OC-0349
Hippocampal dosimetry predicts the change in neurocognitive functions after whole brain radiotherapy
S.Y. Lin1, C.C. Yang2, C.C. Chuang3, P.C. Pai1, P.F. Tsai1, D.L. Tsai1, C.K. Tseng1
1Chang Gung Memorial Hospital, Department of Radiation Oncology, Taoyuan, Taiwan
2Chang Gung University, Division of Clinical Psychology-Master of Behavioral Sciences-Department of Occupational Therapy, Taoyuan, Taiwan
3Chang Gung Memorial Hospital, Department of Neurosurgery, Taoyuan, Taiwan

Purpose or Objective: Whole brain radiotherapy (WBRT) has been the treatment of choice for patients with brain metastases. However, change/decline of neurocognitive functions (NCFs) resulting from impaired hippocampal neurogenesis might occur after WBRT. It is reported that hippocampal sparing would provide the preservation of NCFs. Our study aims to investigate the correlations between hippocampal dosimetry and neurocognitive outcomes in patients receiving hippocampal sparing during WBRT (HS-WBRT).

Material and Methods: Fifty prospectively recruited cancer patients underwent HS-WBRT for therapeutic or prophylactic purposes. Before receiving HS-WBRT, all participants received a battery of baseline neurocognitive assessment, including memory, executive functions and psychomotor speed. The follow-up neurocognitive assessment at 4 months after HS-WBRT was also performed. To deliver HS-WBRT, Volumetric Modulated Arc Therapy (VMAT) with two full arcs and two non-coplanar partial arcs was employed. For each treatment planning, dose volume histograms were generated for left hippocampus, right hippocampus, and the composite hippocampal structure respectively. Biologically equivalent doses in 2-Gy fractions (EQD2) assuming an alpha/beta ratio of 2 Gy were computed. To perform analyses addressing the correlation between hippocampal dosimetry and the change in NCF scores, pre- and post-HS-WBRT neurocognitive assessments were available in 32 patients.

Results: NCF scores were quite stable before and after HS-WBRT regarding hippocampus-dependent memory. For verbal memory, the corresponding EQD2 values of 0%, 10%, 50%, 80% irradiating the composite hippocampal structure with memory, the corresponding EQD2 values of 0%, 10%, 50%, 80% irradiating the composite hippocampal structure with memory, the corresponding EQD2 values of 0%, 10%, 50%, 80% were computed. The statistically significant decrease was observed in the left (-11.1%; 95% confidence interval -11.1 to -15.9; p=0.0033) and right (-11.4%; 95% confidence interval -11.4 to -15.9; p=0.0033) hippocampus. The statistically significant decrease was observed in the left (-11.4%; 95% confidence interval -11.4 to -15.9; p=0.0033) as well as in the left (-8.5%; 95% confidence interval -8.5 to -12.9; p=0.0034) hippocampus.

Conclusion: Hippocampal MR spectroscopy is feasible and sensitive method for non-invasive measurement of brain radio injury. In our study, we observed correlation between left hippocampal N-acetylaspartate concentration and verbal memory decline with smaller effect of right hippocampus. Robust analysis of pre-irradiation imaging studies may provide valuable predictive biomarkers for decision making for the best radiotherapy approach in the treatment of brain metastases.

Proffered Papers: Brachytherapy 4: Gynae-Breast

OC-0351
MRI-guided brachytherapy in cervical cancer: high doses to small bowel don't predict late morbidity
C. Petit1, R. Mazeron1, C. Chargari1, I. Dumas1, P. Marouin1, P. Anne1, T. Seisen1, C. Haie Meder1
1Gustave Roussy, Radiation Oncology, Villejuif, France

Purpose or Objective: To establish dose-volume effect correlations for late small bowel toxicities in patients treated for locally advanced cervical cancer with concomitant chemoradiation followed by MRI-guided adaptive brachytherapy.

Material and Methods: In a cohort of patients treated in curative intent and followed prospectively, those who had completed the treatment one year before were retained for this study. The small bowel loops were delineated during the planning process, but no specific dose constraint was applied. The dosimetric data, converted in 2 Gy equivalent (α/β=3) were confronted to the occurrence of small bowel events: diarrhea, pain, flatulence, bleeding, obstruction, and fistula. Patients were followed every 3 months for the first year then every 6 months, for 3 years, then annually. Late morbidity was defined over the threshold of 90 days from treatment initiation and assessed using the CTC-AE 3.0. Patients who experienced recurrences were censored from the date of their relapse. Dose-effect relationships were assessed using...