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Based on the standard Skyrme energy density functionals together with the extended Thomas–Fermi 
approach, the properties of symmetric and asymmetric nuclear matter represented in two macroscopic–
microscopic mass formulas: Lublin–Strasbourg nuclear drop energy (LSD) formula and Weizsäcker–
Skyrme (WS*) formula, are extracted through matching the energy per particle of finite nuclei. For LSD 
and WS*, the obtained incompressibility coefficients of symmetric nuclear matter are K∞ = 230 ±11 MeV
and 235 ± 11 MeV, respectively. The slope parameter of symmetry energy at saturation density is 
L = 41.6 ±7.6 MeV for LSD and 51.5 ±9.6 MeV for WS*, respectively, which is compatible with the liquid-
drop analysis of Lattimer and Lim [4]. The density dependence of the mean-field isoscalar and isovector 
effective mass, and the neutron–proton effective masses splitting for neutron matter are simultaneously 
investigated. The results are generally consistent with those from the Skyrme Hartree–Fock–Bogoliubov 
calculations and nucleon optical potentials, and the standard deviations are large and increase rapidly 
with density. A better constraint for the effective mass is helpful to reduce uncertainties of the depth of 
the mean-field potential.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Equation of state (EOS) for cold nuclear matter [1,2], e.g., 
the energy per particle of nuclear matter e(ρ, δ) = e(ρ, 0) +
Esym(ρ)δ2 + O(δ4) considered as a function of the nuclear den-
sity ρ and the isospin asymmetry δ = (ρn − ρp)/(ρn + ρp) where 
ρn and ρp denote neutron and proton densities, respectively, plays 
a key role in the interpretation of nuclear structure and nucleus–
nucleus collisions, and as well as of neutron stars and supernova 
explosions. Its knowledge is therefore highly desirable. In addition 
to the properties of symmetric nuclear matter, especially the be-
havior of its density dependence [3–12], has also attracted a lot 
attention in recent years. The information of the symmetry energy 
at saturation and sub-saturation densities is obtained from nuclear 
dynamical behavior in heavy-ion collisions at intermediate and low 
energies [13–15], and the static properties of finite nuclei such 
as neutron skin thickness [16–19] and nuclear masses [20–27]. 
Although a great effort has been devoted in recent decades to 
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investigate the properties of nuclear matter, the uncertainty of nu-
clear symmetry energy Esym(ρ) is still large, for example, the slope 
parameter L of the symmetry energy at the saturation density 
extracted from some independent analyses of various experimen-
tal observations is distributed in a range of 20 < L < 120 MeV
[28]. Therefore, more investigations with high precision are still 
required.

As one of the basic quantities in nuclear physics, the nuclear 
masses can provide important information on the EOS at sub-
saturation and saturation densities. For example, the energy per 
particle of symmetric nuclear matter and symmetry energy at sat-
uration density can be estimated by the coefficient of volume term 
and symmetry energy coefficient in the liquid drop formula, re-
spectively. Some nuclear mass models such as the Skyrme Hartree–
Fock–Bogoliubov (HFB) models [22,23] and the macroscopic–
microscopic mass models [20,21,29], have been successfully es-
tablished with an rms error of 300–600 keV with respect to more 
than 2000 measured nuclear masses. As macroscopic–microscopic 
mass formulas, both the Lublin–Strasbourg–Drop (LSD) formula 
[29] and the Weizsäcker–Skyrme (WS*) formula [20,21] use the 
Strutinsky’s shell correction method for the microscopic part and 
similar liquid drop formula for the macroscopic energy of a spher-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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ical nuclei. Taking into account the curvature term in the liquid 
drop energy, the LSD formula can reproduce the masses in the 
latest nuclear mass datasets AME2012 [30] with an rms error of 
608 keV [31]. Without taking into account the curvature term but 
considering the isospin dependence of model parameters, the WS* 
formula can reproduce the 2353 measured masses in AME2012 
with an rms error of 439 keV [32]. It is known that nuclear masses 
of bound nuclei are significantly influenced by the behavior of 
e(ρ, δ) at around ρ = 0.08–0.16 fm−3 and |δ| < 0.4, consider-
ing nuclear surface diffuseness [12]. Although the macroscopic–
microscopic approaches are found to be the most accurate ones 
in the description of nuclear masses [31], the information on the 
density dependence of energy per particle cannot be directly ob-
tained. One interesting question is how to extract the properties 
of cold neutron-rich nuclear matter at sub-saturation densities 
represented in the macroscopic–microscopic mass formulas. It is 
known that the density functional theory is widely used in the 
study of the nuclear ground state which provides us with a use-
ful balance between accuracy and computation cost, allowing large 
systems with a simple self-consistent manner. In the semi-classical 
ETF approach, the macroscopic energy of a nucleus can be self-
consistently obtained by a given Skyrme energy density functional 
(EDF). When the energies per particle of a great number of sta-
ble and unstable nuclei predicted in the macroscopic–microscopic 
formulas can be remarkably well matched by the Skyrme EDF asso-
ciated with a certain set of model parameters, one might indirectly 
obtain the properties of neutron-rich nuclear matter at densities 
around ρ = 0.08–0.16 fm−3 by using the corresponding Skyrme 
EDF. It is also interesting to compare the Skyrme forces constrained 
from the macroscopic–microscopic mass formulas and those from 
Hartree–Fock calculations, since the treatment of microscopic ef-
fects is different.

In addition, considering the complexity of the parameter space 
in the Skyrme forces, the investigation of the uncertainty of model 
parameters is therefore important and necessary for assessing the 
model reliability and doing some extrapolations [33]. In this work, 
we will firstly match the liquid drop formula adopted in the LSD 
and WS* formulas by using the standard Skyrme EDF. Based on the 
obtained Skyrme forces, the corresponding density dependence of 
energy per particle and effective mass for symmetric and asym-
metric nuclear matter will be investigated in the mean-field frame-
work. Simultaneously, the standard deviations of some predicted 
quantities due to the uncertainty of matching procedure in the pa-
rameter space of Skyrme forces will be presented.

2. Matching procedure

According to the LSD mass formula, the ground state energy of 
a nucleus is expressed as a function of mass number A and isospin 
asymmetry I = (N − Z)/A,

ELD(A, I) ≈ e0 A + asym I2 A + . . . , (1)

neglecting the Coulomb energy, the Wigner energy (also called 
congruence energy) and the microscopic shell and pairing correc-
tions. The binding energy per particle of a symmetric nucleus is 
expressed as,

e0(A) = av + as A−1/3 + acurv A−2/3, (2)

including the volume, surface and curvature terms. The symmetry 
energy coefficient asym of a finite nucleus is written as

asym(A) = J − ass A−1/3 + acs A−2/3 (3)

by using the Leptodermous expansion in terms of powers of A−1/3. 
J denotes the symmetry energy of nuclear matter at normal den-
sity. ass and acs are the coefficients of the surface-symmetry energy 
Table 1
Model parameters of the LSD and WS* mass formulas (in MeV).

Model av as acurv J ass acs

LSD −15.4920 16.9707 3.8602 28.82 38.93 9.17
WS* −15.6223 18.0571 – 29.16 39.31 –

and curvature-symmetry energy terms, respectively. The parame-
ters of the liquid drop formula adopted in LSD and WS* are listed 
in Table 1.

On the other hand, under the semi-classical ETF approximation 
[34–36], the “macroscopic” part of the nuclear energy of a nu-
cleus can be expressed as an integral of the standard 10-parameter 
Skyrme EDF H(r),

Ẽ =
∫

H[ρn(r),ρp(r))] dr, (4)

since the kinetic energy density and the spin–orbit energy density 
can be expressed as a functional of nuclear density and its gradi-
ents. Adopting the Fermi function

ρq(r) = ρ
(q)
0

1 + exp(
r−Rq

aq
)
, (5)

for describing the density distribution of a spherical nucleus (q = n
for neutrons and q = p for protons), one can self-consistently ob-
tain the minimal “macroscopic” energy Ẽ of the nucleus, by vary-
ing the four variables R p , ap , Rn , an in Eq. (5) for a given nucleus. 
Here, Rq and aq denote the radius and surface diffuseness of nu-

clei, respectively. The central density ρ(q)
0 is determined from the 

conservation of particle number.
To match the nuclear liquid drop energy ELD in the LSD formula 

for a series of finite nuclei with the corresponding “macroscop-
ic” energy Ẽ from the Skyrme EDF, one could find the best-fit 
functional for the LSD mass formula. More specifically, adopting 
a certain set of Skyrme parameters in the literature as the ini-
tial values, we vary the 10 parameters (t0, t1, t2, t3, x0, x1, x2, 
x3, σ and W0) of the standard Skyrme EDF one by one in the 
10-dimensional parameter space and calculate the correspond-
ing Ẽ , and then search for the minimal rms deviation with re-
spect to the LSD liquid drop energy ELD by using downhill op-
timization algorithm [36]. The calculations have been carried out 
not only for intermediate mass nuclei, but also for nuclei with 
huge numbers of nucleons, of the order of 106, in order to per-
form a reliable extrapolation to neutron-rich nuclear matter. We 
search for the minimal rms deviation σ 2 = 1

m

∑[ε̃(i) − ε
(i)
LD]2 be-

tween ε̃ = Ẽ/A from the Skyrme force and εLD = ELD/A from 
the LSD formula for m = 70 nuclei, with mass number A =
40, 60, 80, 100, 140, 200, 1000, 104, 105, 106 and isospin asymme-
try I = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3. The Coulomb interaction 
has been ignored to be able to approach nuclei of arbitrary sizes 
and to avoid radial instabilities characteristic of systems with very 
large atomic numbers, as the same as those did in Ref. [37].

3. Results and discussions

Because of the complexity of the parameter space in the 
Skyrme forces, there exist probably many different Skyrme param-
eter sets leading to the similar rms deviations. To obtain the best 
fit functional from these similar rms deviations and to analyze the 
model uncertainty, we use 100 different Skyrme parameter sets 
in the literature (with the incompressibility of symmetric nuclear 
matter K∞ = 235 ± 35 MeV) as the initial values. With a fit of 
the LSD liquid drop formula, we find 82 sets of new Skyrme pa-
rameters with which the minimal rms deviation between Ẽ/A and 
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ELD/A is only σ = 8 ± 2 keV for the 70 nuclei. Based on the same 
approach proposed in Ref. [38], we extract the mass dependence 
of e0(A) and of symmetry energy coefficient asym(A) for the ob-
tained 82 Skyrme parameter sets. The corresponding results are 
shown in Fig. 1. The curves in the figure denote the corresponding 
results of the LSD model according to Eqs. (2) and (3). One sees 
that both e0(A) and asym(A) in the LSD formula can be remark-
ably well reproduced with the obtained Skyrme forces except very 
light nuclei.

With the obtained 82 new Skyrme forces for the LSD formula, 
the properties of nuclear matter can be further investigated. For 
nuclear matter, the symmetry energy in the standard Skyrme EDF 
is expressed as

Esym(ρ) = 1

3

h̄2

2m

(
3π2

2

)2/3

ρ2/3 − 1

8
t0(2x0 + 1)ρ

− 1

24

(
3π2

2

)2/3

�symρ5/3

− 1

48
t3(2x3 + 1)ρσ+1 (6)

with �sym = 3t1x1 − t2(4 + 5x2). The slope parameter of the sym-
metry energy at normal density ρ0 is written as,

L = 3ρ0

(
∂ Esym

∂ρ

)
ρ=ρ0

. (7)

Fig. 2 shows the distribution of the values of L calculated from 
these different Skyrme forces. The red hollow bars denote the re-
sults of the 100 sets of Skyrme forces in the literature, and the 
blue solid bars denote the corresponding results of the obtained 
82 Skyrme forces after matching the LSD liquid drop energy. The 
values of L from the considered Skyrme forces in the literature 
distribute in a very large range, from about −40 MeV to 210 MeV. 
After matching the LSD formula, we find the values of L focus on 

Fig. 1. (Color online.) Energy per particle (a) and symmetry energy coefficient (b) 
as a function of mass number. The circles denote the corresponding mean values 
from the 82 Skyrme forces, and the standard deviations are smaller than the size of 
the symbols. The curves denote the results of the LSD formula according to Eqs. (2)
and (3).
a small region with the mean value of 41.6 MeV and the standard 
deviation of 7.6 MeV. The corresponding symmetry energy at satu-
ration density is Esym(ρ0) = 29.2 ± 0.2 MeV based on the obtained 
82 Skyrme parameter sets.

With the same approach, we also study the WS* mass formula. 
In the WS* formula, the curvature terms are not considered. We 
find that the liquid drop energy ELD in the WS* formula is not 
matched as good as that in the LSD formula, probably due to the 
influence of the curvature terms. We obtain 74 new Skyrme pa-
rameter sets in which the minimal rms deviations with respect to 
ELD/A of the 70 nuclei are σ = 30 ± 5 keV. The corresponding 
quantities related to the equation of state according to the ob-
tained Skyrme forces are listed in Table 2. e∞ = E

A (ρ0) and K∞
denote the energy per particle of symmetric nuclear matter and its 
curvature at the saturation density ρ0, respectively. Ksym denotes 
the curvature of the symmetry energy at ρ0. Esym(ρc) and Lc de-
note the symmetry energy and its slope at sub-normal density of 
ρc = 0.1 fm−3, respectively. By adopting different Skyrme parame-
ter sets, one can obtain the distribution of a certain quantity (see 
Fig. 2 for example), and consequently the mean value and the cor-
responding standard deviation can be obtained. In this work, the 
uncertainty of model predictions for a quantity is described by its 
standard deviation. Here, we would like to state that the uncer-
tainty in this work is due to the uncertainty in the fit of the mass 
formulas from the parameter space of Skyrme forces, rather than 
directly from the experimental observations. From the table, one 
sees that the value of L for WS* is larger than that for LSD by 
about 10 MeV. At sub-normal density of ρc = 0.1 fm−3, the dis-
crepancy between the corresponding slope parameters Lc falls to 
∼4.4 MeV, and the symmetry energy Esym(ρc) of these two for-
mulas is very close to each other. The extracted slope parameter 
L = 54 ± 19 MeV from the charge radii of 30S–30Si mirror pair 
[18], L = 52.5 ± 20 MeV from the Skyrme Hartree–Fock calcula-
tions together with the neutron skin thickness of Sn isotopes [39]
and L = 52.7 ± 22.5 MeV from the global nucleon optical poten-
tials [40] are in good agreement with the estimated result for the 
WS* formula. In addition, the symmetry energy and its slope pa-

Fig. 2. (Color online.) Distribution of the density slope of Esym at normal density. 
The red hollow bars denote the results from 100 original Skyrme parameter sets 
in the literature. The blue solid bars denote the results of 82 new Skyrme forces 
after matching the LSD formula, with mean value of L = 41.6 MeV and standard 
deviation of 7.6 MeV.
Table 2
Quantities related to EOS matched for the LSD and WS* formulas (in MeV).

Model e∞ K∞ Esym(ρ0) L Ksym Lc Esym(ρc)

LSD −15.494 ± 0.004 230 ± 11 29.2 ± 0.2 41.6 ± 7.6 −152 ± 41 40.4 ± 2.4 23.1 ± 0.5
WS* −15.583 ± 0.007 235 ± 11 29.7 ± 0.3 51.5 ± 9.6 −117 ± 46 44.8 ± 3.4 23.3 ± 0.7
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Fig. 3. (Color online.) Density dependence of nuclear symmetry energy (a) and en-
ergy per particle for symmetric nuclear matter (b). The open and solid circles denote 
the results by matching the LSD and WS* formulas, respectively.

rameter obtained for the two mass models are compatible with the 
liquid-drop analysis of Lattimer and Lim [4].

In Fig. 3(a), we show the density dependence of symmetry en-
ergy with the best-fit parameter sets for the LSD and WS* formu-
las. The error bars denote the corresponding standard deviations. 
One sees that at sub-normal density region, the symmetry energy 
from these two models is very close to each other. Whereas at the 
region ρ > ρ0, the standard deviation increases rapidly with the 
increase of density, which indicates that only with nuclear masses 
the nuclear symmetry energy at supra-saturation densities cannot
be accurately constrained. In Fig. 3(b), we show the obtained en-
ergy per particle of symmetric nuclear matter for the LSD and WS* 
formulas as a function of density. The obtained incompressibility 
coefficient K∞ for the WS* formula is comparable with that for 
the LSD formula, and the values for both models are in good agree-
ment with the generally accepted value of K∞ ≈ 230 MeV [12,16].

Together with the symmetry energy, the splitting of neutron 
and proton effective masses in neutron-rich matter is also an im-
portant quantity related to the isospin-dependence of nucleon–
nucleon interaction. Whether the effective mass m∗

n for neutrons 
is higher than that m∗

p for protons in neutron-rich matter or the 
magnitude of effective mass splitting changes as a function of mo-
mentum [41] is an interesting question and attracted a lot of atten-
tion in recent years [42–44]. Here, based on the obtained Skyrme 
forces for the LSD and WS* formulas we simultaneously investi-
gate the density dependence of the mean-field isoscalar effective 
mass and the splitting of neutron and proton effective masses. In 
the framework of Skyrme EDF, the isoscalar and isovector effective 
masses are written as [45],

m∗
s

m
= 1

1 + κs
, (8)

with κs = 2m
h̄2

1
16 [3t1 + t2(5 + 4x2)]ρ and

m∗
v = 1

, (9)

m 1 + κv
Fig. 4. (Color online.) (a) Mean-field isoscalar effective mass, (b) isovector effective 
mass, and (c) splitting of neutron and proton effective masses as a function of den-
sity.

with κv = 2m
h̄2

1
8 [2(t1 + t2) − t1x1 + t2x2]ρ , respectively. The splitting 

of neutron and proton effective masses for neutron matter (δ = 1) 
is expressed as [45],


m∗

m
= m∗

n − m∗
p

m
= 2(κv − κs)

(1 + κs)2 − (κv − κs)2
. (10)

Fig. 4 shows the calculated m∗
s

m , m∗
v

m and 
m∗
m as a function of 

density. With the increase of density, the isoscalar effective mass 
decreases linearly at sub-saturation density region in general. At 
saturation density, the mean values of the extracted isoscalar and 
isovector effective masses for LSD are about 0.86 and 0.67, respec-
tively. For WS*, m∗

s
m ≈ 0.82 and m∗

v
m ≈ 0.63 at saturation density, 

which are roughly comparable with the corresponding values (0.8 
and 0.72) given in the HFB-27 model [23]. For the splitting of neu-
tron and proton effective masses of neutron matter, the obtained 
results for the two models are similar, with positive values and in-
creasing with the density. The neutron effective mass m∗

n is larger 
than the proton effective mass m∗

p in neutron-rich matter, which is 
consistent with measurements of isovector giant resonances [45], 
the Skyrme HFB calculations [22] in general. Very recently, Xiao-
Hua Li et al. investigated the neutron–proton effective mass split-
ting from the global nucleon optical potentials [44]. The estimation 
of 
m∗

m = 0.41 ± 0.15 for neutron matter around normal density is 
also generally consistent with the results in this work. In addition, 
one can see that the corresponding standard deviations in Fig. 4
are large and increase rapidly with the density.

In this work, we also investigate the depth of the single-particle 
potential from the considered Skyrme forces and its correlation 
with the effective mass. It is thought that the effective mass is 
related to the depth of the single particle potential [28,44]. Fig. 5
shows the calculated depth of the mean-field potential for sym-
metric nuclear matter at the saturation density as a function of 
isoscalar effective mass based on the Skyrme forces considered. 
One sees that either from the 100 Skyrme forces in the litera-
ture (circles) or from the ones for LSD (squares), the depth of the 
potential evidently increases with the corresponding isoscalar ef-
fective mass as expected. The potential depth from the zero-range 
Skyrme forces considered in Fig. 5 varies in the region of V 0 =
63 ± 17 MeV, whereas the depth of phenomenological Woods–
Saxon single particle potential is usually about V 0 ≈ 50 MeV [20,
46]. It is known that the single particle picture is valid mostly 
around the Fermi energy and it is unrealistic to directly measure 
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Fig. 5. (Color online.) Depth of single particle potential for symmetric nuclear matter 
at the saturation density as a function of isoscalar effective mass.

the depth of single particle potential. Comparing with the difficul-
ties in the measurement of the depth of the single particle po-
tential, it is much more realistic to measure the value of effective 
mass, from level densities, collective modes, etc. The correlation 
between the potential depth and the effective mass indicates that 
a better determination of the effective mass would be helpful to 
reduce the uncertainties of the depth of the mean-field potential.

4. Summary

By using the extended Thomas–Fermi approximation together 
with the restricted density variational method, the corresponding 
properties for symmetric and asymmetric nuclear matter repre-
sented in the LSD and WS* mass formulas has been investigated 
with the standard 10-parameter Skyrme energy density function-
als. Through matching the nuclear liquid drop energy given in the 
LSD and WS* formulas for finite nuclei with the corresponding 
“macroscopic” energy calculated from the Skyrme energy density 
functionals, we attempt to obtain the information on the density 
dependence of binding energy and symmetry energy represented 
in the macroscopic–microscopic mass models. We find that LSD 
liquid drop formula can be remarkably well reproduced by 82 new 
Skyrme forces after adjusting the Skyrme parameters, with an rms 
error of only about 8 keV. For the WS* formula, the liquid drop en-
ergy is not matched as good as that of LSD due to the neglecting 
of the curvature terms. The obtained slope parameter of symme-
try energy is L = 41.6 ± 7.6 MeV for LSD and 51.5 ± 9.6 MeV for 
WS*. The predicted symmetry energies at sub-saturation density 
region from these two mass formulas are very close to each other. 
At supra-saturation density region, the uncertainties of the energy 
per particle and symmetry energy increase rapidly with the den-
sity.

Based on the new Skyrme forces for LSD and WS*, the correla-
tion between the symmetry energy and its slope parameter is also 
observed evidently. The slope parameter L generally increases with 
the symmetry energy J . In the present work, the two mass mod-
els have a relatively low value for the symmetry energy, around 
29 MeV, and therefore the corresponding slope parameters have 
relatively low values comparing with other predictions, such as 
the relativistic calculations. One should note that the extracted in-
formation in this work is still model dependent, considering the 
limitation of the non-relativistic standard Skyrme energy density 
functional and the correlation between symmetry energy and its 
slope parameter.

With the obtained Skyrme forces for the macroscopic–micro-
scopic formulas, the density dependence of the mean-field isoscalar 
and isovector effective mass and the splitting of neutron and pro-
ton effective masses are simultaneously investigated. The results 
are generally consistent with those from the Skyrme HFB calcula-
tions and nucleon optical potentials around saturation density. The 
large standard deviations for the effective mass from nuclear mass 
models imply that other constraints are still required to obtain 
the information on the behavior of effective mass. Considering the 
correlation between the potential depth and the effective mass, a 
better constraint for the effective mass is helpful to reduce uncer-
tainties of the depth of the mean-field potential.
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