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We view the RSK correspondence as associating to each permu-
tation π ∈ Sn a Young diagram λ = λ(π), i.e. a partition of n.
Suppose now that π is left-multiplied by t transpositions, what
is the largest number of cells in λ that can change as a result?
It is natural refer to this question as the search for the Lipschitz
constant of the RSK correspondence.
We show upper bounds on this Lipschitz constant as a function
of t. For t = 1, we give a construction of permutations that achieve
this bound exactly. For larger t we construct permutations which
come close to matching the upper bound that we prove.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The Robinson–Schensted–Knuth (RSK) correspondence [7,10,11] maps an arbitrary permutation
π ∈ Sn bijectively to an ordered pair of Young tableaux of the same shape λ = λ(π). How much
can λ(π) change as we mildly vary π? For example, if we left-multiply π by t transpositions, to
what extent can λ change2? We begin with the case when t = 1 and show that the resulting Young
diagram can differ from λ on at most

√
n/2 cells. We show that this bound is tight by giving explicit

constructions of permutations π for which this bound is attained where the diagrams differ in at
least (1 − o(1))

√
n/2 cells. We then turn to consider the same question for larger t and show that the

corresponding diagram changes in at most O (
√

nt log t ) cells. The best constructions we know nearly
match this bound and yield, e.g., (1 − o(1))

√
nt/2 changes for t = o(n).

The outline of this paper is as follows. In the remainder of this section we recall some definitions
and properties of Young tableaux and the RSK correspondence. In Section 2 we prove upper bounds
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on the Lipschitz constant when t = 1 and show a matching construction. In Section 3 we give upper
bounds and extend our constructions for the case of general t . We conclude with some directions for
further research in Section 4.

1.1. Notation and preliminaries

We recall some definitions and background on Young tableaux and the RSK algorithm here. For
more detailed expositions refer to [4,9] or [12].

Let n ∈ N be a positive integer. A vector λ = (λ1, λ2, . . .) of positive integers is a partition of n
(denoted by λ � n) if

λ1 � λ2 � · · · > 0 and
∑

i

λi = n.

The Young diagram (or diagram) of a partition λ is a left-justified array of cells with λi cells in the
i-th row for each i � 1. For example, the diagram of the partition (5,5,3,2) is

The cell in the i-th row and j-th column is referenced by its coordinate (i, j). Thus (1,1) is the
top leftmost cell of the diagram.

The conjugate of a partition λ, denoted by λ′ is the partition whose diagram is the transpose of
the diagram of λ.

A standard Young tableau (SYT or tableau) of size n with entries from [n] is a diagram whose cells
are filled with the elements of [n] in such a way that the entries are strictly increasing from left to
right along a row as well as from top to bottom down a column. The shape of a tableau T , denoted
sh(T ) is the partition corresponding to the diagram of T . For example,

1 2 4 7
3 6
5

is a tableau of size 7 of shape (4,2,1). Note that the elements in the cells of a SYT are distinct
integers. Let Tn denote the set of SYT of size n.

1.2. The Robinson–Schensted–Knuth (RSK) correspondence

The RSK correspondence discovered by Robinson [10], Schensted [11] and further extended by
Knuth [7] is a bijection between the set of permutations Sn and pairs of tableau of size n of the same
shape. This bijection is intimately related to the representation theory of the symmetric group [3,6],
the theory of symmetric functions [12, Chapter 7], and the theory of partitions [1].

The bijection can be defined through a row-insertion algorithm first defined by Schensted [11]
in order to study the longest increasing subsequence of a permutation. Suppose that we have a
tableau T . The row-insertion procedure below inserts a positive integer x that is distinct from all
entries of T , into T and results in a tableau denoted by T ← x.

1. Let y be the smallest number larger than x in the first row of T . Replace the cell containing y
with x. If there is no such y, add a cell containing x to the end of the row.

2. If y was removed from the first row, attempt to insert it into the next row by the same procedure
as above. If there is no row to add y to, create a new row with a cell containing y.

3. Repeat this procedure on successive rows until either a number is added to the end of a row or
added in a new row at the bottom.
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The RSK correspondence from Sn to {(P , Q ) ∈ Tn × Tn: sh(P ) = sh(Q )} can now be defined as
follows. Let π ∈ Sn and let πi denote the element of [n] in position i in π . Let P1 be the tableau with
a single cell containing π1. Let P j = P j−1 ← π j for all 1 < j � n and set P = Pn . The tableau Q is
defined recursively in terms of tableaux Q i of size i as follows. Let Q 1 be the tableau with one cell
containing the integer 1. The equality of shapes sh(Q i) = sh(Pi) is maintained throughout the process.
The cell of Q i containing i is the (unique) cell of Pi that does not belong to Pi−1. The remaining cells
of Q i are identical to those of Q i−1. Finally, set Q = Q n . We refer to P as the insertion tableau and Q
is the recording tableau.

Let π ∈ Sn and let (P , Q ) be the corresponding tableaux under the RSK correspondence. The shape
of π is sh(P ) = sh(Q ) and will be denoted by λ = λ(π). The RSK correspondence has numerous
interesting properties (see [4,8,9] or [12]). Some that will be useful in particular are as follows.

Proposition 1.1. Let λ = λ(π). Then the diagram corresponding to π R , the reversal of π , is λ′ , the conjugate
of λ.

Proposition 1.2. Let (P , Q ) be the tableaux corresponding to a permutation π under the RSK correspondence.
Then the tableaux corresponding to the inverse permutation π−1 are (Q , P ). Thus the shape remains invariant
upon inversion, i.e., λ(π−1) = λ(π).

1.3. Motivation and related work

In view of the important role of the RSK correspondence, it is natural to investigate various
aspects of it. Thus Fomin’s appendix in [12, Chapter 7] starts with the following two motivating
questions:

(1) Given a partition λ, characterize those permutations π for which λ(π) = λ.
(2) Given a tableau P , characterize the permutations π which have P as their insertion tableau.

We consider an approximate version of such questions and ask to what extent λ changes as π
changes slightly. Question (1) is answered by the following theorem of Greene.

Theorem 1.3. (See Greene [5].) Let π be a permutation, and suppose that the largest cardinality of the union
of j increasing subsequences in π is μ j , then λ(π) = λ1, . . . , λk, where λ1 = μ1 and λ j = μ j − μ j−1 for all
j � 2.

In his study of the RSK correspondence, Knuth discovered certain equivalence relations that are
key to the solution of Question (2) above. Two permutations are Knuth equivalent if one can be ob-
tained from the other by certain restricted sequences of adjacent transpositions. Knuth equivalent
permutations are the equivalency classes of permutations that have the same insertion tableau. For
more on the subject, see [12].

In order to make our question concrete, we need to specify two measures of distance: One between
permutations and the other between diagrams. A natural metric on permutations is left-multiplication
by adjacent transpositions. An adjacent transposition is a permutation of the form (i, i + 1). Left-
multiplying π by an adjacent transposition is denoted by (i, i + 1) ◦ π and means that first, the
permutation π is applied and then the transposition. We denote the least number of adjacent trans-
positions that transform the permutation π to τ by d(π, τ ). Recall that d(·,·) is the graph metric in
the Cayley graph of Sn w.r.t. the generating set of adjacent transpositions (1,2), (2,3), . . . , (n,n − 1).
We will say that two permutations π and τ are at distance t if d(π, τ ) = t . If λ and μ are two
diagrams, define their distance to be

� = �(λ,μ) := 1

2

n∑
|λi − μi|.
i=1
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Let π and τ be any two permutations. We are interested in the Lipschitz constant of this mapping,
i.e.,

L(n, t) := max
�(λ(π),λ(τ ))

d(π, τ )

where the maximum is over all π,τ ∈ Sn with d(π, τ ) = t .
The choice of left-multiplication above is in fact without loss of generality. By Proposition 1.2

the shape of a permutation and its inverse under the RSK correspondence are the same. Our results
thus all follow immediately for right-multiplication since τ = (i, i + 1) ◦ π is equivalent to π−1 =
τ−1 ◦ (i, i + 1).

In general, although d and � are natural metrics to study for permutations and diagrams respec-
tively, the same question can be asked for other metrics. We discuss the extension of our results to
other metrics on permutations in Section 4.

2. Exact bounds on the Lipschitz constant for a single transposition

In this section we will show upper bounds on the Lipschitz constant when the number of trans-
positions t = 1. We also give a construction of a family of permutations which achieve this bound
asymptotically.

2.1. Upper bounds

The first step of the proof is to show that left-multiplying a permutation by a transposition can
result in only a bounded number of cells being different in each row of the diagram.

Proposition 2.1. Let π,τ ∈ Sn and let λ, μ be the respective diagrams. Suppose that τ = (i, i + 1) ◦ π , and
πi < πi+1 . Then,

∀1 � j � n,

j∑
i=1

μi �
j∑

i=1

λi �
j∑

i=1

μi + 1. (2.1)

Proof. Suppose that the largest cardinality of the union of j increasing subsequences in π is �. Sup-
pose there is a subsequence which includes the pair that is being transposed in π . By deleting one
of the elements of the pair we obtain a set of j increasing subsequences of τ whose cardinality is at
least � − 1. If there is no such subsequence, then the same j subsequences are also increasing in τ .
By Greene’s Theorem 1.3 this implies

∑ j
i=1 λi �

∑ j
i=1 μi + 1.

For the lower bound, consider the largest cardinality of the union of j increasing sequences in τ .
No subsequence in this union can contain both of the elements involved in the transposition. Since
the pair involved in the transposition have no other elements between them in both π and τ the
subsequences are also increasing in π . We conclude in the same way that

∑ j
i=1 μi �

∑ j
i=1 λi . �

Fig. 1 will be useful in the following discussion. It depicts the union of two diagrams λ and μ,
which is also a Young diagram. The symmetric difference consists of the cells marked by a dot. The
remaining set of cells of the diagram labeled W is the intersection of λ and μ and this is a Young
diagram as well.

Corollary 2.2. Let π,τ ∈ Sn where d(π, τ ) = 1 and let λ, μ be the corresponding diagrams. Then at most one
cell in each row and each column of the union of λ and μ can be in the symmetric difference.

Proof. To see this for a row r, consider inequality (2.1) for j = r and for j = r − 1 and take their
difference. A similar argument applied to the reversed permutations implies the claim for columns
(see Proposition 1.1). �
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Fig. 1. The union of λ and μ with cells of the symmetric difference marked.

Theorem 2.3. Let π and τ be permutations in Sn with respective Young diagrams λ and μ, and suppose that
d(π, τ ) = 1. Then

� = �(λ,μ) �
√

n

2
.

Proof. As shown in Fig. 1, let (i, j) and (i′, j′) be the coordinates of two distinct cells in the symmetric
difference. By Corollary 2.2, i �= i′ and j �= j′ , and (min(i, i′),min( j, j′)) ∈ W . This gives a 1 : 1 map
from unordered pairs of cells in the symmetric difference into W . Therefore,(

2�

2

)
� n − �

implying the required bound

� �
√

n

2
. �

2.2. Construction

In this section we construct pairs of permutations in Sn which differ by a single transposition
whose corresponding Young diagrams differ by at least (1 − o(1))

√
n/2 cells, matching the upper

bound in Theorem 3.2 asymptotically. The following lemma characterizes the shape of a permutation
by the cardinalities of increasing and decreasing subsequences.

Lemma 2.4. Let π ∈ Sn be a permutation whose elements can be decomposed in the following two ways:
(i) into increasing subsequences of cardinalities λ1, λ2, . . . , and (ii) into decreasing subsequences of cardinali-
ties λ′

1, λ
′
2, . . . , where the partitions λ and λ′ are conjugate. Then λ = λ(π).

Proof. By Greene’s Theorem 1.3 it suffices to show that for each r, the largest cardinality of the union
of r increasing sequences in π is

∑
i�r λi . By assumption we know it is at least this number and we

need to show the opposite inequality. Namely, that if s1, . . . , s j is a collection of disjoint increasing
sequences in π ,

∑r
i=1 |si | � ∑

i�r λi .
By assumption, there is a decomposition d1,d2, . . . of π into disjoint decreasing subsequences of

cardinalities λ′
1, λ

′
2, . . . . But each si and d j can have at most one element in common, so that

r∑
i=1

|si | =
∑

r�i�1, j

|si ∩ d j| �
∑

j

min
{|d j|, r

} =
∑

j

min
{
λ′

j, r
} =

r∑
i=1

λi

where the last equality follows because the partitions λ1, λ2, . . . and λ′
1, λ

′
2, . . . are conjugate. �

Theorem 2.5. For every n there are permutations π,τ ∈ Sn with d(π, τ ) = 1 and respective shapes λ, μ such
that �(λ,μ) � (1 − o(1))

√
n/2.
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Proof. Our proof says, in fact, a little more than what is stated. Namely for n = (k + 1)2/2 with k an
odd integer, we will construct two permutations π and τ of shapes λ = (k + 1,k − 1,k − 1, . . . ,2,2)

and μ = (k,k,k − 2,k − 2, . . . ,1,1) which differ by exactly one cell in each row and column, giving
� = √

n/2. Thus it can be verified that together with Theorem 2.3 this gives a complete answer to
our question for n of this form. For other values of n we get the result by padding this basic construc-
tion. In the discussion that follows we decompose these permutations into monotone subsequences.
The decompositions we exhibit are not necessarily unique, but for our purpose any decomposition
suffices.

The construction can, perhaps, be best understood by observing alongside with the general dis-
cussion a concrete special case. So we intersperse our general constructions with an illustration that
shows how things work for n = 18 (k = 5). We start by dividing the elements of [n] into three cat-
egories according to their magnitude. The “small” elements are those in the interval [1,n/2 − k+1

2 ].
The next k + 1 elements, i.e., interval [n/2 − k−1

2 ,n/2 + k+1
2 ] are “intermediate” and members of the

interval [n/2 + k+3
2 ,n] are “big”.

We further subdivide the big elements (in order) into blocks b1, . . . ,b(k−1)/2. The small elements
are split (in order) into blocks s(k−1)/2, . . . , s1. Both si and bi have cardinality 2i.

s2 s1 b1 b2
(1 2 3 4) (5 6)︸ ︷︷ ︸

small

7 8 9 10 11 12︸ ︷︷ ︸
intermediate

(13 14) (15 16 17 18)︸ ︷︷ ︸
big

.

The permutation π is constructed by spreading out the intermediate elements with n/2 and
n/2 + 1 remaining fixed points (see below). The blocks of big elements are then inserted in the
order b(k−1)/2, . . . ,b1 in the spaces between the smaller intermediate elements while the blocks of
small elements are inserted in the order s1, . . . , s(k−1)/2 in the spaces between the larger intermediate
elements. To obtain τ we apply the transposition (n/2,n/2 + 1) to π . The permutations are defined
in this manner with a view to decomposing them into increasing and decreasing sequences of desired
cardinalities.

π =7(15 16 17 18) 8 (13 14) 9 10 (5 6) 11 (1 2 3 4) 12,

τ = 7(15 16 17 18) 8 (13 14) 10 9 (5 6) 11 (1 2 3 4) 12.

From the construction we claim that π and τ can be decomposed into a disjoint union of in-
creasing subsequences of cardinalities (k + 1,k − 1,k − 1, . . . ,2,2) and (k,k,k − 2,k − 2, . . . ,1,1)

respectively. For π the increasing sequences consist of (i) the intermediate elements, which in our
example is 7,8,9,10,11,12; (ii) the blocks of small elements, i.e., 1,2,3,4 and 5,6, and (iii) the
blocks of big elements, i.e., 15,16,17,18 and 13,14.

The permutation τ can be decomposed into the increasing subsequences of the following three
types: (i) an intermediate element and the block of big elements following it, which in the example
are 7,15,16,17,18 and 8,13,14; (ii) a block of small elements and the following intermediate ele-
ment, i.e., 5,6,11 and 1,2,3,4,12, and (iii) the two subsequences of length one consisting of one of
the two middle intermediate elements, i.e. 10 and 9.

The proof that π and τ have the shapes λ = (k + 1,k − 1,k − 1, . . . ,2,2) and μ = (k,k,k − 2,

k − 2, . . . ,1,1) respectively uses Lemma 2.4. It is enough to decompose π and τ into a union of
decreasing sequences whose cardinalities are given by the respective conjugate sequences. Note that
as it happens, the shapes λ and μ are conjugates.

We assign the elements of π to decreasing subsequences d1, . . . ,dk+1 of cardinalities k,k, . . . ,1,1
as follows. Since the di are subsequences, elements in them appear in the same order as in the
permutation. Secondly, the assignment is made so that each subsequence has exactly one of the
intermediate elements, and it appears after any of the big elements and before any of the small
elements. (There is more than one way to do this.) We first see how this is done in the example.

We first construct d1 and d2 which are both decreasing sequences of length 5. The largest elements
in the blocks bi , the largest elements in the blocks si and one of the middle intermediate elements
are assigned to d1. Then we choose d2 similarly from among the remaining elements.
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d1 : 7(15 16 17 18 ) 8 ( 13 14 ) 9 10 ( 5 6 ) 11 (1 2 3 4 ) 12,

d2 : 7(15 16 17 �18 ) 8 ( 13 �14 ) /9 10 ( 5 /6 ) 11 (1 2 3 /4 ) 12.

The remaining elements can be seen to have the same structure recursively (the remaining ele-
ments appear in the same relative order as would the elements of the permutation for n = 8), where
the brackets indicate blocks of big and small elements as before.

7(15 16) 8 11 (1 2) 12.

To assign elements to d3 and d4, we want to continue with the strategy of choosing the largest
elements that remain in the blocks. Note that since the big elements 13 and 14 have been assigned,
there are no big elements that follow the element 8, and it now becomes “available”. Thus d3 and d4
are constructed by assigning the largest elements that remain in the small and big blocks and one of
the remaining intermediate elements in the middle of the blocks.

d3 : 7(15 16 �17 �18) 8 (�13 �14) /9 �10 (/5 /6) 11 ( 1 2 /3 /4) 12,

d4 : 7( 15 �16 �17 �18) /8 (�13 �14) /9 �10 (/5 /6) 11 ( 1 /2 /3 /4) 12.

Proceeding the same way, we obtain the subsequences: d1 = 18,14,9,6,4, d2 = 17,13,10,5,3,
d3 = 16,8,2, d4 = 15,11,1, d5 = 7, d6 = 12. In general, the assignment is done as follows.

• The i-th largest element in each block of big elements, is assigned to the subsequence di .
• The i-th largest element in each block of small elements, is assigned to the subsequence di .
• For the intermediate elements, assign the lower (k + 1)/2 elements to the subsequences

dk,dk−2, . . . ,d1 (in that order) and the top (k+1)/2 elements to d2, . . . ,dk−1,dk+1 (in that order).

Clearly, this is a decomposition of [n] with exactly k − 2(i − 1)/2� elements in di . It remains to show
that each di is a decreasing subsequence. By the construction of the permutation, the big and small
elements in di form a decreasing subsequence since each of them is from a different block. Secondly,
the intermediate element in di appears after all the big elements and before any of the small ones.

Similarly, for the permutation τ , we define the decreasing subsequences f1, . . . , fk of cardinalities
k + 1,k − 1,k − 1, . . . ,2,2, where | f i | = k + 1 − 2i/2�. As before, the assignment is made so that each
sequence but for one (which has the two middle intermediate elements) has at most one intermediate
element, and at most one element from each of the small and the big blocks. In our example, we
construct f1, a subsequence of length 6, by taking the largest element from each block and the two
middle intermediate elements.

f1 : 7(15 16 17 18 ) 8 (13 14 ) 10 9 (5 6 ) 11 (1 2 3 4 ) 12.

Next, we choose f2 and f3 which are both subsequences of length 4. At this point, we cannot
continue to follow the strategy of assigning the largest elements from each block to f2 (by choosing
17,13,5,3) as in the next step we would fail to construct f3 of length 4. Instead, note that when
only one element remains in a block of small elements, the intermediate element which follows that
block has not yet been assigned and it does not follow any other small elements. Thus the strategy
for f2 is to assign to it the largest elements from all blocks except from s1 in which only one element
remains, and to assign the intermediate element following s1 to f2. To construct f3, we take the
largest remaining elements in all the blocks, and the intermediate element that precedes the block of
big elements whose smallest element was assigned to f2. Diagrammatically, we have

f2 : 7(15 16 17 �18) 8 ( 13 �14) �10 /9 ( 5 /6) 11 (1 2 3 /4) 12,

f3 : 7(15 16 �17 �18) 8 ( �13 �14) �10 /9 ( 5 /6) �11 (1 2 /3 /4) 12.

Repeating the same arguments for the remaining elements, we obtain the following subsequences
for the example: f1 = 18,14,10,9,6,4, f2 = 17,13,11,3, f3 = 16,8,5,2, f4 = 15,12, f5 = 7,1. In
general, the subsequences can be defined as follows.
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• The i-th largest element in each block of big elements is assigned to f i .
• The smallest element in a block of small elements s j is assigned to f2 j+1. Among the remaining

elements, the i-th largest element goes to f i .
• The lower (k − 1)/2 of the intermediate elements go to fk, fk−2, . . . , f3 (in that order). The top

(k − 1)/2 elements to f2, . . . , fk−1 (in that order). The two middle intermediate elements are
in f1.

As before, the f i constitute a decomposition and they have the appropriate sizes. By construction, the
big and small elements in any subsequence f i form a decreasing subsequence. Lastly, for i �= 1 there
is at most one intermediate element in f i and if one exists, it appears after all the big elements and
before all the small ones. For i = 1, the two intermediate elements appear consecutively in decreasing
order, after all big elements and before all small ones. Thus, π and τ have the claimed shapes and it
follows that

� = k + 1

2
=

√
n

2
.

For n not of the form (k + 1)2/2, we construct two permutations as follows. Let n0 < n be the
largest integer such that n0 = (k + 1)2/2 for odd k. The first n0 elements of π and τ are set according
to the construction above on n0 elements. The last n −n0 elements of both π and τ are n0 + 1, . . . ,n.
Then, we have that

� =
√

n0

2
�

(
1 − o(1)

)√n

2
. �

We have carried out computer simulations and found other pairs of permutations for which the
bound holds with equality. Several mysteries remain here, a few of which we mention in Section 4.

3. Bounds on the Lipschitz constant for t > 1

In this section we show bounds on the Lipschitz constant for t > 1. Extending the arguments from
the previous section for both the upper and lower bound gives bounds that are tight up to constant
factors for t = O (1). In the latter half of this section we give a more complicated argument that yields
an improved upper bound for general t .

3.1. A construction for permutations at linear distance t

The construction for the case of one transposition can be extended to the case of more than one
transposition as follows.

Theorem 3.1. Let t � n/2. For every n there are permutations π,τ ∈ Sn with d(π, τ ) = t and respective
shapes λ, μ such that �(λ,μ) � (1 − √

t/2n )
√

nt/2.

Proof. Let k = √2n/t − 1�, and m = (k + 1)2/2 so that mt � n. Divide the first mt elements of [n]
into t blocks of length m each. To construct the permutations, in each block we permute the elements
as in the construction for one transposition, and then concatenate the blocks with the remaining
n − mt elements following. Then, it is not difficult to see that the RSK algorithm on this pair of
permutations will result in a shape with t of the smaller Young diagrams corresponding to each block
being pasted one after the other, with an additional n − mt boxes in the top row of each diagram.
Then, � = t

√
m/2 �

√
nt/2(1 − √

t/2n ). Thus when t = o(n), � � (1 − o(1))
√

nt/2. �
3.2. Upper bounds

We start with an easy observation:
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Fig. 2. The union of λ and μ and the symmetric difference split into blocks.

Theorem 3.2. Let π and τ be permutations in Sn such that d(π, τ ) = t. Let λ and μ be the respective Young
diagrams. Then

� = �(λ,μ) � t

√
n

2
.

Proof. Since d(π, τ ) = t , there is a sequence of permutations π = σ0, σ1, . . . , σt = τ such that for
each 0 � i < t , σi and σi+1 differ by an adjacent transposition. The distance �(·,·) is a metric on
diagrams and hence the bound follows by the triangle inequality from Theorem 2.3. �

We do not see how to appropriately adapt the bijective argument of Theorem 2.3. However, the
following argument yields a near-optimal bound.

Theorem 3.3. Let π,τ ∈ Sn be such that d(π, τ ) = t. Let λ, μ be the corresponding diagrams. Then

�(λ,μ) � O (
√

nt log t ).

We start by showing some preliminary results that will be useful in the proof. Suppose π and τ
are two permutations such that d(π, τ ) = t . Let π = σ0, σ1, . . . , σt = τ be a sequence of permutations
such that for each 0 � i < t , σi and σi+1 differ by an adjacent transposition. Say that s (resp. r) of
the transpositions put the relevant pair in decreasing (resp. increasing) order, where t = r + s. Let λ

and μ be the diagrams corresponding to π and τ respectively.

Lemma 3.4. Let π , τ be as above. Then,

∀1 � j � n,

j∑
i=1

μi − r �
j∑

i=1

λi �
j∑

i=1

μi + s. (3.1)

Proof. For each pair σi, σi+1 in the sequence of permutations π = σ0, σ1, . . . , σt = τ , by Propo-
sition 2.1 the inequality (2.1) holds for the diagrams corresponding to σi and σi+1. The result is
obtained by adding up all these inequalities. �

In Fig. 2 we depict the union of two diagrams. Their intersection is labeled W as before. We split
the symmetric difference of the two diagrams into blocks. We say that j indexes a λ-row if λ j > μ j .
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A maximal interval of λ-rows determines a λ-pre-block. A maximal collection of consecutive λ-pre-
blocks constitutes a λ-block. We likewise define μ-blocks. Blocks are labeled Bi as in the figure. The
number of cells in a set S will be denoted by A(S). We use the following fact about the sizes of the
blocks.

Proposition 3.5. Let d(π, τ ) = t with corresponding diagrams λ, μ and let B be a block in the union of the
diagrams, then A(B) � t.

Proof. This bound is obtained from Lemma 3.4 as follows. Let B reside in the set of rows I of the
diagram. Assuming it exists, let i0 be the row just preceding I , and i1 = max I . Then the bound is
obtained by subtracting the inequality (3.1) corresponding to j = i0 from the inequality corresponding
to j = i1, and using the fact that r + s = t . If there is no row i0, then the bound is immediate from
the inequality for j = i1. �

The main step in the proof of Theorem 3.3 is the following lemma about two sequences of integers.

Lemma 3.6. Let k � 2, T � 3 and let a1, . . . ,ak and b1, . . . ,bk be two sequences of positive integers. Denote
� = ∑k

i=1 aibi and N = ∑
1�i� j�k aib j . If

a1 = bk = 1 and ∀i, aibi � T ,

then

� �
√

32NT log T .

This bound is tight up to constants.

We first show how to derive the theorem from Lemma 3.6.
Let λ and μ be two diagrams of size n (not necessarily corresponding to permutations at dis-

tance t). For the union of these diagrams, define the blocks of the symmetric difference {Bi} and W
as before. Suppose that for each block B , A(B) � t . To prove Theorem 3.3, it is sufficient to show that
for these diagrams,

1

2

∑
i

A(Bi) � O

(√√√√t log t

[
A(W ) + 1

2

∑
i

A(Bi)

])
. (3.2)

With this formulation in mind, we can make the following assumptions about the pair of diagrams.
The aim is to make a number of transformations and show that the pair of diagrams can be assumed
to be of the form shown in Fig. 6.

Reduction 1. For any row i, λi �= μi and similarly, for any column j, λ′
j �= μ′

j . If this is not the case
(as in the shaded part of Fig. 3), we delete such rows or columns from both λ and μ. Consequently,
A(W ) decreases, whereas

∑
i A(Bi) remains unchanged. Thus, if the bound holds for the new pair of

diagrams, it holds as well for the old pair.

Reduction 2. In general, each block is a skew-diagram (the set theoretic difference of a diagram and
another contained in it). However, as we show, we may assume it is a Young diagram. The dotted
lines in Fig. 4 mark the “shade” of a block in W determined by its top row and leftmost column.
If a block is not a (left-aligned) tableau, we can change it to one by removing the cells of W in its
shade and replacing it with a Young diagram of area A(B) contained in the union of the block and its
shade.

This transformation decreases A(W ) and keeps the size of the block fixed. Secondly, we may
assume that the transformation is done so that all rows of a block, with the possible exception of the
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Fig. 3. Rows and columns of W that may be removed.

Fig. 4. The top left corner of the block.

last one have the same length. The result of such a transformation on the blocks B2 and B3 is shown
in Fig. 5.

Reduction 3. We may assume that the topmost block B1 has a single row. Otherwise, we can shift
all the cells of B1 to the first row without changing any A(Bi) or A(W ). We can then delete any
rows of W which are of the same length in λ and μ. By similar reasoning, we may assume that the
bottommost block has a single column.

Thus, we may assume that the diagrams are as shown in Fig. 6 and that the sizes of the blocks are
bounded by t . As in the figure, let ai and bi denote the lengths of the vertical and horizontal sides
of the rectangle which bounds the block Bi . Thus the area A(W ) can be written as a sum of areas of
rectangles aib j whose sides are determined by the side lengths of pairs of blocks. Also note that by
our construction of the blocks, aibi � 2t .

To obtain the formulation of the lemma, suppose that we add cells to the last row of each block
to complete it to a rectangle. Denote the modified blocks by B ′ . Then for each block, A(B ′) � 2A(B).



74 N. Bhatnagar, N. Linial / Journal of Combinatorial Theory, Series A 119 (2012) 63–82
Fig. 5. All blocks are Young diagrams.

Fig. 6. A box of side lengths ai and bi bounds Bi .

If we show the bound for these modified diagrams with a bound of 2t for each block, then the bound
is implied for the original diagrams since the constants can be absorbed by the O (·). Formally, this
follows from the following inequalities.

1. 1
2

∑
i A(Bi) � 1

2

∑
i A(B ′

i).
2. A(W ) + 1

2

∑
i A(B ′

i) � 2(A(W ) + 1
2

∑
i A(Bi)).

Thus Lemma 3.6 implies the bound (3.2) for a pair of diagrams as above and we have verified that
to prove Theorem 3.3 it is sufficient to prove the lemma.

Proof of Lemma 3.6. We will minimize N/�2. For k = 2, the lemma can be easily verified by calcu-
lation once we use the fact that a1 = b2 = 1. Thus we will assume that k � 3. Consider the following
relaxation of the minimization problem where the ai , b j are not necessarily integral.
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min
N

�2
=

∑
1�i� j�k aib j

(
∑k

i=1 aibi)
2

,

s.t. a1 = bk = 1,

aibi � T , 1 � i � k,

ai � 1, 2 � i � k,

bi � 1, 1 � i � k − 1.

We will use the method of Lagrange multipliers (see Appendix A for a brief introduction) to obtain
a lower bound on the value of the objective above at any local optimum. Since the problem is a
relaxation of the discrete minimization problem, this also lower bounds the objective of the discrete
problem. We obtain the following Lagrangian for the relaxation above.

min L = N

�2
−

k∑
i=1

λi(aibi − T ) −
k∑

i=1

μi(ai − 1) −
k∑

i=1

νi(bi − 1).

The Karush–Kuhn–Tucker conditions yield the following necessary conditions for minimality:

∂

∂ai
L = ∂

∂ai

N

�2
− λibi − μi = 0, 1 � i � k, (3.3)

∂

∂bi
L = ∂

∂bi

N

�2
− λiai − νi = 0, 1 � i � k, (3.4)

λi � 0, λi(T − aibi) = 0, 1 � i � k,

μi � 0, μi(ai − 1) = 0, 2 � i � k,

νi � 0, νi(bi − 1) = 0, 1 � i � k − 1. (3.5)

From these conditions, we can show that at optimality either aibi = T or 1. Suppose that for
some i, aibi < T . Note that by the conditions above, this implies λi = 0. Now, if aibi �= 1, at least one
of ai or bi is > 1. Assume without loss of generality that bi > 1 (the argument in the other case is
exactly the same). In this case νi = 0 by (3.5). Hence from (3.4) above, we have

∂

∂bi

N

�2
= 0

and therefore, since � > 0

�2 ∂N

∂bi
= 2�N

∂�

∂bi

⇒
∑i

j=1 a j

2ai
= N

�
. (3.6)

Now we show that it is possible to increase bi by a factor (1 + ε) for ε > 0 so that N/�2 decreases
and we can conclude that the solution is not optimal. This is allowed, at least for ε > 0 small enough,
since, by assumption aibi < T . Let N ′ and �′ be the summations as defined before for the sequences
where we replace bi by bi(1 + ε).

N ′

(�′)2
= N + biε

∑i
j=1 a j

(� + aibiε)2
.

To prove the claim N ′/(�′)2 < N/�2, using the right-hand side above, it is enough to show that

�2biε

i∑
j=1

a j < N
(
2�aibiε + (aibiε)2).
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Or equivalently, dividing throughout by 2aibiε�2, that∑i
j=1 a j

2ai
<

N

�
+ Naibiε

2�2
.

This inequality follows by (3.6). The left-hand term equals the first term on the right and ε > 0.
The next step is to argue that it is enough to show the claimed bound assuming that the blocks

are arranged in a specific manner (i.e., the sequences are of a certain form). In particular, the blocks
of area T are arranged such that ai is increasing and bi is decreasing. Secondly, the blocks of area 1
occur after all blocks such that ai � bi and before all blocks such that ai > bi . This can be argued
by noticing that such an arrangement can be achieved by exchanging blocks which are out of order
since � remains unchanged and N does not increase. Thus a lower bound on N/�2 for the modified
sequence is a lower bound on the corresponding quantity for the original sequence.

We next argue that, in fact, w.l.o.g. no block has area 1. Recall that we wish to show

32T log T N − �2 � 0.

We will show that if we add a single block of area 1 then

32T log T N ′ − �′2 � 32T log T N − �2 (3.7)

where N ′ and �′ are the modified values of N and �. This inequality above allows us to reduce the
argument to the case when there are no blocks of area 1. Let the shorter sequence have k terms. Note
that �′ = � + 1 and the change in the number of cells N ′ − N is at least

∑k
i=1 min(ai,bi).

Recall that k, T � 3 and for 1 � i � k, ai,bi � 1. Thus,(
�′)2 − �2 = 2� + 1

� 2kT + 1

� 32kT log T

� 32T log T
k∑

i=1

min(ai,bi)

= 32T log T
(
N ′ − N

)
which implies the required inequality (3.7).

In the next step, we will make a further simplification to the picture. To summarize, we now know
that we may optimize over sequences such that each block has size T , a1 = bk = 1, the sequence ai is
non-decreasing and bi is non-increasing. The claim is that the optimal solution is of the form where
there is some i such that ai > 1 and bi > 1. If not, then it can be checked that � = √

8NT and the
claimed bound holds.

We relabel the sequences a−�1 , . . . ,a−1,a1, . . . ,ak,ak+1, . . . ,ak+�2 and b−�1 , . . . ,b−1,b1, . . . ,bk,

bk+1, . . . ,bk+�2 where �1, �2 � 1 and k � 0 so that ai,bi > 1 for 1 � i � k. Let N and � be the corre-
sponding summations as defined before. We can reformulate the minimization problem as follows.

min
N

�2
,

s.t. ai = 1 = bk+ j, ak+ j = T = bi, −�1 � i � −1, 1 � j � �2,

aibi = T , ∀i,

ai,bi � 1, 1 � i � k. (3.8)

Solving this optimization problem gives the following conditions for the solutions (see Proposi-
tion B.1 in Appendix B for the detailed calculations). The sequences b1�i�k and (hence a1�i�k) are
a geometric series with

c = b1 = · · · = bk−1
b2 bk
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and

c = a2

a1
= · · · = ak

ak−1

and the ratio between successive terms c > 1. Also,

bk = (c − 1)�2

and

a1 = (c − 1)�1.

Substituting, we also have that

b1 = ck−1bk = ck−1(c − 1)�2,

T = a1b1 = ck−1(c − 1)2�1�2. (3.9)

Since bk,a1 > 1 we have

c > 1 + 1

max{�1, �2} .

Furthermore, ck−1 < T and therefore

k − 1 <
log T

log c
� log T

log(1 + 1/max{�1, �2}) . (3.10)

In the next step we will show the w.l.o.g. we may assume �1 = �2 = 1. Let N0 = ∑
1�i� j�k aib j +∑

i bi + ∑
i ai + 1 + 2T and �0 = ∑k

i=1 aibi + 2T . These are the values of the summations with the
first �1 − 1 and last �2 − 1 members of the sequences removed. Then

N = N0 + T
�1(�1 − 1)

2
+ T

�2(�2 − 1)

2
+ (�1 − 1)

k∑
i=1

bi + (�2 − 1)

k∑
i=1

ai + (�1 − 1)(�2 − 1),

� = �0 + T (�1 + �2 − 2).

We have above that �1, �2 � 1. We will show that the optimal of 32T log T N −�2 when N0 and �0
are fixed is at �1 = �2 = 1 by showing

32T log T N − �2 � 32T log T N0 − �2
0.

Without loss of generality, suppose that �1 � �2 so that �1 � 2. Therefore by (3.10) and using the fact
that for x � 1/2, log(1 + x) � x/2, we have

k − 1 <
log T

log(1 + 1/max{�1, �2}) � 2 log T max{�1, �2}. (3.11)

Now, we have

32T log T (N − N0) � 32T log T

(
T

�1(�1 − 1)

2

)
.

On the other hand, by the bound from (3.11) on k,

�2 − �2
0 = 2�0T (�1 + �2 − 2) + T 2(�1 + �2 − 2)2

= 2kT 2(�1 + �2 − 2) + T 2(�1 + �2 − 2)2

� 4kT 2(�1 − 1) + 4T 2(�1 − 1)2

� 12T 2 log T �1(�1 − 1) + 4T 2(�1 − 1)2
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� 16T 2 log T �1(�1 − 1)

� 32T log T

(
T

�1(�1 − 1)

2

)

� 32T log T (N − N0)

as required. Finally, if �1 = �2 = 1, then using the fact that b1 � T , from (3.9), we obtain that c > 2.
Hence by (3.11) k < 2 log T + 1. Note that if �1 = �2 = 1, � = (k + 2)T . We can then use the following
straightforward bound:

N

�2
� 1

�
= 1

(k + 2)T
� 1

4T log T
.

Theorem 3.3 now follows. �
As we show next, the upper bound of Lemma 3.6 is tight. To construct a pair of diagrams where

the ai and bi are integers and � = Ω(
√

NT log T ) we argue as follows. Let T = 2k , c = 2, b1 = 1 and

bk = T . Then � is at least Ω(
√

NT log T ). However, the tightness of Theorem 3.3 does not follow
from this since it is not clear that there exist corresponding permutations.

4. Conclusions

A number of interesting directions remain for further research.

Characterize extremal permutations The permutations constructed in Section 2 achieve the maximum
difference in the shapes for one transposition. There it was possible to construct the examples by
carefully arranging the increasing and decreasing sequences. On the other hand, with the help of
a computer, we observed several other examples whose structure we do not completely understand.
We know that for � to achieve the upper bound, by Greene’s Theorem, the permutations must be
decomposable into unions of increasing sequences whose sizes are given by the required shape of the
diagram. An example of such a pair of permutations from simulation for n = 18 is

13 14 10 15 6 1 18 2 16 9 11 12 3 7 17 8 4 5,

13 14 10 15 6 1 18 2 16 11 9 12 3 7 17 8 4 5.

Notice that in this example the permutations cannot be decomposed into conjugate increasing and
decreasing sequences as done in our construction. In our view the class of such permutations is an
intriguing mathematical object. We would like to know how many such permutations exist, what
their structural properties are etc. This seems like a good subject for further work in this area.

Constructions for t > 1 transpositions As mentioned, we do not know whether there exists a pair of
permutations corresponding to the diagrams which are tight for Lemma 3.6. We do not see how to
extend our construction for one transposition to this case.

Secondly, our constructions achieve Ω(
√

nt/2 ) differences when t � n/2. The behavior for larger t
is still unclear. For example, the maximum possible value of � is n − 1, and this is uniquely achieved
with t = (n

2

)
transpositions. We also know from Theorem 3.1 that we can make � � Ω(n) with

t � O (n). We still do not know how large t should be to make � � αn with α close to 1.

Dependence on transpositions It would be interesting to obtain more detailed information about the
change in � as a result of left-multiplication with a transposition. Knuth and Knuth-dual equivalence
classes characterize transpositions which keep � fixed. What is the expected change in � for a trans-
position in a random permutation? How do the position of the transposition or properties of the
permutation affect the change?

Other metrics In this work we studied the adjacent transposition metric on permutations but there
are a number of natural measures for the distance between two permutations which may be worth
studying in this setting.
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For example it can be verified that up to constants, the same bounds on the Lipschitz constant hold
for the distance d′ on permutations with respect to general (not necessarily adjacent) transpositions.
The lower bounds from Theorems 2.5 and 3.1 hold since the constructions give permutations π and τ
which differ by 1 and t transpositions respectively. On the other hand, the upper bounds on the
Lipschitz constant follow (and are within a constant factor of the bounds for adjacent transpositions)
since by Greene’s Theorem the bounds in Proposition 2.1 change only by a small additive constant and
in Lemma 3.4 this translates to the absolute value of the difference between the sums being bounded
by 2t if the permutations differ by the multiplication of t transpositions.

Appendix A. The method of Lagrange multipliers

The method of Lagrange multipliers is used to solve for the maxima or minima of a real-valued
multivariate function subject to equality constraints. In particular, the method gives necessary con-
ditions for optimality which are the analog of the conditions on the gradient for unconstrained
problems. The Karush–Kuhn–Tucker (KKT) conditions for optimality generalize these to the case when
some of the constraints may be inequalities. Consider the following optimization problem, where
x = (x1, . . . , xn) and α j, βk ∈ R:

min f (x),

s.t. g j(x) � α j, j = 1, . . . , �,

hk(x) = βk, k = 1, . . . ,m.

The Lagrangian for this problem is defined to be the function:

L := L(x, λ j,μk) = f (x) −
�∑

j=1

λ j
(

g j(x) − α j
) −

m∑
k=1

μk
(
hk(x) − βk

)
.

The KKT conditions say that if a local optimizer x∗ satisfies certain technical “constraint qualifications”
(explained below) then there are constants λ∗

j ( j = 1, . . . , �) and μ∗
k (k = 1, . . . ,m) satisfying

∇L = ∇ f
(
x∗) −

�∑
j=1

λ∗
j ∇g j

(
x∗) −

m∑
k=1

μ∗
k∇hk

(
x∗) = 0,

λ∗
i � 0, j = 1, . . . , �,

λ∗
i gi

(
x∗) = 0, j = 1, . . . , �.

A number of constraint qualifications are known to be sufficient for the result and in our case, the
so-called Mangasarian–Fromovitz constraint qualification holds. This condition requires that at x∗ ,
the gradients of any active inequality constraints and the gradients of the equality constraints are
positively-linearly independent. A collection of vectors (v1, . . . , vd) is positively-linearly dependent if
there are a1 � 0, . . . ,ad � 0, not all 0 such that

∑
i ai vi = 0 for the optimization problems we con-

sider, the constraint qualification can be verified without much difficulty for any possible set of active
constraints, so we leave this to the reader and assume that the KKT conditions are satisfied. For more
details regarding the method of Lagrange multipliers and extensions, the reader may refer to [2].

Appendix B. Solution to the minimization problem

We show below the calculations that solve the minimization problem in (3.8) which is reproduced
below.

min
N

�2
,

s.t. ai = 1 = bk+ j, ak+ j = T = bi, −�1 � i � −1, 1 � j � �2,
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aibi = T , ∀i,

ai,bi � 1, 1 � i � k.

Proposition B.1. At a minimum of the optimization, the sequences b1�i�k and (hence a1�i�k) are a geometric
series with

c = b1

b2
= · · · = bk−1

bk

and

c = a2

a1
= · · · = ak

ak−1

and the ratio between successive terms c > 1. Also,

bk = (c − 1)�2

and

a1 = (c − 1)�1.

Proof. We obtain the following Lagrangian.

min L = N

�2
−

∑
i

λi(aibi − T ) −
k∑

i=1

μi(ai − 1) −
k∑

i=1

νi(bi − 1).

From the KKT conditions for optimality, we obtain

∂

∂ai
L = ∂

∂ai

N

�2
− λibi − μi = 0, 1 � i � k, (B.1)

∂

∂bi
L = ∂

∂bi

N

�2
− λiai − νi = 0, 1 � i � k, (B.2)

μi � 0, μi(ai − 1) = 0, 1 � i � k,

νi � 0, νi(bi − 1) = 0, 1 � i � k.

As outlined before, we may assume that the optimal solution is such that ai,bi > 1 for 1 � i � k.
Hence by the conditions above, μi = νi = 0. Performing the differentiations in (B.1) (w.r.t. ai) and (B.2)
(w.r.t. bi ) and multiplying them by ai and bi respectively we obtain the following relations:

aibi N

�4
− λiaibi − ai(bi + · · · + bk + bk+1 + · · · + bk+�2)

�4
= 0, 1 � i � k, (B.3)

aibi N

�4
− λiaibi − bi(a−�1 + · · · + a−1 + a1 + · · · + ai)

�4
= 0, 1 � i � k. (B.4)

Equating (B.3) and (B.4) and canceling terms, we conclude that since � �= 0,

ai(bi + · · · + bk + �2) = bi(�1 + a1 + · · · + ai), 1 � i � k. (B.5)

We can solve the above set of relations as follows. Dividing (B.5) by ai and using the equations
corresponding to i and i + 1 there, and that aibi = T , after rearranging terms we obtain the following
relations:

bi + bi+1 + · · · + bk + �2 = bi

ai
(�1 + a1 + · · · + ai) = b2

i

(
�1 + 1

b1
+ · · · 1

bi

)
,

bi+1 + · · · + bk + �2 = bi+1

a
(�1 + a1 + · · · + ai+1) = b2

i+1

(
�1 + 1

b
+ · · · + 1

b

)
.

i+1 1 i+1
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Subtracting we obtain

bi = b2
i

(
�1 + 1

b1
+ · · · 1

bi

)
− b2

i+1

(
�1 + 1

b1
+ · · · + 1

bi+1

)

= (
b2

i − b2
i+1

)(
�1 + 1

b1
+ · · · 1

bi

)
− bi+1, 1 � i � k.

Rearranging,

bi

(
�1 + 1

b1
+ · · · 1

bi

)
= bi+1

(
�1 + 1

b1
+ · · · + 1

bi+1

)
, 1 � i � k. (B.6)

Let

Hi = �1 + 1

b1
+ · · · 1

bi

so that
1

bi
= Hi − Hi−1.

Rearranging (B.6) and manipulating both sides, we have

Hi

bi+1
= Hi+1

bi

⇒ Hi(Hi+1 − Hi) = Hi+1(Hi − Hi−1)

⇒ Hi

Hi−1
= Hi+1

Hi

⇒ bi−1

bi
= bi

bi+1
, 1 < i < k.

In other words, we can conclude that b1�i�k (and hence a1�i�k) is a geometric series. Let

c = b1

b2
= · · · = bk−1

bk

and

c = a2

a1
= · · · = ak

ak−1
.

It can be checked that c > 1 since for c = 1 (B.6) is not satisfied.
Next, suppose we multiply Eq. (B.5) by c − 1, we obtain

(c − 1)ai(bi + · · · + bk + �2) = (c − 1)bi(�1 + a1 + · · · + ai)

⇒ ai
(
cbi − bk + (c − 1)�2

) = bi
(
cai − a1 + (c − 1)�1

)
⇒ ai

bi

(−bk + (c − 1)�2
) = −a1 + (c − 1)�1.

Since the right-hand side of the last equality is the same for all 1 � i � k, from i = 1 and i = k, we
obtain(

a1

b1
− ak

bk

)(−bk + (c − 1)�2
) = 0.

Now since c > 1, a1
b1

�= ak
bk

and therefore

bk = (c − 1)�2.

By similar arguments,

a1 = (c − 1)�1. �
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