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Germany
8German Rheumatism Research Center (DRFZ), a Leibniz Institute, 10117 Berlin, Germany
9Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
10Co-first author
11Co-senior author

*Correspondence: philipp.lang@med.uni-duesseldorf.de
http://dx.doi.org/10.1016/j.immuni.2014.05.004
SUMMARY

Despite development of new antiviral drugs, viral in-
fections are still a major health problem. The most
potent antiviral defensemechanism is the innate pro-
duction of type I interferon (IFN-I), which not only
limits virus replication but also promotes antiviral
T cell immunity through mechanisms, which remain
insufficiently studied. Using the murine lymphocytic
choriomeningitis virus model system, we show here
that IFN-I signaling on T cells prevented their rapid
elimination in vivo. Microarray analyses uncovered
that IFN-I triggered the expression of selected inhib-
itory NK-cell-receptor ligands. Consequently, T cell
immunity of IFN-I receptor (IFNAR)-deficient T cells
could be restored by NK cell depletion or in NK-
cell-deficient hosts (Nfil3–/–). The elimination of
Ifnar1–/– T cells was dependent on NK-cell-mediated
perforin expression. In summary, we identified IFN-I
as a key player regulating the protection of T cells
against regulatory NK cell function.

INTRODUCTION

More than 500 million people worldwide suffer from hepatitis B

virus (HBV) or hepatitis C virus (HCV) infections (Rehermann,

2013; Rehermann and Nascimbeni, 2005). Both virus infections

can lead to chronic disease, resulting in chronic liver inflamma-

tion, tissue damage, end-stage liver failure, and hepatocellular

carcinoma (Rehermann and Nascimbeni, 2005). A critical de-
fense mechanism to effectively eradicate viral infections is type

I interferon (IFN-I) production by innate immune cells such as

plasmacytoid dendritic cells (pDCs) (Gilliet et al., 2008). IFN-I

binds to the IFN-I receptor (IFNAR) and not only limits viral

replication (Müller et al., 1994) but also exhibits regulatory func-

tions during immunity by activating other immune cells (Gonzá-

lez-Navajas et al., 2012; Sadler and Williams, 2008). Earlier

reports indicate that IFN-I exhibits inhibitory effects on T cells

(Petricoin et al., 1997). This can be explained by IFNAR signaling

through the signal transducer and activator of transcription 1

(STAT-1), which blunts T cell effector function, while the

competing STAT4 signaling is essential to promote cytokine

expression of antiviral T cells following IFNAR activation (Nguyen

et al., 2002). Conversely, IFNAR can activate antigen-presenting

cells (APCs), thus promoting T cell activation during viral infec-

tion (Gautier et al., 2005; Santini et al., 2000). Furthermore,

studies using IFNAR-deficient T cells show direct effects of

IFN-I on T cell survival (Aichele et al., 2006; Kolumam et al.,

2005; Le Bon et al., 2006). Consistently, IFN-I is a critical signal

for effector and memory T cell differentiation (Agarwal et al.,

2009; Marshall et al., 2010). However, the underlying mecha-

nisms by which IFN-I affects T cell immunity are not completely

understood.

Natural killer (NK) cells can be activated by IFN-I during viral

infection (Biron et al., 2002) and exhibit cytotoxicity triggered

by the molecule perforin (Kägi et al., 1994). While there is ample

evidence demonstrating that NK cells are important for immunity

against a variety of viral infections, more recent studies indicate

that NK cells can produce immunoregulatory molecules such as

interleukin-10 (IL-10) following activation (Lee et al., 2009; Su

et al., 2001). Consequently, recent reports indicate that NK cells

contribute to antiviral T cell dysfunction during chronic viral

infection (Cook andWhitmire, 2013; Lang et al., 2012; Waggoner
Immunity 40, 949–960, June 19, 2014 ª2014 Elsevier Inc. 949

mailto:philipp.lang@med.uni-duesseldorf.de
http://dx.doi.org/10.1016/j.immuni.2014.05.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.immuni.2014.05.004&domain=pdf


A
48h24h 72h

CFSE

W
T

Ifn
ar

1–/
–

IF
N

-4
α

Ifn
ar

1–/
–

IF
N

-4
α

W
T

B

C

CFSE

M
ax

im
um

 (%
)

Blood Spleen

0

10

20

30

40

50

0

20

40

60

80

100 WT x P14
Ifnar1–/– x P14

D EWT x P14
Ifnar1–/– x P14

gp33Control
0

100000

200000

300000

400000
WT x anti-CD3 &CD28
Ifnar1–/– x anti-CD3 &CD28

p<0.05

Tr
an

sf
er

re
d

T 
ce

lls
 (#

)

WT x P14
Ifnar1–/– x P14

0

2000

4000

6000

8000

10000 p<0.01

p<0.001

p<0.001
p<0.001

WT x P14

Ifnar1–/– x P14

Tr
an

sf
er

re
d

T 
ce

lls
 (#

)

Ce
lls

 (#
)

100

80

60

40

20

0
102 103 104 1050

100

80

60

40

20

0
102 103 104 1050

gp
33

-t
et

+ CD
45

.2
+  (%

 o
f C

D
8+ )

IF
N

-γ
+ CD

45
.2

+  (%
 o

f C
D

8+ )

Figure 1. IFN-I Affects T Cell Immunity

In Vivo

(A) Negatively sorted CFSE labeled CD8+ T cells

from WT and IFNAR1-deficient animals were

stimulated for 24 hr (left panels), 48 hr (middle

panels), and 72 hr (right panels) with anti-CD3

antibody in presence or absence of IFN-4a

(50U/mL, one representative of n = 6 is shown).

(B) CD45.1+ animals were infected with 200 pfu

LCMV WE. 106 negatively sorted CFSE labeled

T cells from P14+ WT and Ifnar1–/– mice were

transferred into infected CD45.1+ mice 2 days

postinfection (p.i.). At day 4 p.i., CFSE expression

on T cells (left panel) and cell number of transferred

cells was analyzed (right panel, error bars show

SEM; n = 3, one of two independent experiments is

shown).

(C and D) Prior to infection, 105 negatively sorted

T cells from P14+ or P14+Ifnar1–/– animals

were transferred into CD45.1+ mice. (C) Gp33-

tetramer+CD8+CD45.2+ T cells were determined in

the blood (left panel) and in spleen tissue (right

panel) 8 days p.i. (percentage of CD8+ cells, error

bars show SEM; n = 5) (D) IFN-g+CD8+CD45.2+

cells were measured after restimulation with the

LCMV epitope gp33 8 days p.i. (percentage of

CD8+ cells, error bars show SEM; n = 5).

(E) We stimulated 2 3 106 negatively sorted CD8+

T cells fromWT and Ifnar1–/–mice in vitro with anti-

CD3 and anti-CD28 antibodies for 72 hr followed

by injection into CD45.1+ animals. Two days

following infection with 200 pfu of LCMV WE,

transferred T cells were measured in spleen tissue

(error bars show SEM; n = 3–4, one of two inde-

pendent experiments is shown).
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et al., 2012). These data are accompanied by clinical findings

showing that in cohorts of HCV patients, expression of NK

cell inhibitory receptors correlates with virus control (Khakoo

et al., 2004; Knapp et al., 2010; Paladino et al., 2007). Con-

sistently, NK cell cytotoxicity can be detected in human HCV

patients when compared to healthy controls (Ahlenstiel et al.,

2010). Moreover, after treatment of HCV infected individuals

with IFN-I, NK cell cytotoxicity increases (Edlich et al., 2012).

However, the effectiveness of IFN-I therapy correlates positively

with NK cell cytotoxicity after IFN-I treatment (Edlich et al., 2012).

Furthermore, patients with enhanced NK cell cytotoxicity show

a sustained suppression of HCV during IFN-I treatment (Oliviero

et al., 2013). These data argue against an influence of regulatory

NK cell functions during HCV infection and rather indicate a

beneficial role of NK cells during HCV infection. However, the

role of regulatory factors, which can influence the interaction

between NK cells and T cells, remains still unclear.

Here we show that IFN-I can improve T cell immunity by

protecting antiviral T cells from regulatory NK cell functions.

IFN-I prevented rapid elimination of antiviral T cells during viral

infection in vivo. Microarray analyses uncovered that IFN-I

triggered expression of selective NK cell inhibiting ligands on T

cells. Consequently, NK-cell-deficient animals were able to

mount a functional antiviral T cell response—even in absence

of IFN-I signaling in these T cells. The regulatory effects of

NK cells were dependent on perforin expression in vitro and

in vivo.
950 Immunity 40, 949–960, June 19, 2014 ª2014 Elsevier Inc.
RESULTS

IFN-I Deficiency Results in Elimination of Proliferating T
Cells In Vivo
IFN-I is a critical factor that triggers T cell immunity in vivo

(Aichele et al., 2006; Kolumam et al., 2005). However, when

negatively sorted T cells from wild-type (WT) and IFN-I recep-

tor-deficient (Ifnar1–/–) mice (Müller et al., 1994) were stimulated

with anti-CD3 in presence or absence of IFN-I, no difference was

detected in the proliferation rate of T cells (Figure 1A; see also

Figure S1A available online). When we transferred negatively

sorted CFSE-labeled T cells from a mouse carrying the trans-

genic TCR (P14) recognizing the lymphocytic choriomeningitis

virus (LCMV) peptide gp33 (Pircher et al., 1989) into WT animals

following infection with LCMV, we observed as expected, prolif-

eration of the transferredWT T cells (Figure 1B). In sharp contrast

to WT T cells, IFNAR-deficient virus-specific T cells were rapidly

eliminated after transfer into WT animals followed by infection

with LCMV WE (Figure 1B). Transfer of IFNAR-deficient cells

resulted in the absence of functional antiviral T cells during the

course of infection, whereas WT T cells were readily detectable

in infected animals (Figure 1C). Consequently, restimulation with

the virus-specific epitope gp33 induced cytokine production in

WT T cells, whereas there was almost no IFN-g production

detectable in Ifnar1–/– T cells (Figure 1D). The transferred

T cells were eliminated from their host after activation, but naive

T cells from both WT and IFNAR deficient animals were
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detectable in naive animals throughout the course of the exper-

iment (Figures S1B and S1C). Furthermore, nonspecific viral

infection such as with the cytolytic vesicular stomatitis virus

did not result in diminished quantity of Ifnar1–/– T cells, when

they were not activated (Figure S1D). In addition, when we trans-

ferred WT and Ifnar1–/– P14 cells expressing the congenical

markers CD45.1 and CD90.1, respectively, we observed similar

numbers in the bloodstream (Figure S1E). Moreover, when we

transferred bone marrow harvested from WT and Ifnar1–/– ani-

mals at a ratio of 1:1 into lethally irradiated mice, we observed

no difference in CD8+ T cell numbers (Figure S1F). Next, we

transferred in vitro proliferated T cells into mice followed by

infection with LCMV. Consistently, we observed removal of

proliferated Ifnar1–/– T cells when compared to WT controls (Fig-

ure 1E). These data indicate that absence of IFN-I signalingmight

protect T cells from negative regulators of T cell immunity in vivo.

IFN-I Triggers Expression of Genes Encoding for Major
Histocompatibility Complex Class I and MHC Ib
Molecules on T Cells
To further investigate the mechanism by which T cells show

sustained effector function through IFN-I signaling, we per-

formed microarray analyses on negatively sorted primary CD8+

T cells. T cells were activated with an anti-CD3 antibody in the

presence or absence of IFN-I (500 U/mL IFN-4a). IFN-I regulated

1162 genes in naive T cells, while 270 genes were differentially

expressed in anti-CD3 stimulated T cells after IFNAR activation

(Figure 2A; Figure S2A; Table S1). As expected, expression of

interferon-stimulated genes (ISGs) was significantly higher after

treatment with IFN-I (p(corr) < 0.05) so that expression changes

in IFN-treated cells were clustered independently of anti-CD3

stimulation (Figure S2B). Further on, differentially expressed

IFN-I responsive genes were globally categorized into functional

GeneOntology (GO) classes. Among others, several IFN-related

GO classes showing significant enrichment of differentially ex-

pressed genes could be identified (Figure 2B). Becuase nomajor

differences were observed during T cell proliferation after IFN-4a

treatment in vitro, we speculated that plasma membrane

proteins might play a critical role during the protection of virus

specific T cells in vivo. Among genes encoding for plasma

membrane proteins, genes encoding for MHC I or MHC Ib

molecules were upregulated following IFN-I treatment (Figures

2C and 2D). Taken together, these data indicate that among

genes regulated by IFN-I, expression of genes encoding for

MHC I and MHC Ib molecules was increased.

NK-Cell-Receptor Ligand Expression Is Triggered by
IFN-I
H2 proteins are part of MHC I and MHC Ib molecules, which

can act as ligands of NK cell inhibitory receptors (Vivier et al.,

2011; Vivier et al., 2008). Expression patterns of samples ob-

tained from IFN-I-treated cells clustered when H2 and other

NK-cell-receptor ligands were analyzed, indicating that IFN-I

might trigger the expression of NK-cell-receptor ligands (Fig-

ure 2D). Validation of the genes encoding for NK-cell-receptor

ligands uncovered that expression of several genes were signif-

icantly elevated in response to IFN-I treatment on T cells (Fig-

ure 3A). Although NKG2D ligands were significantly increased

after CD3 stimulation, their expression was not affected by
IFN-I in these experiments (Figures S3A and S3B). We also

tested other NK-cell-receptor ligands, but did not identify sta-

tistically different expression in T cells in this setting, neither

during anti-CD3 stimulation nor during incubation with IFN-4a

(Figures S3C–S3G). Next, we analyzed whether MHC I and

Qa-1b protein expression was affected following IFN-I

treatment. Consistent with our gene-expression analyses, Qa-

1b expression was induced on the cell surface of CD8+

T cells after stimulation with anti-CD3 (Figure 3B). However,

coincubation with IFN-4a led to further increase of Qa-1b

expression in a concentration-dependent manner (Figure 3B).

Moreover, MHC I expression was significantly increased on

WT CD8+ T cells when compared to Ifnar1–/– cells (Figures 3C

and 3D). These data indicate that NK-cell-receptor ligands are

regulated by IFN-I and that absence of IFNAR results in limited

expression of the inhibitory NK-cell-receptor ligands MHC I and

Qa-1b in vitro.

NK Cells Target IFNAR1-Deficient T Cells
Our data indicate that the expression of NK-cell-receptor ligands

are affected by IFN-I. We next hypothesized that regulatory NK

cell functions might target antiviral T cells in the absence of

IFN-I. Moreover, when we transferred in vitro stimulated T cells

from WT and Ifnar1–/– animals into LCMV-infected WT hosts,

we observed that absence of IFNAR1 resulted in decreased

expression of Qa-1b (Figure 4A). Consistently, LCMV-specific

T cells from WT mice expressed Qa-1b on the cell surface

when transferred into infected C57BL/6 mice. In the absence

of IFN-I signaling however, Qa-1b expression was reduced

when compared to WT P14 (Figure 4B; Figure S4A). Similar re-

sults were obtained when MHC I expression was determined

(Figure 4C; Figure S4B). When we transferred T cells into naive

animals, we did not observe any expression differences between

WT and IFNAR1-deficient T cells (Figures 4B and 4C). Intermedi-

ate doses of LCMV infection triggers T cell dysfunction of anti-

viral T cells (Lang et al., 2012). As shown by others and us, NK

cell depletion can rescue T cell function with higher doses of

LCMV (Figure S4C) (Cook and Whitmire, 2013; Lang et al.,

2012; Waggoner et al., 2012). After NK cell depletion, LCMV-

specific T cells showed reduced expression of Qa-1b, suggest-

ing that low Qa-1b correlates with elimination of anti-viral T cells

(Figure S4D). Following their transfer, negatively sorted Ifnar1–/–

P14 were rapidly deleted from infected animals. However, after

depletion of NK cells (Koo and Peppard, 1984), the numbers of

IFNAR1-deficient T cells were increased (Figure 4D). Next we

asked whether NK cell depletion might affect prolonged antiviral

T cell immunity of Ifnar1–/– T cells. After NK cell depletion,

Ifnar1–/– P14+ T cells were detectable in increased numbers

8 days after infection when compared to control animals (Fig-

ure 4E). Furthermore, the T cell response was restored in

Nfil3–/–mice.Nfil3–/–mice lackNK cell function but exhibit normal

NKT cell development when compared to WT controls (Gas-

coyne et al., 2009; Kamizono et al., 2009). Consequently, cyto-

kine production by IFNAR1-deficient T cells was highly

increased when compared to their corresponding controls, in

the absence of NK cells, either eliminated by NK cell depletion

or reduced in number and function in Nfil3–/– animals (Figure 4F).

These data indicate that NK cells target antiviral T cells in

absence of IFN-I signaling. Furthermore, these effects were
Immunity 40, 949–960, June 19, 2014 ª2014 Elsevier Inc. 951
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Figure 2. IFN-I Triggers Expression of Genes Encoding for Major Histocompatibility Complex Class I and MHC Ib Molecules on T Cells

(A–C) We stimulated 106 negatively sorted CD8+ T cells with anti-CD3 antibodies in the presence or absence of IFN-4a (500 U/mL). After 6 hr, total RNA was

extracted from cell suspensions andmicroarray analyses were performed (n = 3). (A) Venn diagram of genes regulated by IFN-4a treatment, CD3 stimulation, and

(legend continued on next page)
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rather dependent on NK cell function, because in animals with

competent NKT cell responses but deficient for NK cells,

Ifnar1–/– T cells were recovered. We wondered whether similar

effects could be observed with CD4+ T cells. Consistent with

the described data, Ifnar1–/–Smarta+ T cells, which express a

TCR specific for the LCMV MHC II epitope gp61 as a transgene

(Oxenius et al., 1998), were eliminated by NK cells following

infection with LCMV (Figures S4E and S4F). Moreover, cytokine

production of IFNAR1-deficient antiviral CD4+ T cells could be

increased in absence of NK cells (Figure S4G).

Next, we wondered whether lack of IFNAR1 phenotypically

affected T cell immunity when compared to WT T cells, and

whether NK cell depletion could completely rescue Ifnar1–/–

T cell immunity. When we monitored transferred WT and

Ifnar1–/– T cells over time, we found that removal of IFNAR1-defi-

cient T cells was mainly dependent on the presence of NK cells

and that Ifnar1–/– T cell immunity was similar to WT T cell immu-

nity in absence of NK cells (Figure 5A). Consistently, NK cell

depletion also improved the cytokine production of IFNAR1-defi-

cient T cells (Figure 5B). IFN-g, tumor necrosis factor alpha

(TNF-a), and interleukin-2 (IL-2) production by Ifnar1–/– T cells

was rescued in absence of NK cells (Figure 5B). In line with

this, lysosomal-associated membrane protein-1 (Lamp-1) stain-

ing, indicating degranulation, of Ifnar–/– T cells was also restored

after NK cell depletion (Figure 5B). However, we still observed

significant differences in cytokine production between WT

T cells and Ifnar1–/– T cells in NK-cell-depleted animals (Fig-

ure 5B). Furthermore, we observed higher expression of PD-1

and lower expression of KLRG1 in Ifnar1–/– T cells when

compared to WT T cells (Figure 5C; Figure S5A). This differential

expression of PD-1 was independent of the presence of NK cells

and could potentially contribute to the deficient T cell immunity in

absence of IFN-I (Barber et al., 2006). The differential expression

of KLRG1 suggests an additional role of IFN-I during antiviral

T cell differentiation (Gründemann et al., 2010; Kaech and Cui,

2012; Kaech et al., 2003). Expression of other factors involved

in regulating antiviral CD8+ T cell immunity such as IL-7R or

TIM-3 (Jin et al., 2010; Jones et al., 2008; Kaech et al., 2003;

Wherry, 2011) were similar or only slightly different between

Ifnar1–/– andWT T cells, when NK cells were depleted (Figure 5C;

Figure S5A). Consistently, when we determined viral titers in

spleen tissue, we observed higher titers in animals that received

Ifnar1–/– T cells (Figure 5D). However, after NK cell depletion, viral

titers were reduced, indicating that in absence of NK cells,

IFNAR1-deficient T cells were capable of eliminating virus-

infected cells (Figure 5D). At later time points, the virus was

cleared from the animals (Figure S5B). When we measured the

IFN-a concentration, we did not observe any differences shortly

after infection (Figure S5C). At day 4 however, serum IFN-a con-

centration in animals receiving Ifnar1–/– T cells were significantly

higher than in other mice (Figure S5C), and this is likely attribut-

able to the higher viral titers due to dysfunctional T cell immunity

(Figures 5A–5D). To investigate whether these effects affected

the interaction of NK cells with T cells in an IFN-I-dependent
CD3 stimulation in combination with IFN-4a treatment. (B) Pie diagram of significan

IFN-I (amount of genes regulated within the cluster regulated is shown). (C) C

membrane proteins, which were significantly regulated by IFN-I treatment (p(corr)
(D) Cluster of gene expression of genes encoding for MHC I and MHC Ib molecu
manner, we transferred negatively sorted T cells from WT and

Ifnar1–/– mice into the same hosts. Consistent with our previous

findings, we observed higher expression of PD-1 and lower

expression of KLRG1 in Ifnar1–/– T cells, independent of the pres-

ence of NK cells (Figure S5D). However, when we measured the

number of transferred T cells, we detected higher T cell numbers

of Ifnar1–/– T cells in the absence of NK cells when compared to

animals with NK cells (Figure S5E). Furthermore, in line with the

differential PD-1 and KLRG1 expression, we detected a sig-

nificant difference between WT and Ifnar1–/– T cells even in

absence of NK cells (Figure S5E). However, NK cells seemed

to be a critical regulator of T cell immunity in the absence of

IFN-I receptor signaling. Notably, NK cells can also affect T cell

immunity by regulating antigen-presenting cells (Andrews

et al., 2010). In our setting, however, selective increase in

Ifnar1–/– T cells rather points to a direct interaction between

IFNAR1-deficient T cells and NK cells. To further evaluate

whether the observed effects could have been cofounded by

other factors, we used Ifnar1loxp/loxp 3 Cd4-cre+ animals (Kam-

phuis et al., 2006). Similarly, T cell immunity was impaired in

animals, which lack IFNAR1 signaling in T cells (Figure 5E). How-

ever, in the absence of NK cells, antiviral T cells could be recov-

ered in Ifnar1loxp/loxp 3 Cd4-cre+ animals (Figure 5E). Taken

together, these data indicate that NK cells are critical regulators

of T cells deficient in IFN-I signaling in vivo.

NK Cells Target Ifnar1–/– T Cells through Perforin-
Mediated Cytotoxicity
To evaluate whether NK cells target T cells directly, we coin-

cubated sorted WT and Ifnar1–/– T cells from infected animals

with cultured NK cells. NK cells selectively eliminated Ifnar1–/–

T cells while WT T cells were protected from NK-cell-mediated

killing (Figure 6A). Furthermore, NK cells selectively induced

apoptosis in T cells deficient for IFNAR1 when compared to

WT T cells (Figure 6A). During LCMV infection, IFN-I can activate

NK cell cytotoxicity, which is mediated by perforin (Kägi et al.,

1994).While perforin expression of CD8+ T cells is critical to elim-

inate LCMV from the organism, NK-cell-mediated cytotoxicity

does not influence early virus distribution or elimination during

LCMV infection (Lang et al., 2012). To investigate whether per-

forin expression by NK cells affected Ifnar1–/– T cells, we coincu-

bated WT and Ifnar1–/– T cells with perforin-deficient NK cells.

Cell number and cell viability of WT T cells was similar when

the cells were incubated with WT NK cells or perforin-deficient

NK cells. However, Ifnar1–/– T cell numbers and cell viability

were significantly reduced when incubated with WT NK cells in

contrast to perforin-deficient NK cells (Figure 6A), indicating

that the interaction between NK cells and T cells was dependent

on perforin expression in vitro. Next, we performed experiments

with RMA-s and RMA cell lines, which exhibit differential MHC I

expression (Figure S6A). As expected, RMA-s cells, which have

lower MHC I expression, were highly susceptible toward NK-

cell-mediated killing (Figure S6B). Furthermore, the killing of

RMA-s cells was dependent on perforin expression (Figure S6B).
tly enriched gene ontology clusters (p < 0.1) after treatment of CD8+ T cells with

hange of gene expression (IFN-4a against PBS) of loci encoding for plasma

< 0.05).

les and encoding for proteins involved in NK cell regulation are shown.

Immunity 40, 949–960, June 19, 2014 ª2014 Elsevier Inc. 953
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Figure 4. NK Cells Target Antiviral T Cells in

the Absence of IFNAR Signaling

(A) Negatively sorted CFSE labeled CD8+ T cells

from WT and IFNAR1-deficient animals were

stimulated for 72 hr with anti-CD3 and anti-CD28

antibodies followed by transfer of 23 106 cells into

CD45.1+ animals. At 2 days p.i. with 200 pfu LCMV

WE, Qa-1b expression on transferred T cells was

measured in spleen tissue (error bars show SEM;

n = 3–4).

(B and C) We transferred 106 negatively sorted

CD8+ T cells from P14+ WT and Ifnar1–/– animals

into CD45.1+ hosts followed by no infection or

infection with 23 106 pfu of LCMV WE. (B) Qa-1b,

(C) MHC I (left panel), and H2-Db (right panel)

expression was determined on transferred T cells

20 hr p.i. (error bars show SEM; n = 4, one of two

independent experiments is shown).

(D) Negatively sorted CFSE labeled T cells from

Thy1.1+P14+Ifnar1–/– were transferred into NK cell

depleted and control animals 2 days p.i. with 200

pfu LCMV WE. At 4 days p.i., cell number was

determined (error bars show SEM; n = 4, one of

two independent experiments is shown).

(E and F) We transferred 105 negatively sorted

T cells from Thy1.1+P14+Ifnar1–/– were transferred

into Nfil3–/–, Nfil3+/�, and NK-cell-depleted and

control animals prior to infection with 200 pfu of

LCMV WE. (E) Gp33-tetramer+Thy1.1+ T cells are

shown 8 days p.i. (error bars show SEM; n = 5–7).

(F) IFN-g production of Thy1.1+ T cells is shown

8 days p.i. (error bars show SEM; n = 5–7).

Immunity

NK Cells Kill IFN-I Unresponsive T Cells
Consistently, when we transferred in vitro activated B2m–/–

T cells into LCMV infected hosts, we observed their rapid

removal, whereas WT T cells persisted in the infected hosts (Fig-

ure S6C). This rapid depletion was also dependent on NK cells,

since B2m–/– T cells were not eliminated in the absence of NK

cells (Figure S6C).

To evaluate whether NK cells target IFNAR1-deficient T cells

via perforin in vivo, we transferred WT and Ifnar1–/– P14+ cells

into WT and Prf1–/– animals and infected them with LCMV. All

these groups exhibited IFN-I production shortly after infection

(Figure S6D). Consistent with the in vitro data, perforin deficiency

restored the presence of Ifnar1–/– T cells (Figure 6B). Further-

more, IFNAR1 deficient T cells were able to produce cytokines
Figure 3. IFN-I Regulates the Expression of NK-Cell-Receptor Ligands

(A)We stimulated 106 negatively sortedCD8+ T cells with anti-CD3 antibodies in the presence or absence of IFN

from cell suspensions and H2-T24, H2-T23, H2-M3, Clec2d, and Itagv (from left to right) expression was ana

(B–D) Negatively sorted T cells were treated with anti-CD3 antibodies in absence or presence of IFN-4a. (B)

after 20 hr in absence or presence of different indicated IFN-4a concentrations (error bars showSEM; n = 6). (C

after 20 hr of IFN-4a treatment (500 U/mL) (error bars show SEM; n = 4). (D) H2-Db expression was determin

(500 U/mL) (error bars show SEM; n = 4, one of two independent experiments is shown). *p < 0.05, **p < 0.0
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after restimulation with virus-specific

peptides (Figure 6C), indicating that the

T cells were functional. LCMV cannot be

eliminated in the absence of perforin

(Kägi et al., 1994). However, after transfer

of Ifnar1–/– T cells, only low or no virus ti-

ters were detected in the spleen and other
tissues (Figure S6E; data not shown), which indicates that

Ifnar1–/– T cells were capable of eliminating virus-infected cells.

Consistent with the previous data, perforin deficiency did not

affect the increased expression of PD-1 and the lower expres-

sion of KLRG1 on Ifnar1–/– T cells (Figure 6D; Figure S6F), likely

resulting in still significant differences between WT and Ifnar1–/–

T cell immunity in absence of NK cells (Figures 6B and 6C).

Next, we depleted NK cells in one group to assess whether NK

cells might have additional effects on the IFNAR1-deficient virus-

specific T cells. Ifnar1–/– P14+ T cell immunity was restored in

Prf1–/– animals to the same extent as in NK-cell-depleted mice

(Figure 6E). Moreover, there was no further restoration in Ifnar1–/–

P14+ T cell immunity in Prf1–/– mice after NK cell depletion,
-4a (500U/mL). After 6 hr, total RNAwas extracted

lyzed by RT-PCR (error bars show SEM; n = 4–6).

Qa-1b expression was determined on CD8+ T cells

) MHC I expression was determined onCD8+ T cells

ed on CD8+ T cells after 20 hr exposure to IFN-4a

1, ***p < 0.001 between the indicated groups.
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Figure 5. NK Cells Regulate Ifnar1–/– T Cell

Number and Function

(A–D) We transferred 105 negatively sorted T cells

from P14+ and P14+ Ifnar1–/–into NK-cell-depleted

and control animals prior to infection with 200 pfu

of LCMV WE. (A) Transferred Gp33-tetramer+

T cells were measured at day 2, 4, and 8 p.i. in

spleen tissue (error bars show SEM; n = 5–8, ***p <

0.001 between P14+Ifnar1–/– transferred control

and NK-cell-depleted animals, ###p < 0.001

between control animals transferred with P14+

Ifnar1–/– and P14+ cells). (B) IFN-g, TNF-a, IL-2, and

Lamp-1-positive transferred cells are shown at day

2, 4, and 8 p.i. (error bars show SEM; n = 4–6,*p <

0.05, **p < 0.01, ***p < 0.001 between P14+Ifnar1–/–

transferred controls and NK-cell-depleted animals,

### p < 0.001 between control animals transferred

with P14+Ifnar1–/– and P14+WT cells, + indicates

p < 0.05 between anti-NK1.1 P14+ and anti-NK1.1

Ifnar1–/–P14+). (C) Surface molecules were moni-

tored on transferred cells on day 4 and 8 p.i. (n =

4–6, one representative is shown). (D) Virus titers of

spleen tissue 4 days p.i. are shown (error bars

show SEM; n = 7).

(E) Ifnar1loxp/loxp 3 CD4-Cre+ and CD4-Cre+

animals with and without NK cell depletion were

infected with 200 pfu of LCMV WE followed by

analyses of gp33-tetramer+CD8+ T cells in spleen

tissue (error bars show SEM; n = 3–5). *p < 0.05,

**p < 0.01, and ***p < 0.001, n.s. indicates not

significant.
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indicating that NK cells target IFNAR1-deficient T cells through

perforin (Figures 6E and 6F). In conclusion, these data indicate

that NK cells target Ifnar1–/– T cells directly and via perforin

expression in vitro and in vivo.

DISCUSSION

In this studywe analyzed the effects of IFN-I on antiviral T cells. In

our in vivo setting, IFNARsignaling protected antiviral T cells from

NK-cell-mediated elimination. Considering these data, we identi-

fied NK cell-receptor ligands on T cells to be regulated by IFN-I

in vitro and in vivo. NK cell deficiency increased Ifnar1–/– P14+

T cell function after viral infection. These effects were triggered

by NK-cell-mediated cytotoxicity because IFN-I signaling-defi-

cient antiviral T cells were functional in perforin-deficient mice.

NK cells might target virus-specific T cells during chronic viral

infection. Human chronic viral infections such as infections with

hepatitis B or hepatitis C virus lead to enhanced cytotoxicity of

NK cells (Ahlenstiel et al., 2010; Oliviero et al., 2009; Rehermann,
956 Immunity 40, 949–960, June 19, 2014 ª2014 Elsevier Inc.
2013). This NK cell activation might be

triggered by IFN-I (Ahlenstiel et al.,

2010), which can be produced by plasma-

cytoid dendritic cells (pDCs) or Kupffer

cells after sensing HCV RNA (Lau et al.,

2013; Takahashi et al., 2010). Also during

LCMV infection in mice, pDCs contribute

to IFN-I production (Lang et al., 2010),

which is a critical component of NK cell

activation and cytotoxicity (Biron et al.,
2002). In humans, the expression of inhibitory NK cell receptors

correlates with elimination of HCV and decreased liver cell dam-

age in human cohorts (Khakoo et al., 2004; Knapp et al., 2010;

Paladino et al., 2007). However, recent studies show that

following IFN-I treatment, immediate increase in serum ALT con-

centration correlated with an increase in NK cell cytotoxicity and

virus elimination, suggesting a protective role of NK cells during

viral induced hepatitis (Ahlenstiel et al., 2011). Furthermore, the

reaction of NK cells to interferon treatment can serve as an

indicator of effectiveness in patients suffering from hepatitis C

virus infection (Oliviero et al., 2013) and predictor of treatment

outcome (He et al., 2006; Sarasin-Filipowicz et al., 2008).

Considering the data obtained in the LCMV model system, NK

cell depletion results in enhanced antiviral T cell immunity, which

triggers virus elimination and prevents chronic viral infection in

mice (Cook and Whitmire, 2013; Lang et al., 2012; Waggoner

et al., 2012). Furthermore, NK cell depletion can improve viral

infections also at later time points during chronic infection

(Waggoner et al., 2014). These seemingly contradictory findings
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Figure 6. NK Cells Target Ifnar1–/– T Cells

through Perforin-Mediated Cytotoxicity

(A) We cotransferred 2 3 106 negatively sorted

T cells from P14+ and P14+Ifnar1–/– into NK cell

depleted WT animals, followed by administration

of 23 106 pfu of LCMVWE and 5 mg peptide gp33.

P14+ cells were isolated by FACS on day 2 and

coincubated with IL-2-derived NK cells at the

indicated effector target ratios. Following a 6 hr

incubation, T cells numbers (left panel) and

Annexin V– 7AAD– cells (right panel) were

measured (error bars show SEM; n = 3, one of two

independent experiments is shown, ***p < 0.001

between P14+Ifnar1–/– T cells cocultured with WT

and Prf1�/� NK cells, #p < 0.05 between P14+

T cells cocultured with WT and Prf1�/� NK cells.

(B–D) We transferred 105 negatively sorted T cells

from P14+ and P14+Ifnar1–/–into prf1�/� and con-

trol animals prior to infection with 200 pfu of LCMV

WE. (B) Transferred Gp33-tetramer+ T cells were

measured at day 8 p.i. in spleen tissue (error bars

show SEM; n = 4). (C) IFN-g, TNF-a, and IL-2-

positive transferred cells are shown at day 8 p.i.

(error bars show SEM; n = 4). (D) Surface mole-

cules were monitored on transferred cells on day 8

p.i. (n = 4, one representative is shown).

(E and F) We transferred 105 negatively sorted

T cells from Thy1.1+P14+Ifnar1–/–into NK-cell-

depleted control and Prf1–/– animals prior to

infection with 200 pfu of LCMV WE. (E) Gp33-

tetramer+Thy1.1+ T cells are shown at day 8 p.i.

(error bars show SEM; n = 4). (F) IFN-g production

of Thy1.1+ T cells is shown 8 days p.i. (error bars

show SEM; n = 4, one of two independent exper-

iments is shown). *p < 0.05, **p < 0.01 and ***p <

0.001, n.s. indicates not significant.
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indicating that both NK cell activation and inhibition might have

positive clinical benefits could be explained by our data, which

suggest that IFN-I might protect T cells from NK cell cytotoxicity

in addition to their potential antiviral effects during HCV infection.

In patients with strong IFN-I effects, not only might the NK cell

cytotoxicity be higher but also might the protection of T cells

against NK-cell-mediated elimination. These data could also

explain the immediate slight increase of ALT activity following

IFN-I treatment in serum of HCV patients, which could be medi-

ated not only by NK cells but also by increased cytotoxic T cell

activity.

NK cell receptors might orchestrate the regulatory effects of

NK cells. NK cell cytotoxicity can be mediated through a variety

of activating and inhibitory receptors. During HCV and HBV

infection, the activating NK cell receptors NKp30, NKp46,

NKG2C, NKG2D, CD122, and the inhibitory receptor NKG2A

are upregulated (Rehermann, 2013). Considering data from

murine infection models, activating NK-cell-receptor ligands

are upregulated on virus-specific T cells such as NKG2D ligands

(Lang et al., 2012; Rabinovich et al., 2003). Furthermore, CD48
Immunity 40, 949–9
triggers inhibitory signals on virus-spe-

cific T cells, which is sensed by the NK

cell receptor 2B4 (Waggoner et al.,

2010). In our study, we found no signifi-

cant suppression of NKG2D ligands by
IFN-I, arguing against a role of NKG2D ligands in our experi-

mental settings (Figures S3A and S3B). However, we identified

that the expression of inhibitory NK-cell-receptor ligands on

T cells are increased after IFN-I treatment. Involvement of

signaling through other receptors, especially activating NK cell

receptors, is likely, as described in more detail in an accompa-

nyingmanuscript by Crouse et al. (2014). Therefore, during a viral

infection, IFN-I not only activates NK cells but also triggers pro-

tection against regulatory NK cell functions on antiviral T cells.

Furthermore, we identified other factors, which are regulated

by IFN-I on antiviral T cells. Ifnar1–/– T cells exhibited an

increased expression of PD-1, a well-known suppressor of

T cell immunity (Barber et al., 2006). Moreover, IFN-I might

phenotypically affect T cell immunity independently of NK cells,

as evident by differential expression of KLRG1 (Kaech and Cui,

2012; Kaech et al., 2003). These and potentially other mecha-

nisms might contribute to the efficiency of antiviral treatment

by IFN-I, and they remain to be further explored. In conclusion,

IFN-I is a critical regulator for antiviral T cell immunity to protect

against regulatory NK cell functions.
60, June 19, 2014 ª2014 Elsevier Inc. 957



Immunity

NK Cells Kill IFN-I Unresponsive T Cells
EXPERIMENTAL PROCEDURES

Mice, Viruses, Virus Titration, and Cell Depletion

Nfil3–/– and Ifnar1–/– mice were previously described (Kamizono et al., 2009;

Müller et al., 1994). P14+ and Smarta+micewere previously described (Oxenius

et al., 1998; Pircher et al., 1989).CD45.1+andB2m–/–micewerepurchased from

Jackson Laboratory (Koller et al., 1990). All mice were on a C57BL/6 genetic

background. All miceweremaintained under specific pathogen-free conditions

and experiments have been approved by commission of the Ontario Cancer

Institute Animal Resource Centre following institutional guidelines or under the

authorization of the LANUV in accordance with German laws for animal protec-

tion. NK cells were depleted with i.v. injection of anti-NK1.1 (clone PK136) as

previously described (Koo and Peppard, 1984; Lang et al., 2012). LCMV strain

WE was originally obtained from F. Lehmann-Grube (Heinrich Pette Institute)

and was propagated in L929 cells as described. Virus titers were measured

with a plaque-forming assay as previously described (Lang et al., 2013). Briefly,

organs were harvested into HBSS and homogenized with a Tissue Lyser

(QIAGEN).MC57cellswere added todiluted virus sampleson24well plates. Af-

ter 3 hr, 1%methylcellulose containingmediumwas added. Forty-eight hr later,

plates were fixed (4% formalin), permeabilized (1%Triton XHBSS), and stained

with anti-LCMV-NP (clone: VL-4) antibody, Peroxidase anti-rat secondary anti-

body. Mice were infected i.v. with 200 or 23 106 pfu of LCMVWE as indicated.

We administrated 23 106 pfu of VSV (Indiana strain) i.v. as indicated.

Purification of T Cells

For T cell purification, single cell suspended splenocytes were enriched

following the manufacturer’s instructions with the pan T cell MACS kit and

the CD8 purification kit (Miltenyi). Purified T cells were labeled with CFSE as

previously described (Invitrogen) (Lang et al., 2012). For NK cell in vitro killer

assay, WT and Ifnar1–/– P14+ T cells were sorted with a FACS Aria III (BD) using

congenicmarkers (CD45.1 for WT and CD90.1 for Ifnar1–/–).

Purification and Culture NK Cells

For NK cell purification, single cell suspended splenocytes were enriched

following the manufacturer’s instructions with the DX5 NK MACS kit (Miltenyi).

For NK culture, sorted NK cells were stimulated with 1,000 U/ml IL-2 (Miltenyi)

for 4 days.

Flow Cytometry Analysis

Flow cytometry was performed as previously described (Lang et al., 2013). For

intracellular cytokine, stain-single suspended splenocytes were incubated with

the LCMV specific peptides gp33. After 1 hr Brefeldin A (eBiosciences) was

added, followed by additional 5 hr incubation at 37�C. For Lamp-1 staining,

anti-CD107a antibody (eBiosciences) was added for the 5 hr incubation and

measured after additional staining with anti-CD8 (eBioscience) antibody. For

cytokine production, cells were fixed with 2% formalin after surface stain with

anti-CD8 (eBiosciences), permeabilized with 0.1% Saponin, and stained with

anti-IFN-g, anti-TNF-a, andanti-IL-2 (eBiosciences) for 30minat4�C.LCMVspe-

cific T cells andNKG2D ligandstainingswere performedaspreviously described

(Lang et al., 2013; Lang et al., 2012). Cells were incubated with gp33-tetramer or

NKG2D tetramer for 15 min at 37�C followed by surface molecule stainings for

30 min at 4�C (with anti-CD8, anti-PD-1, anti-KLRG1, anti-CD127, anti-TIM-3,

anti-CD44, anti-CD69, anti-CD45.1, anti-CD45.2, anti-CD90.1, eBioscience).

RT-PCR Analyses

RNA purification and RT-PCR analyses were performed as previously

described according to manufacturer’s instructions (QIAGEN) (Lang et al.,

2013). Gene expression of H2-T24, H2-T23, Clec2d, Itagv, Itgb3, B2m,

Cd48, Cdh1, Pvr, Ulbp1, and Gapdh was performed with kits from Applied

Biosystems. For analysis, the expression of all target genes was normalized

to Gapdh expression (DCt). Gene-expression values were then calculated

based on the DDCt method, with the mean naive MEFs as a control to which

all other samples were compared. Relative quantities (RQ) were determined

with the equation: RQ = 2^-DDCt.

Microarray Analyses

RNA preparations were checked for RNA integrity by Agilent 2100

Bioanalyzer quality control. All samples in this study showed high quality
958 Immunity 40, 949–960, June 19, 2014 ª2014 Elsevier Inc.
RNA Integrity Numbers (RIN; median = 8). RNA was quantified by photo-

metric Nanodrop measurement. Synthesis of cDNA and subsequent biotin

labeling of cRNA was performed according to the manufacturer’s protocol

(WT Plus Kit; Affymetrix). Briefly, 100 ng of total RNA were converted to

cDNA, followed by in vitro transcription and biotin labeling of cDNA. After

fragmentation labeled cDNA was hybridized to Affymetrix Mouse Gene 2.0

ST Gene Expression Microarrays for 16 hr at 45�C, stained by strepatavi-

din/phycoerythrin conjugate and scanned as described in the manufacturer’s

protocol.

Data analyses on Affymetrix CEL files were conducted with GeneSpring GX

software (Vers. 12.5; Agilent Technologies). Probes within each probeset were

summarized by GeneSprings’ ExonRMA16 algorithm after quantile normali-

zation of probe-level signal intensities across all samples to reduce interarray

variability (Bolstad et al., 2003). Input data preprocessing was concluded by

baseline transformation to the median of all samples.

After grouping of samples (three biological replicates each) according

to their respective experimental condition, a given probeset had to be

expressed above background (i.e., fluorescence signal of a that probeset

was detected within the 20th and 100th percentiles of the raw signal distribu-

tion of a given array) in all three replicates in at least one of two, or both con-

ditions to be further analyzed in pairwise comparisons. Differential gene

expression was statistically determined by Welch’s unpaired t test. Resulting

p values were corrected for multiple testing (Benjamini-Hochberg FDR). The

significance threshold was set to p(corr) = 0.05. Hierarchical cluster analysis

was performed with Euclidian similarity measures and Ward’s linkage.

GeneOntology (GO) analyses were done with the DAVID Functional Annota-

tion Tool (http://david.abcc.ncifcrf.gov) (Huang et al., 2009a, 2009b) testing

for enrichment of differentially expressed transcripts in distinct functional

GO categories. Significant GO term enrichment was determined at an

EASE score of p < 0.1.

Statistical Analysis

Data except microarray, which is described above, are expressed as mean ±

SEM. Statistical significance between two groupswas analyzedwith Student’s

t test. For experiments involving analysis of multiple time points, two-way

ANOVA with an additional Bonferroni posttest was used. Mantel-Cox test

was used for analysis of survival curves. p values < 0.05 were considered as

statistically significant.
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