between CX3CR1+ macrophages and CD103+ DCs in

the uptake, transfer and presentation of soluble antigens that

is mediated by Cx43. This indicates that in vivo Cx43 plays a

major physiological role in immune responses and in antigen

exchange among APCs via transfer of MHC-peptide complexes,

presumably via trogocytosis. It remains to be established how

the directionality of antigen transfer is achieved. We also have

shown that epithelial cells’ uptake of antigen is not finalized to

tolerance induction, but it might be likely that epithelial cells

are primarily involved in the uptake and degradation of soluble

proteins for energy harvest.
Immunity 40, 248–261, February 20, 2014 ª2014 Elsevier Inc. 257
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Figure 6. Cx43 Allows Transfer of Surface Proteins to CD103+ DCs
(A) HeLa-Cx43 or control HeLa cells were cocultured with CD11c+ cells enriched from the small intestine of C57BL/6 mice at different ratios (1:2, 1:4, 1:8). After

12 hr, cells were stained with anti-CD45.2, CD11c, and MHC-II. Density plots represent the percentage of GFP+ cells in the I-A-I-E+CD11c+ gate. Data are shown

as mean ± SD for three independent samples.

(B) HeLa or HeLa-Cx43 were cocultured with DDAO-labeled I-A-I-E+CD11c+ cells sorted from the SI and visualized by confocal microscopy. Blue, DAPI; red

DDAO; green Cx43-GFP. Scale bar represents 15 mm.

(legend continued on next page)
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Figure 7. Cx43 Expression by Intestinal APCs Is Required for the Conversion of Ag-Specific Tregs and Oral Tolerance Establishment

(A)Gja1WT andGja1fl/fl Itgax-cremice were i.v. injected with 23 106 CFSE+ naive OT-II Ly5.1+ CD25�CD4+ T cells and subsequently i.g. administered with 15mg

of ovalbumin. At day 6, MLNs and spleens were collected and processed for flow cytometry staining.

(B) Foxp3 expression and T cell proliferation were analyzed in the Ly5.1+ cells by flow cytometry.

(C) Results in (B) are represented as percentage ± SD of Foxp3+ or CFSElo cells in the CD45.1+CD4+ gate. n = 4.

(D) Gja1WT and Gja1fl/fl Itgax-cre were subjected to a DTH protocol. After i.f. challenge with heat-aggregated ovalbumin, footpad swelling was measured as

difference in the thickness of OVA-challenged and PBS-injected control footpad for each mouse and expressed as mean ± SD n = 6–8 mice per group. *p < 0.05,

n.s. not significant.
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EXPERIMENTAL PROCEDURES

Intestinal Loop and OVA Feeding

Cx3cr1GFP/+ mice were anesthetized with 2.5% Avertin for the duration of

the experiment. Segments of the small intestine were exposed and ligated at

both extremities with surgical thread.We injected 40 mg of OVA-AF647 (Molec-

ular Probes) into the loop, removed the intestines after 2 hr, and processed

them for immunofluorescence staining (see Supplemental Experimental Pro-

cedures). When indicated, 250 mg of OVA-AF647 were administered i.g. in

200 ml DPBS with a feeding needle. Animals were bred and maintained in

our SPF (Specific Pathogen Free) animal facility. All experiments were

performed in accordance with the guidelines established in the Principles of

Laboratory Animal Care (directive 86/609/EEC).

Flow Cytometry and Cell Sorting

Cells were isolated from the different tissues as indicated in the Supplemental

Experimental Procedures.
(C) After coculture with HeLa or HeLa-Cx43, I-A-I-E+CD11c+ cells were stained for

cultured with HeLa (red) or HeLa-Cx43 (blue, GFP�; green, GFP+).

(D) CD11c-enriched APCs were cocultured with HeLa or HeLa-Cx43 cells, in cont

the I-A–I-E+CD11c+ subset. In the right plot, expression of CD103 and CD11b m

(E) HeLa and HeLa-Cx43 were coculturedwith I-A-I-E+CD11c+ APCs isolated from

anti-CD45.2, CD11c,MHC-II, CD103, andCD11b. Plots represent GFP+ cells in th

subset. Data are represented as mean ± SD of GFP+ cells in each subset. ***p <
For flow cytometry staining or cell sorting, cells were incubatedwith anti-FcR

antibody (clone 24G2; BD Biosciences) and stained with the following primary

antibodies: anti-CD45.2 (clone 104, eBioscience), CD11c (cloneHL3, BDPhar-

Mingen), MHC-II (clone M5/114.15.2, eBioscience), CD103 (clone M290, BD

PharMingen), CD11b (clone M1/70, eBioscience), CD86 (clone GL1, BD Phar-

Mingen), CD40 (clone HM40-3, BD PharMingen), and CD83 (clone Michel-19,

BD PharMingen). DAPI was added to exclude dead cells.

Samples were acquired with FACSCanto (BD Biosciences) and analyzed

by FlowJo (Treestar).

Cells were sorted by FACSAria (BD Biosciences) into CD11b�CD103+,
CD11b+CD103+, CD11b+CX3CR1int, and CD11b+CX3CR1hi populations.

From Gja1WT and Gja1fl/fl Itgax-cre mice, MHC-II+ cells were sorted into

CD11c+CD11b�CD103+, CD11c+CD11b+CD103+, CD11c+CD11b+F4/80+,

and CD11c�CD11b+F4/80+ subsets. When indicated, mice were fed with

15 mg ovalbumin and intestines collected after 4 hr.

Collected cells were sorted in complete medium (RPMI, 10% FBS, 1%

Penicillin-Streptomycin, 1% Glutamine, 50 mM b-Mercaptoethanol) and
humanMHC-I. Histograms show humanMHC-I expression for I-A-I-E+CD11c+

act or separated by a transwell. Plots represent the percentage of GFP+ cells in

arkers is shown for GFP+ cells.

the intestine ofGja1WT andGja1fl/fl Itgax-cremice. Cells were then stained with

e I-A-I-E+CD11c+ gate and the expression of CD11b andCD103markers by this

0.001.
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subsequently centrifuged at 2,000 rpm for 10’. When proceeding with RNA

extraction, cells were lysed in RTL Plus Buffer (Quiagen) and processed as

indicated in the Supplemental Experimental Procedures.

T Cells-DC Cocultures

BM-DCs were generated as described in the Supplemental Experimental

Procedures. For DC-T cell cocultures, BM-DCs were loaded with OVA or

OVA peptides (MHC-I restricted OVA257–264 or MHC-II restricted OVA323–339,

Invivogen) for 4 hr. We seeded 5 3 103 BM-DCs in a 96-well plate and

cocultured them with Ag-specific T cells at a ratio of 1:10. CD25�CD4+ and

CD25�CD8+ naive T cells were obtained from the spleens of OT-I and OT-II

mice, respectively. They were enriched with beads (Miltenyi Biotec) to a pu-

rity >95%–98% and labeled with 5 mM CFSE (Molecular Probes). After

3 days of coculture, cells were stained with anti-CD3 (clone 145-2C11,

eBioscience), CD4 (clone H129.19, BD PharMingen), and CD8 (clone 53-6.7,

BD PharMingen). DAPI was added before acquisition to exclude dead cells.

Sorted APCs were coculture with CFSE-labeled naive CD25�CD4+ OT-II

T cells at a ratio of 1:5 for 4 days.

Oral Tolerance

Mice were fed i.g. with 1 or 20 mg of OVA in 200 ml DPBS on days 13, 10, and 7

before OVA-CFA immunization. Mice were immunized s.c. with 50 ug OVA in

100 ml PBS-CFA emulsion. After 7 days, mice were challenged by s.c. injection

of 250 mg heat-aggregated OVA in 20 ml of PBS in the left hind footpad. Right

footpad received PBS as a control. OVA-specific DTH was determined by

footpad swelling 24 hr after challenge with heat-aggregated OVA. Footpad

swelling was measured as difference in the thickness of OVA-challenged

and DPBS-injected control footpad for each mouse.

Total splenocytes were subsequently isolated and restimulated in vitro with

1 mg/ml OVA. Red blood cells were lysed with a hypotonic red cell lysis buffer,

and 5 3 104 cells per each well were seeded in a 96-well plate. Supernatants

were collected after 4 days and IFN-g measured by CBA FACSArray (BD

Biosciences).

Calcein Transfer Assay

CD11c+ cells were enriched from small intestines of C57BL/6 mice and were

divided into two pools: one was labeled with 15 mM DDAO (Molecular Probes)

for 15 min at room temperature; the second was labeled with 0.5 mM Calcein-

AM (Molecular Probes) in serum-freemedium for 30min at 37�C. After labeling,
cells were extensively washed in complete medium.

The two pools were cocultured for 30min and calcein transfer was evaluated

by flow cytometry. When indicated, cells were pretreated with 1-Heptanol

(Sigma Aldrich) at different concentration (0.5, 5, and 50 mM) for 2 hr.

Adoptive T Cell Transfer and Antigen Oral Feeding

CFSE+-labeled naive T cells CD4+CD25� (2 3 106) isolated from OT-II Ly5.1+

mice were adoptively transferred intravenously into Gja1WT and Gja1fl/fl Itgax-

cre Ly5.2+ recipients at day 0. At days 1 and 2, mice received an i.g. adminis-

tration of 15mg of OVA (grade III; Sigma-Aldrich). On day 6, MLNs and spleens

were collected from Ly5.2+ hosts; proliferation and Foxp3 expression were

analyzed in the Ly5.1+ transplanted cells by flow cytometry.

Cells were permeabilized with the eBioscience Fix-Perm buffer for 1 hr

according to manufacturer’s instructions. Cells were subsequently stained in

Wash-Perm Buffer (eBioscience) with anti-CD45.1 (clone A20, eBioscience),

CD4 (clone H129.19, BD PharMingen), and Foxp3 (clone FJK-16 s,

eBioscience). Samples were acquired with FACSCanto (BD Biosciences)

and analyzed with FlowJo (Tristar).

Coculture of HeLa Cells and CD11c+ Cells

HeLa cells were transfected to expressmurine Cx43 (see Supplemental Exper-

imental Procedures). Twenty-four hr after transfection, transfected cells

(HeLa-Cx43) and control HeLa cells were seeded in 96-well plates and

cocultured with CD11c+ cells enriched from the small intestine or I-A-I-

E+CD11c+ cells sorted from the small intestine of Gja1WT and Gja1fl/fl Itgax-

cre mice. In some experiments, a transwell with 3.0 mm pores was used to

separate HeLa and lamina propria cells.
260 Immunity 40, 248–261, February 20, 2014 ª2014 Elsevier Inc.
After 12 hr, cells were collected and stained with anti-CD45.2, CD11c,

MHC-II, CD103, and CD11b. Human MHC-I was stained with an anti-HLA-

ABC (clone W6/32, Exbio). DAPI was added to exclude dead cells.

For immunofluorescence, HeLa-Cx43 and HeLa cells were seeded in a 8-

well Permanox slide and cocultured for 24 hr with I-A-I-E+CD11c+ labeled

with 1 mM DDAO (Molecular Probes). Slides were then fixed in PFA 4% for

15 min.

Statistics

Results were represented as mean ± SD. Statistical significance between two

groups was determined by the nonpaired Student’s t test while the com-

parison of multiple groups was carried out by two-way ANOVA followed by

Bonferroni post-test using GraphPad Prism software. *p < 0.05, **p < 0.01,

*** p < 0.001, n.s. not significant.
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