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Abstract

Using the classification of finite Weyl groupoids we prove that crystallographic arrangements, a large
subclass of the class of simplicial arrangements which was recently defined, are hereditarily inductively free.
In particular, all crystallographic reflection arrangements are hereditarily inductively free, among them the
arrangement of type E8. With little extra work we prove that also all Coxeter arrangements are inductively
free.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

A hyperplane arrangement A is called free if the module of A-derivations D(A) is free. If no
additional information about an arrangement A is known, then one can decide its freeness and in
that case construct a free basis for D(A) by intensive use of GRÖBNER basis techniques.

Fortunately, for certain arrangements there is a purely combinatorial method to prove their
freeness1 based on the Addition-Theorem [11, Theorem 4.50]: For a triple (A, A′, A′′) of ar-
rangements where A = A′ ∪ {H }, A′′ = AH , the arrangement A is free if A′, A′′ are free and

* Corresponding author.
E-mail addresses: barakat@mathematik.uni-kl.de (M. Barakat), cuntz@mathematik.uni-kl.de (M. Cuntz).

1 TERAO even conjectured that the freeness of an arrangement, over a fixed field, only depends on the intersection
lattice, and is hence a purely combinatorial notion.
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exp A′′ ⊆ exp A′. This theorem naturally leads to the stronger notion of inductive freeness: The
empty arrangement is inductively free, and A is inductively free if there is a triple (A, A′, A′′) as
above where A′, A′′ are inductively free. So inductive freeness implies freeness, but the converse
is false [11, 4.59].

A very important class of arrangements is the class of reflection arrangements. There is an
elegant invariant theoretic proof (see e.g. [11, Theorem 6.60]) that reflection arrangements are
free. In fact, it is conjectured [11, Conjecture 6.90, Conjecture 6.91] that reflection arrangements
are inductively free or even hereditarily inductively free. ORLIK and TERAO [12] proved that
COXETER arrangements are hereditarily free.

Here we prove the inductive freeness for the following large class of simplicial arrangements:
Let A be a simplicial arrangement and let R be a set of nonzero covectors such that A = {α⊥ |
α ∈ R}. Assume that Rα ∩ R = {±α} for all α ∈ R. The pair (A,R) is called crystallographic,
see [4, Definition 2.3], if for any chamber K the elements of R are integer linear combinations
of the covectors defining the walls of K . For example, all reflection arrangements from Weyl
groups2 are crystallographic arrangements. In rank greater than two the arrangements of type H3
and H4 are the only COXETER arrangements which are not crystallographic.

In this paper we prove that crystallographic arrangements are hereditarily inductively free. We
treat the sporadic cases with the computer: The algorithm is mainly based upon the fact that the
roots of a finite WEYL groupoid are real roots and that the finite WEYL groupoids are in one-
to-one correspondence with the crystallographic arrangements [4]. For the non-crystallographic
COXETER arrangements of type H3 and H4 we use a generic version of the algorithm.

The paper is organized as follows. In Section 2 we recall all necessary definitions follow-
ing [11]. In Section 3 we briefly describe the classification of crystallographic arrangements [5].
In the next section we give a detailed description of the infinite series and prove that their ar-
rangements are inductively free. Section 5 treats the sporadic cases using the computer. This is
the most difficult part, in particular the arrangement of type E8 requires significant extra work.
All the algorithms we use to decide the inductive freeness by searching for an “inductive path”
produce a certificate providing an a posteriori proof of correctness for the computed path. In the
last section we describe algorithms to decide the freeness and compute a free basis for the mod-
ule of derivations of a general central arrangement. Finally, in Appendices A and B we describe
the computation of a free basis for the largest sporadic crystallographic arrangement of rank 7
and 8 and list the exponents of all sporadic crystallographic arrangements.

2. Preliminaries on arrangements

Let r ∈ N, V := R
r . We first recall the definition of a simplicial arrangement (compare [11,

1.2, 5.1]).

Definition 2.1. Let A be a simplicial arrangement in V , i.e. A = {H1, . . . ,Hn} where H1, . . . ,Hn

are distinct linear hyperplanes in V and every component of V \⋃
H∈A H is an open simplicial

cone. Let K(A) be the set of connected components of V \⋃
H∈A H ; they are called the cham-

bers of A.

We also need the concepts of a subarrangement and restriction:

2 Notice that for example the arrangements of type Bn and Cn are not isomorphic as crystallographic arrangements
because of the additional datum R.
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Definition 2.2. (See [11, 1.12–1.14].) Let (A,V ) be an arrangement. We denote by L(A) the set
of all nonempty intersections of elements of A.

If B ⊆ A is a subset, then (B,V ) is called a subarrangement. For X ∈ L(A) define a subar-
rangement AX of A by

AX = {H ∈ A | X ⊆ H }.

Define an arrangement (AX,X) in X by

AX = {X ∩ H | H ∈ A\AX and X ∩ H 	= ∅}.

We call AX the restriction of A to X.
Let H0 ∈ A. Let A′ = A\{H0} and let A′′ = AH0 . We call (A, A′, A′′) a triple of arrange-

ments and H0 the distinguished hyperplane.

Recall the module of derivations of an arrangement:

Definition 2.3. (See [11, 4.1].) Let (A,V ) be a real arrangement and S = S(V ∗) the symmetric
algebra of the dual space V ∗ of V . We choose a basis x1, . . . , xr for V ∗ and identify S with
R[x1, . . . , xr ] via the natural isomorphism S ∼= R[x1, . . . , xr ]. We write Der(S) for the set of
derivations of S over R. It is a free S-module with basis D1, . . . ,Dr where Di is the usual
derivation ∂/∂xi .

A nonzero element θ ∈ Der(S) is homogeneous of polynomial degree p if θ = ∑r
k=1 fkDk

and fk ∈ Sp for a � k � r . In this case we write pdeg θ = p.
Let A be an arrangement in V with defining polynomial

Q(A) =
∏

H∈A
αH

where H = kerαH . Define the module of A-derivations by

D(A) = {
θ ∈ Der(S)

∣∣ θ
(
Q(A)

) ∈ Q(A)S
}
.

In this paper, we prove that certain arrangements are free:

Definition 2.4. An arrangement A is called a free arrangement if D(A) is a free module over S.
If A is free and {θ1, . . . , θr} is a homogeneous basis for D(A), then pdeg θ1, . . . ,pdeg θr are

called the exponents of A and we write

exp A = {pdeg θ1, . . . ,pdeg θr}.

Remark that the pdegrees depend only on A (up to ordering).

We will use the following theorem:
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Theorem 2.5 (Addition–Deletion). (See [11, Theorem 4.51].) Suppose A 	= ∅. Let (A, A′, A′′)
be a triple. Any two of the following statements imply the third:

A is free with exp A = {b1, . . . , br−1, br},
A′ is free with exp A′ = {b1, . . . , br−1, br − 1},

A′′ is free with exp A′′ = {b1, . . . , br−1}.

Inspired by this theorem, one defines:

Definition 2.6. (See [11, Definition 4.53].) The class I F of inductively free arrangements is the
smallest class of arrangements which satisfies

(1) The empty arrangement Φ� of rank � is in I F for � � 0,
(2) if there exists H ∈ A such that A′′ ∈ I F , A′ ∈ I F , and exp A′′ ⊂ exp A′, then A ∈ I F .

We will say that (A1, . . . , An) is an inductive chain of arrangements if Ai\Ai−1 = {Hi} for
i = 2, . . . , n and suitable Hi , and if (Ai , Ai−1, AHi

i ) is a triple of inductively free arrangements
for all i = 2, . . . , n.

We further need:

Theorem 2.7. (See [11, Theorem 6.60].) If G is a finite reflection group, then its reflection ar-
rangement A = A(G) is free and exp A is the set of coexponents of G.

Thus by [3, VI. Planche II, IV]:

Remark 2.8. Let A resp. B be the reflection arrangements of type Br resp. Dr . Then

exp A = {1,3, . . . ,2r − 3,2r − 1},

exp B =
{ {1,3, . . . , r − 3, r − 1, r − 1, r + 1, . . . ,2r − 5,2r − 3}, r even,

{1,3, . . . , r − 4, r − 2, r − 1, r, r + 2, . . . ,2r − 5,2r − 3}, r odd.

3. Crystallographic arrangements

Recall the definition of a crystallographic arrangement and the correspondence to CARTAN

schemes:

Definition 3.1. (See [4, Definition 2.3].) Let (A,V ) be a simplicial arrangement and R ⊆ V a
finite set such that A = {α⊥ | α ∈ R} and Rα ∩ R = {±α} for all α ∈ R. For a chamber K of A
set

RK+ = R ∩
∑

α∈BK

R�0α,
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where BK is the set of normal vectors in R of the walls of K pointing to the inside. We call
(A,R) a crystallographic arrangement if

(I) R ⊆ ∑
α∈BK Zα for all chambers K .

Theorem 3.2. (See [4, Theorem 1.1].) There is a one-to-one correspondence between crystal-
lographic arrangements and connected simply connected CARTAN schemes for which the real
roots are a finite root system (up to equivalence on both sides).

We omit the definitions of CARTAN schemes and their root systems here because we will not
need them. It suffices to know that there is a complete classification of those CARTAN schemes
which correspond to crystallographic arrangements [5, Theorem 1.1]:

Theorem 3.3. There are exactly three families of connected simply connected CARTAN schemes
for which the real roots form a finite irreducible root system:

(1) The family of CARTAN schemes of rank two parametrized by triangulations of a convex
n-gon by non-intersecting diagonals.

(2) For each rank r > 2, the standard CARTAN schemes of type Ar , Br , Cr and Dr , and a series
of r − 1 further CARTAN schemes described explicitly in Theorem 4.3.

(3) A family consisting of 74 further “sporadic” CARTAN schemes (including those of type F4,
E6, E7 and E8).

Definition 3.4. For a finite set Λ ⊂ R
r we will write

ΛA := {
β⊥ ∣∣ β ∈ Λ

}
.

Let r, s ∈ N with r � s. We will say that a finite set Λ ⊆ Z
s is a root set of rank r if there exists a

CARTAN scheme C of rank r and an injective linear map w : Z
r → Z

s such that w((Rre)a) = Λ

for some object a.

4. The infinite series

Let r ∈ N. Denote by {α1, . . . , αr} the standard basis of Z
r . We use the following notation:

For 1 � i, j � r , let

ηi,j :=
{∑j

k=i αk, i � j,

0, i > j.

Definition 4.1. Let Z ⊆ {1, . . . , r − 1}. Let Ξr,Z denote the set of roots3

ηi,j−1, 1 � i < j � r,

ηi,r−2 + αr, 1 � i < r,

3 This set is denoted by Φr,Z in [5]; we denote it by Ξr,Z here to avoid confusing it with the empty arrangement.
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ηi,r + ηj,r−2, 1 � i < j < r,

ηj,r + ηj,r−2, j ∈ Z.

Let Y ⊆ {1, . . . , r − 1}. Let Ψr,Y denote the set of roots

ηi,j , 1 � i � j � r,

ηi,r + ηj,r−1, 1 � i < j < r,

ηj,r + ηj,r−1, j ∈ Y.

Further, denote by Ψ ′
r,Y the set obtained from Ψr,Y by exchanging αr−1 and αr .

Remark 4.2. The sets Ξr,∅ resp. Ψr,{1,...,r−1} are the sets of positive roots of the WEYL groups
of type Dr resp. Cr , compare [3, VI. 4.6, 4.8].

The following holds [5, Theorem 3.21]:

Theorem 4.3. Let C be a connected simply connected CARTAN scheme of rank r > 8 for which
the real roots form a finite irreducible root system and let

R+ := {(
Rre)a

+
∣∣ a ∈ C

}
.

Then there are two possibilities:

(1) The CARTAN scheme C is standard (|R+| = 1) of type A, B , C, D.
(2) Up to equivalence the root sets of C are given by

R+ = {
Ξr,Z,Ψr,Y ,Ψ ′

r,Y

∣∣ Z,Y ⊆ {1, . . . , r − 1}, |Z| = s, |Y | = s − 1
}

for some s ∈ {1, . . . , r − 1}.

In particular, if C is not standard then it has(
r − 1

s − 1

)
+

(
r

s

)
different root sets and 2r−1(m + r)(r − 1)! objects.

Since the sets in R+ are equal up to a base change, we obtain:

Corollary 4.4. Let A be an irreducible crystallographic arrangement of rank r � 3 which is not
sporadic. Then up to a base change

A = {
α⊥ ∣∣ α ∈ R+

}
where R+ is either a set of positive roots of type Ar , Br , Cr or Dr , or R+ = Ξr,Z for some
Z ⊂ {1, . . . , r − 1}.
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We now treat the inductive freeness of the series:

Proposition 4.5. Let A be an irreducible crystallographic arrangement of rank r which is not
sporadic. Then A is an inductively free arrangement.

Proof. If A is a reflection arrangement of type A, then it is inductively free by [11, Exam-
ple 4.55]. So assume that A is not of type A and that A is not sporadic. By Corollary 4.4 we
may assume A = {α⊥ | α ∈ Ξr,Z} for a certain subset Z ⊆ {1, . . . , r − 1}, Z 	= ∅, or that A is of
type C. Using the base change

αi �→ αi − αi+1, αr �→ αr−1 + αr

for i = 1, . . . , r − 1, one obtains that the arrangement Ξr,Z is isomorphic to the arrangement
denoted by Dk

r in [10] defined by

x1 · · ·xk

∏
1�i<j�r

(xi ± xj )

for k = |Z|. Further, Dr
r is isomorphic to the arrangements of type B and C. JAMBU and TERAO

showed [10, Example (2.6)] that Dk
r are inductively free for all r, k. �

5. Inductive freeness of the sporadic crystallographic arrangements

5.1. Ranks three to seven

The key to the algorithm is the fact that the root sets “are” sets of real roots for a CARTAN

scheme: Let C be a CARTAN scheme and a an object. Then for each root α ∈ Ra+ there exists an
object b and a morphism w ∈ Hom(a, b) such that w(α) is a simple root. In particular, we get:

Definition 5.1. Let C be a CARTAN scheme, a an object and Ra the set of real roots at a. Then
there exist maps (not unique)

μRa : Ra → Hom
(
a, W (C)

)
, ιRa : Ra → {1, . . . , r}

such that for all α ∈ Ra the set μRa (α)(Ra) is a root set and

μRa (α)(α) = αιRa (α)

is simple. Denote gi(λ1, . . . , λr ) := gcd(λ1, . . . , λ̂i , . . . , λr ) where “̂” means that we omit this
element and let α ∈ Ra . We set

αRa :=
{

1

gιR(α)(λ1, . . . , λr)

r∑
ιR(α)	=i=1

λiαi

∣∣∣ r∑
i=1

λiαi ∈ μ
(
Ra

)
,

r∑
ιR(α)	=i=1

λiαi 	= 0

}

and view αRa ⊆ 〈α1, . . . , α̂ι(α), . . . , αr 〉 as a subset of R
r−1.
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Proposition 5.2. Let A be a crystallographic arrangement. Then A = R A for some root set R

and

αR A = Aα⊥

for all α ∈ R.

Proof. We use the correspondence to WEYL groupoids: Up to a base change, A = {α⊥ | α ∈ Ra+}
where Ra+ is the set of real roots at an object a of a CARTAN scheme. Now we use maps μ, ι

as in Definition 5.1. Explicitly, Aα⊥
is the arrangement given by Ra+ where we erase the ι(α)-th

coordinate, collect the resulting vectors and possibly divide them by the greatest common divisor
of their coordinates. �

We also need the following proposition which is a corollary to the classification:

Proposition 5.3. Let A be a crystallographic arrangement and H ∈ A. Then AH is crystallo-
graphic.

Proof. Let R be a root set with A = R A and α ∈ R such that H = α⊥. It suffices to check that
αR is a root set. We use the classification. For the 74 sporadic crystallographic arrangements we
use the computer. The infinite series are easy to treat: Restricting from type A, B yields type
A, B respectively. Restricting from type C gives type C except for one coordinate which yields
type B .

For type D or the arrangements from Ξr,Z , Ψr,Y , Ψ ′
r,Y one checks all restrictions: In the

standard ordering, restricting a root system of type Dr to α⊥
1 , . . . , α⊥

r−2 gives a root set of the
form Ξr−1,Z and restricting to α⊥

r−1 or α⊥
r gives a root set of the form Ψr−1,Y . Thus the only

roots one has to consider when restricting from Ξr,Z , Ψr,Y or Ψ ′
r,Y are those parametrized by Z

resp. Y . But it is easy to check in each case that one again obtains such a set. �
Remark that Proposition 5.3 is only used in the algorithm and in Corollary 5.15, where we

state that the crystallographic arrangements are hereditarily inductively free.
Let L be a global variable which is a sequence of inductively free arrangements A stored as

pairs (Λ, exp A) where A = ΛA. The following algorithm treats almost all sporadic crystallo-
graphic arrangements:

Algorithm 5.4. IsInductivelyFree(r,R0,R1, e0, R̂,μ)
Test if R1 is inductively free.
Input: r ∈ N, R0 ⊆ R1 ⊆ N

r
0, e0 = exp R0 A, a root set R̂ with R1 ⊆ R̂, a map μ = μ

R̂
: R̂ →

GL(Zr ).
Output: True or False, a sequence of exponents if True.

1. If |R0| = |R1| then return (True, e0).
2. Set F ← R1\R0. Sort F in a “good” way: Call HeuristicGoodOrdering(F ) (see below).
3. For each α ∈ F , perform steps 4–12.
4. Set R2 = R0 ∪ {±α}. Let R := μ(α)(R2) and compute R′′ := μ(α)(α)R.
5. Initialize e ← ∅.
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6. If the rank of R′′ is 2, then e := (1, |R′′| − 1), go to step 12.
7. If R′′ ∈ L, then R′′ is known to be inductively free, set e := exp R′′ A, go to step 12.
8. If |R′′| = r − 1 and the rank of R′′ is r − 1 then set e := (1, . . . ,1) (|e| = r), go to step 12.
9. Search in L for a largest set Λ with Λ ⊆ R′′. If there is no such set, then choose a linearly

independent Λ ∈ R′′ with R′′ ⊆ 〈Λ〉.
10. Let R̂′′ := αR̂. By Proposition 5.3, R̂′′ is crystallographic and we obtain a new map μ

R̂′′ .

11. Call IsInductivelyFree(r − 1,Λ,R′′, exp ΛA, R̂′′,μ
R̂′′ ). If R′′ is inductively free, then in-

clude it with its exponents into L and set e := exp R′′ A.
12. If |e| > 0 and e ⊆ e0, then (R0,R2,R

′′) is a triple of arrangements and thus by Theorem 2.5
we know that R2 is inductively free and we know exp R2 A. Call IsInductivelyFree(r,R2,R1,

exp R2 A, R̂,μ) and return the result (True, exp R1 A) if it is True.
13. Return (False, ∅).

Remark 5.5. To use the above algorithm to show that all sporadic crystallographic arrangements
are inductively free, we start with the arrangements of rank three and continue up to rank seven.
After each call of the function, we store the result in L as well as all the root sets from other
objects of the same WEYL groupoid.

The runtime of the algorithm strongly depends on good hash and search functions for L.
Further, when looking for an arrangement in L, we also consider arrangements with permuted
coordinates. So we need a good function that recognizes whether two matrices are equal up to
permutations of columns and rows.

Remark 5.6. We also keep track of pairs (R0,R1) for which no inductively free chain from R0 A
to R1 A was found during the algorithm to avoid testing them again in future. As for L, we need
good hash functions and perform all tests up to permutations of rows and columns.

The following function has proven to give good orderings (although we have to admit that we
do not know why).

Algorithm 5.7. HeuristicGoodOrdering(F )
Sort F = {β1, . . . , βn} in such a way that ({β1}A, . . . , {β1,...,βn}A) is hopefully almost (up to very
few transpositions) an inductive chain.
Input: F ⊆ N

r
0.

Output: An ordering F = {β1, . . . , βn}.

1. T ← F .
2. Compute a graph Γ having 1, . . . , r as vertices and for which (i, j) is an edge if and only if

αi + αj ∈ T (this is almost the Dynkin diagram of T when T is a root system).
3. If possible, choose a path i1, . . . , ir in Γ that passes each vertex exactly once.
4. Permute the coordinates of the elements of T to i1, . . . , ir .
5. Sort T lexicographically and apply the same exchanges to F .

Algorithm 5.4 works very well for all crystallographic arrangements of rank up to 7 except
for the largest arrangement A7,2 of rank 7 with 91 hyperplanes. After several experiments one
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F+ := {(0,0,0,0,0,0,1), (0,0,0,0,0,1,0), (0,0,0,0,1,0,0), (0,0,0,1,0,0,0), (0,0,1,0,0,0,0),

(0,1,0,0,0,0,0), (1,0,0,0,0,0,0), (0,0,0,0,0,1,1), (0,0,0,0,1,0,1), (0,0,0,0,1,1,1),

(0,0,0,0,1,1,0), (0,0,0,1,0,0,1), (0,0,0,1,0,1,1), (0,0,0,1,1,1,1), (0,0,0,1,1,0,1),

(0,0,0,1,1,1,2), (0,0,1,0,0,1,0), (0,0,1,0,0,1,1), (0,0,1,0,1,1,1), (0,0,1,0,1,1,0),

(0,0,1,0,1,2,1), (0,0,1,1,1,1,1), (0,0,1,1,1,2,2), (0,0,1,1,0,1,1), (0,0,1,1,1,1,2),

(0,0,1,1,1,2,1), (0,0,1,1,2,2,2), (0,1,0,1,0,0,0), (0,1,0,1,0,0,1), (0,1,0,1,0,1,1),

(0,1,0,1,1,1,1), (0,1,0,1,1,0,1), (0,1,0,1,1,1,2), (0,1,0,2,1,1,2), (0,1,1,1,1,1,1),

(0,1,1,1,1,2,2), (0,1,1,2,1,2,2), (0,1,1,1,0,1,1), (0,1,1,1,1,2,1), (0,1,1,2,2,2,3),

(0,1,1,1,1,1,2), (0,1,1,1,2,2,2), (0,1,1,2,1,1,2), (0,1,1,2,1,2,3), (0,1,1,2,2,2,2),

(0,1,1,2,2,3,3), (0,1,2,2,2,3,3), (1,1,0,0,0,0,0), (1,1,0,1,0,0,0), (1,1,0,1,0,0,1),

(1,1,0,1,0,1,1), (1,1,0,1,1,1,1), (1,1,0,1,1,0,1), (1,1,0,1,1,1,2), (1,1,0,2,1,1,2),

(1,1,1,1,1,1,1), (1,1,1,1,1,2,2), (1,1,1,2,1,2,2), (1,1,1,1,0,1,1), (1,1,1,2,2,2,3),

(1,1,1,1,1,1,2), (1,1,1,1,1,2,1), (1,1,1,1,2,2,2), (1,1,1,2,1,1,2), (1,1,1,2,1,2,3),

(1,1,1,2,2,2,2), (1,1,1,2,2,3,3), (1,1,2,2,2,3,3), (1,2,1,2,1,2,2), (1,2,1,2,2,2,3),

(1,2,1,3,2,2,3), (1,2,1,3,2,3,4), (1,2,0,2,1,1,2), (1,2,2,3,2,3,4), (1,2,1,2,1,1,2),

(1,2,1,2,1,2,3), (1,2,1,3,1,2,3), (1,2,1,3,2,2,4), (1,2,2,3,3,4,4), (1,2,1,2,2,2,2),

(1,2,1,2,2,3,3), (1,2,1,3,2,3,3), (1,2,1,3,3,3,4), (1,2,2,2,2,3,3), (1,2,2,3,2,3,3),

(1,2,2,3,2,4,4), (1,2,2,3,3,3,4), (1,2,2,3,3,4,5), (1,2,2,4,3,4,5), (1,3,2,4,3,4,5),

(2,3,2,4,3,4,5)}
Fig. 1. A set of normal vectors for A7,2.

also finds a good ordering for A7,2: Let F+ be defined as in Fig. 1 and denote by γ1, . . . , γ91 the
elements of F+ in the ordering of Fig. 1. Then

{
γ ⊥
i

∣∣ i = 1, . . . , k
}
, k = 1, . . . ,91,

is an inductive chain of arrangements. The proof is just an application of Algorithm 5.4 (notice
that all computations are now of rank six).

5.2. The arrangement of type E8

In rank 8 there is only one sporadic crystallographic arrangement, the reflection arrangement
of type E8. We will denote this arrangement by A8,1. Unfortunately, Algorithm 5.4 is not good
enough for this last case (we stopped it after a month of computation). So we have to look
more closely at the structure of A8,1. Experiments with Algorithm 5.4 lead to the conjecture that
“HeuristicGoodOrdering” yields indeed an inductive chain for A8,1. So the set R+ we will
consider is the one given in Fig. 2 (in this ordering), and A8,1 = R+ A.

If we write R+ = {β1, . . . , β120}, then we obtain arrangements A1, . . . , A120 where Ai :=
{β⊥

1 , . . . , β⊥
i } for i = 1, . . . ,120. We claim that (A1, . . . , A120) is an inductive chain of arrange-

ments. To prove this, we need to check that Aβ⊥
2

2 , . . . , Aβ⊥
120

120 are inductively free and that the
exponents of the triples satisfy the assumptions of Theorem 2.5.

First notice that each restriction AH
8,1, H ∈ A8,1, comes from a root set of the sporadic finite

WEYL groupoid W of rank 7 with 91 positive roots. So whenever we consider AH for some
A ⊆ A8,1 and H ∈ A8,1, we have an action of W on the corresponding “roots” and in particular
the automorphisms of the chosen object act as well. More precisely:
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R+ := {(0,0,0,0,0,0,0,1), (0,0,0,0,0,0,1,0), (0,0,0,0,0,1,0,0), (0,0,0,0,1,0,0,0),

(0,0,0,1,0,0,0,0), (0,0,1,0,0,0,0,0), (0,1,0,0,0,0,0,0), (1,0,0,0,0,0,0,0),

(0,0,0,0,0,0,1,1), (0,0,0,0,0,1,1,0), (0,0,0,0,0,1,1,1), (0,0,0,0,1,1,0,0),

(0,0,0,0,1,1,1,0), (0,0,0,0,1,1,1,1), (0,0,0,1,1,0,0,0), (0,0,0,1,1,1,0,0),

(0,0,0,1,1,1,1,0), (0,0,0,1,1,1,1,1), (0,0,1,1,0,0,0,0), (0,0,1,1,1,0,0,0),

(0,0,1,1,1,1,0,0), (0,0,1,1,1,1,1,0), (0,0,1,1,1,1,1,1), (0,1,0,1,0,0,0,0),

(0,1,0,1,1,0,0,0), (0,1,0,1,1,1,0,0), (0,1,0,1,1,1,1,0), (0,1,0,1,1,1,1,1),

(0,1,1,1,0,0,0,0), (0,1,1,1,1,0,0,0), (0,1,1,1,1,1,0,0), (0,1,1,1,1,1,1,0),

(0,1,1,1,1,1,1,1), (0,1,1,2,1,0,0,0), (0,1,1,2,1,1,0,0), (0,1,1,2,1,1,1,0),

(0,1,1,2,1,1,1,1), (0,1,1,2,2,1,0,0), (0,1,1,2,2,1,1,0), (0,1,1,2,2,1,1,1),

(0,1,1,2,2,2,1,0), (0,1,1,2,2,2,1,1), (0,1,1,2,2,2,2,1), (1,0,1,0,0,0,0,0),

(1,0,1,1,0,0,0,0), (1,0,1,1,1,0,0,0), (1,0,1,1,1,1,0,0), (1,0,1,1,1,1,1,0),

(1,0,1,1,1,1,1,1), (1,1,1,1,0,0,0,0), (1,1,1,1,1,0,0,0), (1,1,1,1,1,1,0,0),

(1,1,1,1,1,1,1,0), (1,1,1,1,1,1,1,1), (1,1,1,2,1,0,0,0), (1,1,1,2,1,1,0,0),

(1,1,1,2,1,1,1,0), (1,1,1,2,1,1,1,1), (1,1,1,2,2,1,0,0), (1,1,1,2,2,1,1,0),

(1,1,1,2,2,1,1,1), (1,1,1,2,2,2,1,0), (1,1,1,2,2,2,1,1), (1,1,1,2,2,2,2,1),

(1,1,2,2,1,0,0,0), (1,1,2,2,1,1,0,0), (1,1,2,2,1,1,1,0), (1,1,2,2,1,1,1,1),

(1,1,2,2,2,1,0,0), (1,1,2,2,2,1,1,0), (1,1,2,2,2,1,1,1), (1,1,2,2,2,2,1,0),

(1,1,2,2,2,2,1,1), (1,1,2,2,2,2,2,1), (1,1,2,3,2,1,0,0), (1,1,2,3,2,1,1,0),

(1,1,2,3,2,1,1,1), (1,1,2,3,2,2,1,0), (1,1,2,3,2,2,1,1), (1,1,2,3,2,2,2,1),

(1,1,2,3,3,2,1,0), (1,1,2,3,3,2,1,1), (1,1,2,3,3,2,2,1), (1,1,2,3,3,3,2,1),

(1,2,2,3,2,1,0,0), (1,2,2,3,2,1,1,0), (1,2,2,3,2,1,1,1), (1,2,2,3,2,2,1,0),

(1,2,2,3,2,2,1,1), (1,2,2,3,2,2,2,1), (1,2,2,3,3,2,1,0), (1,2,2,3,3,2,1,1),

(1,2,2,3,3,2,2,1), (1,2,2,3,3,3,2,1), (1,2,2,4,3,2,1,0), (1,2,2,4,3,2,1,1),

(1,2,2,4,3,2,2,1), (1,2,2,4,3,3,2,1), (1,2,2,4,4,3,2,1), (1,2,3,4,3,2,1,0),

(1,2,3,4,3,2,1,1), (1,2,3,4,3,2,2,1), (1,2,3,4,3,3,2,1), (1,2,3,4,4,3,2,1),

(1,2,3,5,4,3,2,1), (1,3,3,5,4,3,2,1), (2,2,3,4,3,2,1,0), (2,2,3,4,3,2,1,1),

(2,2,3,4,3,2,2,1), (2,2,3,4,3,3,2,1), (2,2,3,4,4,3,2,1), (2,2,3,5,4,3,2,1),

(2,2,4,5,4,3,2,1), (2,3,3,5,4,3,2,1), (2,3,4,5,4,3,2,1), (2,3,4,6,4,3,2,1),

(2,3,4,6,5,3,2,1), (2,3,4,6,5,4,2,1), (2,3,4,6,5,4,3,1), (2,3,4,6,5,4,3,2)}
Fig. 2. A set of normal vectors for A8,1.

Let F denote the root set of W for which we know an inductive chain, i.e. an ordering of
F+ = {γ1, . . . , γ91}. For each i = 1, . . . ,120, μ(βi)R+ is some set of positive roots for W , so
there is an automorphism ϕ with

ϕ
(
μ(βi)R+ ∪ −μ(βi)R+

) = F.

Now we consider Aβ⊥
i

i ⊆ μ(βi)R+. The automorphism group of the object F in W is a subgroup

of the symmetric group S182 and it acts on ϕ(Aβ⊥
i

i ∪ −Aβ⊥
i

i ). A computation yields:

Lemma 5.8. Let Oi be the orbit of ϕ(Aβ⊥
i

i ∪ −Aβ⊥
i

i ) under the action of Aut(F ) for i =
43, . . . ,120. Then Oi = Oj whenever |Aβ⊥

i

i | = |A
β⊥

j

j |.

Remark 5.9. The lemma is certainly also true for i < 43 but for these cases Algorithm 5.4 is
good enough.
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Since these automorphisms are linear maps, it suffices to check inductive freeness for one
representative of each orbit. These are arrangements with

42,46,49,51,52,58,60,61,65,66,68,74,75,77,80,84,90,91

hyperplanes. Let O be such an orbit and assume that {γi1, . . . , γim} are the positive elements cor-
responding to a representative. We choose this representative in such a way that max{i1, . . . , im}
is minimal. This way we ensure that the resulting ordering is very close to the preferred ordering
for F . Indeed, using all these techniques we can prove the inductive freeness of the reflection
arrangement of type E8 in less than 5 min on a usual PC with GAP.

5.3. Certificates for inductive freeness

The above algorithm is quite complicated when implemented and it is very hard to completely
exclude coding errors. Therefore we use a second very short and simple program to check that
the results are correct.

Definition 5.10. Let A = {H1, . . . ,Hn} be an inductively free hyperplane arrangement of rank at
least 2. A certificate for inductive freeness CA for A is

CA =
{

2, rank A = 2,

((i1, . . . , in), (C1, . . . ,Cn)), rank A > 2,

where {i1, . . . , in} = {1, . . . , n}, Aj := {Hi1, . . . ,Hij }, (A1, . . . , An) is an inductive chain and

Cj is a certificate for A
Hij

j .

After several modifications to the above algorithms one obtains as output the exponents and a
certificate as well. We can then check the certificate via the following:

Algorithm 5.11. CheckCertificate(A,C)
Check whether C is a certificate for A.
Input: A hyperplane arrangement A, an object C.
Output: Exponents of A or False.

1. Let r be the rank of A.
2. If r = 2 then return (1, |A| − 1).
3. Denote A = (H1, . . . ,Hn) and C = ((i1, . . . , in), (C1, . . . ,Cn)).
4. e ← (1, . . . ,1) (r-times).
5. For j from r + 1 to |A| do steps 6–8.
6. Ã ← {Hi1, . . . ,Hij−1}Hij .

7. ẽ ←CheckCertificate(Ã,Cj−r ).
8. If ẽ 	=False and ẽ ⊆ e then e ← ẽ ∪ (j − |A|), else return False.
9. Return e.

Remark 5.12. The “∪”-symbol in step 8 is a union of multisets, i.e. e, ẽ are in fact sets with
multiplicities.
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Remark 5.13. Step 6 is the time consuming part. Since we are only dealing with small integers
this is a function which is very easy to implement in C. A certificate for the arrangement A8,1
takes depending on the format between 300 kB and 500 MB.

CheckCertificate takes about 15 min for A8,1 using GAP with a dynamic C-module for re-
strictions. It may seem surprising that it takes longer to check the certificate than to create it.
There are two reasons for this: First, Algorithm 5.4 descends only once into each branch it has
already computed to be inductively free (remember the global variable L). Secondly, in Algo-
rithm 5.4 we use the information on WEYL groupoids and morphisms and can therefore always
restrict to a simple root which amounts to erasing a coordinate and compute gcd’s. In Check-
Certificate we want to keep everything as short as possible and in particular we transfer no
information on the morphisms.

Certificates for the sporadic crystallographic arrangements are available at [1].

5.4. The arrangements of type H3 and H4

To prove that all COXETER arrangements are inductively free, we still need to compute cer-
tificates for the non-crystallographic cases. The case of rank two being trivial, there are two
arrangements left, the arrangements of type H3 and H4. Fortunately these cases are of rank three
and four and are small enough to be treated by a generic version of Algorithm 5.4 which does
not use the structure of the groupoids.

5.5. Summary

Theorem 5.14. Crystallographic arrangements are inductively free.

Proof. This is Proposition 4.5 and a computation with Algorithm 5.4. �
Corollary 5.15. Crystallographic arrangements are hereditarily inductively free.

Proof. Let A be a crystallographic arrangement and X ∈ L(A). Then X = H1 ∩ · · · ∩ Hk for
certain hyperplanes H1, . . . ,Hk ∈ A. Applying Proposition 5.3 k-times, we obtain that AX is
crystallographic and thus inductively free by Theorem 5.14. �
Corollary 5.16. COXETER arrangements are inductively free.

Proof. This is Theorem 5.14 and Section 5.4. �
6. Freeness of the graded module D(A)

In this section we describe algorithms to compute a free basis of D(A) for a free central
arrangement A. These algorithms can also be used to decide the freeness of finitely presented
graded S-modules and, in particular, the freeness of central arrangements.

The first two subsections describe well-known algorithms. The algorithm in the third subsec-
tion enabled us to compute a free basis for the E8-arrangement given as the product of 120 sparse
matrices.
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6.1. D(A) as a kernel

Expressing D(A) as a kernel of an S-module homomorphism allows the use of GRÖBNER

basis techniques to compute a set of generators D(A) as a subset of the free module Der(S) of
rank r , the latter being identified with S1×r using the standard basis (θi := ∂

∂xi
| i = 1 . . . r).

By definition, D(A) is the kernel of the map

ψA :
{

Der(S) → S/〈Q(A)〉S,

θ �→ θ(Q(A)) + 〈Q(A)〉S.

If Q(A) is a complicated polynomial of large degree the GRÖBNER basis computations quickly
become unfeasible. Fortunately, there exists an alternative description of D(A) as a kernel of
some other map φA and it turns out that various GRÖBNER basis implementations scale much
better when performing this kernel computation. First recall the identity [11, Proposition 4.8]

D(A) =
⋂

H∈A
D(αH )

expressing the module of A-derivations as the intersection of |A| free submodules of Der(S)

with

D(αH ) := {
θ ∈ Der(S)

∣∣ θ(αH ) ∈ 〈αH 〉S
} = kerφH ,

where φH is the S-module map

φH :
{

Der(S) → S/〈αH 〉S,

θ �→ θ(αH ) + 〈αH 〉S
between Der(S) and the cyclic torsion module S/〈αH 〉S . The intersection D(A) of these kernels
can now be computed as the kernel of the product map φA := ∏

H∈A φH

φA : Der(S) → TA

with values in the torsion S-module

TA :=
∏

H∈A
S/〈αH 〉S = Sn/

∏
H∈A

〈αH 〉S.

With respect to the standard generating system (ēj | j = 1 . . . n) of TA = Sn/
∏

H∈A〈αH 〉S
we identify

TA ≡ coker
(
S1×n tA−→ S1×n

)
,

where tA is the n × n diagonal matrix (δijαHj
) with diagonal entries. The map φA can be repre-

sented by the constant coefficients r × n matrix fA = (θi(αH )):

j



M. Barakat, M. Cuntz / Advances in Mathematics 229 (2012) 691–709 705
φA : S1×r fA−−→ coker
(
S1×n tA−→ S1×n

)
,

with Der(S) identified with S1×r as above.
Computing D(A) as the kernel of φA amounts to determining a generating set of solutions of

the homogeneous linear system of equations over S

χfA + ηtA = 0,

or equivalently

(
χ η

)(
fA
tA

)
= 0, (6.1)

with χ ∈ S1×r and η ∈ S1×n. It follows that {(X1 | η1), . . . , (Xq | ηq)} is a generating set of
solutions of (6.1) iff {X1, . . . ,Xq} is a generating set of D(A) as a subspace of Der(S) ≡ S1×r .
A generating set of solutions is thus nothing but the rows of a matrix (X | Y) ∈ Sq×(r+n) of

row syzygies of the matrix
(

fA

tA

)
and, as such, can be computed using a modern computer

algebra system supporting GRÖBNER basis. Most such systems even provide faster procedures
to compute X without computing (a normal form of) Y explicitly. The desired matrix X is called
the matrix of relative row syzygies of fA modulo tA. Summing up: The rows (X1, . . . ,Xq) of X

generate D(A) � Der(S) ≡ S1×r .
If A is central then all modules in this section are graded, all maps are graded of degree 0, and

the relative syzygies algorithm will produce a matrix X with homogeneous rows (X1, . . . ,Xq).

6.2. Deciding the freeness of the graded submodule D(A)

Since TA is torsion and hence of rank zero the short exact sequence

0 → D(A) → Der(S)
φA−−→ imφA → 0

implies that rankS D(A) = rankS Der(S) = r , by the additivity of the rank. This means that con-
structing a generating set of D(A) with r elements implies the freeness of D(A).

But since the number q of computed generators of D(A) will generally exceed the rank r ,
the above argument cannot be directly applied and one needs another way to decide the freeness
D(A).

The QUILLEN–SUSLIN theorem states that the freeness of an S-module (S = k[x1, . . . , xr ])
is equivalent to its projectiveness. But an algorithm to decide projectiveness has usually a major
drawback. It does not produce a free basis.

In any case, all these algorithms take a presentation matrix of the module as their input (see [2,
Section 3.4] for a short survey). In our situation, where the submodule D(A) is only given by a set
of generators {X1, . . . ,Xq} ⊂ S1×r , this means that we would still need to compute a generating
set of S-relations among the q generators before entering any of these algorithms. These relations
are again computable as the rows of a matrix Z ∈ Sp×q of row syzygies of the matrix X, and
D(A) ∼= coker(S1×p Z−→ S1×q).
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In the large examples of interest to us the presentation matrix Z usually contains huge entries.
An algorithms that performs nontrivial operations on Z would significantly be slowed down by
the size of such entries. So it would be desirable to have an algorithm that only uses Z in the
cheapest possible way.

There does exist an algorithm that uses Z in a very cheap way to detect obsolete rows in X,
i.e. the redundant generators of D(A) among the rows of X. And fortunately, in the graded case
this leads to an algorithm deciding freeness.

For the rest of the subsection let S = ⊕∞
i=0 Si be a positively graded commutative ring with

one, finitely generated as an algebra over the field4 S0 = k (i.e. S = k[x1, . . . , xm]/I , where
I is a homogeneous ideal). Denote by m = ⊕

i�1 Si � S the unique maximal homogeneous
ideal.

Proposition 6.1. Let M be a graded submodule of the graded free module S1×r , X =
{X1, . . . ,Xq} a finite set of homogeneous generators of M , and X = (Xi)i=1,...,q ∈ Sq×r the
matrix with i-th row Xi . The following conditions are equivalent:

(1) X is minimal, i.e. M cannot be generated by a proper subset of X .
(2) All entries of a matrix Z of row syzygies of X lie in m.
(3) A matrix Z of row syzygies of X with homogeneous entries has no unit entries, i.e. no entries

in S0 \ {0} = k∗.

Moreover, any two minimal set of generators X and X ′ have the same cardinality q .

Proof. The equivalence is a special case of the content of [6, Section 20.1]. �
Corollary 6.2. Let M be a graded submodule of S1×r of rank r . Then M is free if and only if the
cardinality of any minimal set of generators is r .

This corollary combined with the last condition of Proposition 6.1 suggest a simple algorithm
to decide freeness of the graded module M � S1×r .

Algorithm 6.3. GetColumnIndependentUnitPositions(Z)
Determine the position of the “column independent” units in the matrix Z.
Input: A matrix Z ∈ Sp×q .
Output: A subset K of {1, . . . , q}.

1. Set J := {1, . . . , q} and K := ∅.
2. For i ∈ {1, . . . , p} and j ∈ J do:

if Zij ∈ k∗, i.e. is a unit, then
redefine K := K ∪ {j}, redefine J := {l ∈ J | Zil = 0}, and break the j loop.

3. Return K (after finishing the i-loop).

4 A NOETHERian local ring S0 would suffice, cf. [6, Exercise 20.1].
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Algorithm 6.4. LessGenerators(X)
Compute a minimal set of homogeneous5 generators.
Input: X ∈ Sq×r with homogeneous rows. The rows X1, . . . ,Xq of X form a set of homoge-
neous generators of a graded submodule M � S1×r .
Output: A submatrix of X with some rows eventually deleted. The set of rows of this submatrix
is a minimal generating set of the graded submodule M � S1×r .

1. Compute a matrix Z of row syzygies of X with homogeneous entries.
2. Compute K := GetColumnIndependentUnitPositions(Z).
3. If K = ∅ then return X.
4. Define X̃ as the matrix with rows (Xi)i∈{1,...,q}\K .
5. Return LessGenerators(X̃).

The graded submodule M � S1×r of rank r is free if and only if LessGenerators(X) has r

rows, i.e. is a square matrix.

6.3. Descending chains of free submodules ending with D(A)

Set S = k[x1, . . . , xr ]. Let β1, . . . , βn ∈ S be of degree 1, A = {kerβ1, . . . ,kerβn} ⊂ kr be a
central arrangement with a fixed order of hyperplanes, and Φ� =: A0 ⊂ A1 ⊂ · · · ⊂ An := A the
ascending maximal chain of central subarrangements with Aj := {kerβ1, . . . ,kerβj }.

The following algorithm decides the freeness of D(Aj ) � S1×r for all j � n: It returns fail

if D(Aj ) is not free for some j . Otherwise it constructs a free basis (X
(j)

1 , . . . ,X
(j)
r ) of D(Aj )

written in the free basis (X
(j−1)

1 , . . . ,X
(j−1)
r ) of D(Aj−1) for all 1 � j � n, starting with the

standard basis (X
(0)
1 , . . . ,X

(0)
r ) := (α1, . . . , αr) as the free basis of S1×r = Der(S) = D(Φ�) =

D(A0). In other words, the r × r-matrix X(j), with X
(j)
i being the i-th row, describes the em-

bedding of D(Aj ) in D(Aj−1). Hence, in case all D(Aj ) are free, the algorithm constructs the
descending maximal chain of free modules

S1×r = D(A0) > · · · > D(An) = D(A)

and returns the tuple of successive embeddings (X(j))j=1...n. It follows that the total embedding
of D(A) in S1×r is the product matrix T := ∏n

j=1 X(j), the rows of which form a free basis of

D(A) expressed in the standard basis (α1, . . . , αr) of S1×r .

Algorithm 6.5. ConstructFreeChain(A)
Compute the list of successive embeddings (X(j))j=1...n.
Input: A = {kerβ1, . . . ,kerβn} with fixed order of hyperplanes.
Output: A list of matrices (X(j))j=1...n describing the successive embedding of D(Aj ) in
D(Aj−1).

1. For all j = 1 . . . n compute the morphism φHj
: S1×r → S/〈βj 〉 represented by the r × 1-

matrix φj (cf. Section 6.1).

5 The algorithm can be used to reduce the number of generators of a non-graded submodule given by a non-
homogeneous matrix. But in that case the number of rows of the output matrix has no intrinsic meaning.
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2. Compute the matrix X of relative row syzygies of μ := φH1 : S1×r → S/〈β1〉 (cf. Section 6.1).
3. If X(1) := LessGenerators(X) is not a square matrix then return fail.
4. Set t = Ir , the identity matrix of rank r .
5. For j = 2, . . . , n perform steps 6–9:
6. Set t := X(j−1) · t . It is the r × r-matrix representing the embedding D(Aj−1) ≡ S1×r →

Der(S) ≡ S1×r .
7. Set μ := t ·φj . It is the r × 1-matrix representing the morphism D(Aj−1) ≡ S1×r → S/〈βj 〉.
8. Compute the matrix X of relative row syzygies of μ (the rows of which form a generating set

of kerμ = D(Aj ) < D(Aj−1)).
9. If X(j) := LessGenerators(X) is not a square matrix then return fail.
10. Return (X(j))j=1...n.

Remark 6.6. This algorithm has the advantage of computing relative syzygies of morphisms
represented by one-column matrices μ (see step 8) as opposed to the algorithms in Section 6.1.
The rows of the product matrix T := ∏n

j=1 X(j) form a basis of D(A) and another advantage

of this algorithm is that it returns the n much simpler factors (X(j))j=1...n instead of T itself
(cf. [11, Theorem 4.46]).

We succeeded to compute such a descending maximal chain of free modules S1×8 = D(A0) >

· · · > D(A120) = D(A8,1) for the arrangement A8,1 of type E8 with the roots as in Fig. 2 but
sorted degree reverse-lexicographically. The first 8 roots are then the standard basis vectors
(α1, . . . , α8).

In particular, the deleted arrangement A119 = A′
8,1 is free. Since E8 is free6 by Theorem 2.7

we obtain another proof for the freeness of the restricted arrangement A7,2 ∼= A′′
8,1 by Theo-

rem 2.5.

Appendix A. A free basis of D(A7,2) and of D(A8,1)

Here we shortly describe the computation of a free basis of D(A7,2) and of D(A8,1) =
D(A(E8)). The algorithms in Section 6 are implemented (see [1]) using some packages of the
homalg project [9], written in GAP4 [7]. homalg used SINGULAR [8] as the GRÖBNER basis
engine.

The matrix X of generators of D(A7,2), computed as a matrix of relative syzygies of fA7,2

modulo tA7,2 , is a 1.9 GB 17×7-matrix. The matrix Z of row syzygies of X is a 178 MB 10×17
matrix. GetColumnIndependentUnitPositions(Z) returned a subset of {1, . . . ,17} of cardinal-
ity 10. LessGenerators(X) deleted these 10 rows from X and returned a 169 MB quadratic
7 × 7-matrix X̃. It follows that the seven homogeneous rows of X̃ form a free basis of D(A7,2).
Their degrees are (1,7,11,13,17,19,23). The computations took 742 h, i.e. around 30 days,
and dropped to 6 GB of RAM at the end of the computation.

Applying ConstructFreeChain to the E8-arrangement took only 8 h and 30 min but needed
130 GB of RAM. These basis computations were performed on an Opteron-8356 machine with
128 GB of RAM. The free basis is given as the rows of an 8 × 8-matrix computed as the product
of 120 sparse matrices [1].

Please note that proving the inductive freeness and producing the certificates for all sporadic
arrangements only took about 5 min on a usual PC as mentioned at the end of Section 5.2.

6 And even inductively free by Theorem 5.14.
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Appendix B. Exponents of the sporadic crystallographic arrangements

In this appendix we list the exponents of all sporadic crystallographic arrangements Ar,m of
rank r and number m as numbered in [5].

r m exp Ar,m r m exp Ar,m r m exp Ar,m

3 1 1, 4, 5 3 26 1, 9, 10 4 1 1, 4, 5, 5
3 2 1, 4, 5 3 27 1, 9, 11 4 2 1, 4, 5, 7
3 3 1, 5, 5 3 28 1, 9, 11 4 3 1, 5, 5, 7
3 4 1, 5, 6 3 29 1, 9, 11 4 4 1, 5, 7, 8
3 5 1, 5, 6 3 30 1, 10, 11 4 5 1, 5, 7, 9
3 6 1, 5, 7 3 31 1, 11, 13 4 6 1, 5, 7, 11
3 7 1, 5, 7 3 32 1, 11, 13 4 7 1, 7, 8, 9
3 8 1, 5, 7 3 33 1, 11, 13 4 8 1, 7, 9, 11
3 9 1, 5, 7 3 34 1, 11, 13 4 9 1, 7, 11, 11
3 10 1, 6, 7 3 35 1, 12, 13 4 10 1, 7, 11, 13
3 11 1, 7, 7 3 36 1, 12, 13 4 11 1, 7, 11, 13
3 12 1, 7, 8 3 37 1, 13, 13 5 1 1, 4, 5, 7, 8
3 13 1, 7, 8 3 38 1, 13, 13 5 2 1, 5, 7, 8, 9
3 14 1, 7, 9 3 39 1, 13, 13 5 3 1, 5, 7, 9, 11
3 15 1, 7, 9 3 40 1, 13, 14 5 4 1, 7, 9, 11, 13
3 16 1, 7, 9 3 41 1, 13, 14 5 5 1, 7, 11, 13, 14
3 17 1, 8, 9 3 42 1, 13, 14 5 6 1, 7, 11, 13, 17
3 18 1, 8, 9 3 43 1, 13, 15 6 1 1, 4, 5, 7, 8, 11
3 19 1, 9, 9 3 44 1, 13, 15 6 2 1, 5, 7, 9, 11, 13
3 20 1, 7, 11 3 45 1, 13, 15 6 3 1, 7, 11, 13, 14, 17
3 21 1, 9, 9 3 46 1, 13, 16 6 4 1, 7, 11, 13, 17, 19
3 22 1, 9, 9 3 47 1, 13, 17 7 1 1, 5, 7, 9, 11, 13, 17
3 23 1, 7, 11 3 48 1, 13, 17 7 2 1, 7, 11, 13, 17, 19, 23
3 24 1, 8, 11 3 49 1, 16, 17 8 1 1, 7, 11, 13, 17, 19, 23, 29
3 25 1, 9, 10 3 50 1, 17, 19
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