Corrigendum

Corrigendum to

“On 2-arc-transitivity of Cayley graphs”

Dragan Marušič

University of Primorska, Koper, Cankarjeva 5, 6000 Koper, Slovenia
IMFM, University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slovenia

Received 22 December 2005
Available online 9 February 2006

A characterization of 2-arc-transitive dihedrants, that is, Cayley graphs of dihedral groups, is given in [3, Theorem 8.4], describing such graphs either explicitly or as cyclic covers of certain basic dihedrants. The proof is carried out via a reduction scheme based on the classical results due to Schur and Wielandt, saying that cyclic groups of composite order and dihedral groups are all B-groups [4, Theorems 25.3 and 25.6]. Consequently, the automorphism group \(A \) of a connected 2-arc-transitive Cayley graph \(X \neq K_{2n} \) of a dihedral group \(D_{2n} = \langle \rho, \tau \mid \rho^n = \tau^2 = (\rho \tau)^2 = 1 \rangle \) is necessarily imprimitive, allowing the above mentioned reduction with respect to blocks of minimal length. The various possibilities that may occur for such blocks are covered in [3, Lemmas 7.1–7.5]. Unfortunately, in Lemma 7.2 (and consequently in Lemma 7.3) one of the cases needed to be considered was missed out. This case essentially leads to the situation, where the group \(A \) has an imprimitivity block system with blocks of size 2 having nonempty intersection with both orbits of \(\rho \), and a single edge between any two adjacent blocks.

In this note we fill out the gap by proving a new lemma (Lemma 3 below) taking care of this case too, and thus replacing [3, Lemmas 7.2 and 7.3]. In doing so we obtain the following strengthening (Theorem 1 below) of [3, Theorem 8.4] which reduces the class of basic dihedrants that may give rise (via cyclic covers) to 2-arc-transitive dihedrants.

Let \(n \geq 3 \). We let \(\mathcal{G} \) denote the class of graphs containing complete bipartite graphs \(K_{n,n} \), complete bipartite graphs minus a matching \(K_{n,n} - nK_2 \), incidence and nonincidence graphs \(B(H_{11}) \) and \(B'(H_{11}) \) of the Hadamard design on 11 points, and incidence and nonincidence graphs \(B(PG(d, q)) \) and \(B'(PG(d, q)) \), with \(d \geq 2 \) and \(q \) a prime power, of projective spaces; and we let \(\mathcal{H} \) denote the class of graphs containing cycles \(C_{2n} \), complete graphs \(K_{2n} \), and graphs...
of index 2 obtained as regular \mathbb{Z}_2-covers of $K_{q+1,q+1} - (q + 1)K_2$, q an odd prime power, by identifying the vertex set of the base graph with two copies of the projective line $PG(1, q)$ where the missing matching consists of all pairs $[x, x']$, $x \in PG(1, q)$, and the edge $[x, y']$ carries voltage 1 if $x - y$ is a nonsquare in $GF(q)$, and voltage 0 in all other cases.

Theorem 1. Let $n \geq 3$, and let X be a connected, 2-arc-transitive Cayley graph of a dihedral group $D = D_{2n} = \langle \rho, \tau \mid \rho^n = \tau^2 = (\rho \tau)^2 = 1 \rangle$ of order $2n$. Then one of the following occurs:

(i) either $X \in \mathcal{G} \cup \mathcal{H}$; or

(ii) X is a regular cyclic cover of a graph in \mathcal{G}; more precisely: there exists a proper divisor m of n such that the set \mathcal{B} of orbits of $\langle \rho^m \rangle$ is an imprimitivity block system of $Aut X$ relative to which X is a regular $\mathbb{Z}_{n/m}$-cover of $X_\mathcal{B}$, the latter being a graph in \mathcal{G} admitting a regular dihedral group $D/\langle \rho^m \rangle$.

Let $X \neq K_{2n}$ be a connected dihedrant of order $2n$, $n \geq 3$, relative to the group $D_{2n} = \langle \rho, \tau \mid \rho^n = \tau^2 = (\rho \tau)^2 = 1 \rangle$. A block \mathcal{B} of $Aut X$ is said to be cyclic if there are $w \in V(X)$ and $m \in \mathbb{Z}_n^\#$ such that \mathcal{B} coincides with the orbit $\langle \rho^m \rangle w$, and is said to be dihedral if there are vertices u and v belonging to distinct orbits of ρ and $m \in \mathbb{Z}_n \setminus \mathbb{Z}_n^*$ such that $\mathcal{B} = \langle \rho^m \rangle u \cup \langle \rho^m \rangle v$.

The first lemma below corrects an error—having no consequence to [3, Theorem 8.4]—in the statement of [3, Lemma 7.1].

Lemma 2. (Correction to [3, Lemma 7.1].) Let $n \geq 3$, $X \neq K_{2n}$ be a connected dihedrant of order $2n$, let \mathcal{B} be an imprimitivity block system of $A = Aut X$, let ρ generate the cyclic subgroup of index 2 in a regular dihedral subgroup $D_{2n} = \langle \rho, \tau \mid \rho^n = \tau^2 = (\rho \tau)^2 = 1 \rangle$ of A, and let K be the kernel of the action of A on \mathcal{B}. Then one of the following occurs:

(i) the blocks in \mathcal{B} are all cyclic and $K \cap \langle \rho \rangle = \langle \rho^m \rangle$ for some $m \in \mathbb{Z}_n^\#$; or

(ii) the blocks in \mathcal{B} are all dihedral and $K \cap \langle \rho \rangle = \langle \rho^m \rangle$ for some $m \in \mathbb{Z}_n \setminus \mathbb{Z}_n^*$.

Lemma 3. (Replacement of [3, Lemmas 7.2 and 7.3].) Let $n \geq 3$, $X \neq K_{2n}$ be a connected 2-arc-transitive dihedrant of order $2n$ and valency at least 3, let $D = D_{2n} = \langle \rho, \tau \mid \rho^n = \tau^2 = (\rho \tau)^2 = 1 \rangle$ be a regular dihedral subgroup of $A = Aut X$, let \mathcal{B} be an imprimitivity block system of A with blocks of length $k \geq 2$, and let K denote the kernel of the action of A on \mathcal{B}. If $|\mathcal{B}| \geq 3$, then the following hold:

(i) if the blocks in \mathcal{B} are cyclic, then X is a regular \mathbb{Z}_k-cover of a 2-arc-transitive dihedrant $X_\mathcal{B}$, the latter admitting a 2-arc-transitive action of the group A/K;

(ii) if the blocks in \mathcal{B} are dihedral, then there exists an associated imprimitivity block system \mathcal{B}' for the group A with kernel K' such that either:

(a) the blocks in \mathcal{B}' are cyclic, in which case (i) holds for \mathcal{B}'; or

(b) there are vertices u and v from different orbits of ρ such that either $\{u, v\}$ or $\{u, v, \rho^{n/2}u, \rho^{n/2}v\}$ is a block inducing \mathcal{B}', and X is, respectively, a regular \mathbb{Z}_2-cover or a regular \mathbb{Z}_2^2-cover of a 2-arc-transitive circulant $X_{\mathcal{B}'}$, the latter admitting a 2-arc-transitive action of the group A/K'.
Proof. First note that, because of 2-arc-transitivity of X, given any two blocks $B, B′ ∈ B$, a vertex in B has at most one neighbour in $B′$. Also, part (i) follows directly by Lemma 2 and the argument used in the proof of [3, Lemma 7.2(i)].

We may therefore assume that the blocks in B are dihedral. By Lemma 2 there exists $m ∈ \mathbb{Z}_n \setminus \mathbb{Z}_n^*$ such that $K \cap \langle ρ \rangle = \langle ρ^m \rangle$. Let u and v be two vertices from different orbits of $ρ$ belonging to the same block $B ∈ B$, and let $[S,T]$, where $S = -S ∈ \mathbb{Z}_n^0$, and $T ⊆ \mathbb{Z}_n$, be the symbol of X relative to the triple $(u,v,ρ)$, that is, for each $i ∈ \mathbb{Z}_n$ we have that $ui = ρ^i u$ and $vi = ρ^i v$ are adjacent, respectively, with $ui+s, s ∈ S$, and $vi+s, s ∈ S$, and, moreover, ui is adjacent with $vi+t, t ∈ T$. Then B coincides with the set $\langle ρ^m \rangle u \cup \langle ρ^m \rangle v = \{u_0, u_m, \ldots, u_{(k/2−1)m}, v_0, v_m, \ldots, v_{(k/2−1)m}\}$. Let C be an imprimitivity block system contained in B consisting of minimal blocks, and let H be the kernel of the action of A on C. If the blocks in C are cyclic, then $B′ = C$ satisfies part (a) of (ii). We may thus assume that the blocks in C are dihedral, too.

Let $C ∈ C$ be the block containing u_0. Since the restriction A_C^C of the setwise stabilizer A_C to C is, by minimality of C, primitive and contains the group D_C^C, it transpires that there are only two possibilities for C: Either $C = \{u_0, v_0\}$ or $C = \{u_0, v_0, u_{n/2}, v_{n/2}\}$. Moreover, if the latter occurs then the kernel of the action of A/C on C is isomorphic to \mathbb{Z}_2^2, and so X is a regular \mathbb{Z}_2^2-cover of X_C and thus every 2-arc in X_C is a projection of a 2-arc in X. Hence $B′ = C$ satisfies part (b) of (ii). This leaves us with the case $C = \{u_0, v_0\}$. For each $i ∈ \mathbb{Z}_n$ let $C_i = ρ^i C$. If for any two adjacent blocks C_i and C_j, the bigraph $X[C_i, C_j]$ is isomorphic to $2K_2$, then $B′ = C$ satisfies part (b) of (ii). We may therefore assume that, for any two adjacent blocks C_i and C_j, the bigraph $X[C_i, C_j]$ is isomorphic to $K_2 + 2K_1$. By deriving a contradiction we shall see that this case cannot occur. First, it may be easily seen that the symbol of X is $[0,T]$ with $T \cap (-T) = \emptyset$ and $|T| ≥ 3$. Clearly, $X_C ≃ \text{Circ}(n,T∪−T)$, is an n-circuit with symbol $T∪−T$, admitting an arc-transitive action of A/H. In addition, since A acts transitively on 2-arcs of X, it follows that for any pair of neighbours v_0 and $v′$, $t, t′ ∈ T$, of u_0, there is an automorphism in A_{u_0} switching v_0 and $v′$. Thus A/H (or rather a subgroup of index 2 which fixes $\{C_t | t ∈ T\}$) acts doubly transitively on $\{C_t | t ∈ T\}$ (as well as on $\{C_{−t} | t ∈ T\}$). In summary,

$$A/H \text{ is doubly transitive on } \{C_t | t ∈ T\} \text{ and on } \{C_{−t} | t ∈ T\}. \quad (1)$$

Moreover, an automorphism of X switches u_0 with v_0, and so its image in A/H interchanges the sets $\{C_t | t ∈ T\}$ and $\{C_{−t} | t ∈ T\}$. We now use the classification of arc-transitive circulants (see [1, Theorem 1] or [2, Theorem 1.3]) to analyze the possible structure of X_C. By this classification, X_C can be the complete graph K_n, a normal circulant, a lexicographic product $Γ \times \bar{K}_r$ where $Γ$ is an arc-transitive circulant of order d and $dr = n$, or a deleted lexicographic product $Γ \times \bar{K}_r−rΓ$, with $Γ$, d and r as above.

Case 1. $X_C ≃ K_n$.

This case is covered in the last paragraph of the proof of [3, Lemma 7.3] and cannot occur.

Case 2. X_C is a normal circulant.

In this case A/H has a normal cyclic group $\langle ρ \rangle/H \cap \langle ρ \rangle ≃ \mathbb{Z}_n$ and so $A/H ≃ \mathbb{Z}_n : AC_0$, where AC_0 is the vertex stabilizer in the quotient graph X_C. Now AC_0 can be identified with a subgroup in Aut \mathbb{Z}_n. But the latter is abelian, and so AC_0 is abelian, too. Its action on $\{C_t | t ∈ T\} \cup \{C_{−t} | t ∈ T\}$ is therefore regular and so it cannot act doubly transitively on $\{C_t | t ∈ T\}$ (and $\{C_{−t} | t ∈ T\}$), proving that this case cannot occur.

Case 3. X_C is a lexicographic product.
There exist \(d, r \geq 2 \) such that \(dr = n \) and \(X_C \cong \Gamma \wr \bar{K}_r \), where \(\Gamma \) is an arc-transitive \(d \)-circulant. So we may assume that there is an imprimitivity block system of \(X_C \) which superimposed on \(C \) gives rise to a new imprimitivity block system of \(X \), call it \(D \), generated by the block \(\{u_0, u_d, \ldots, u_{(r-1)d}, v_0, v_d, \ldots, v_{(r-1)d}\} \). Now there is a natural orientation of the circulant \(X_C \) induced by \(X \), with an arrow pointing from \(C_i \) to \(C_{i+t} \) for all \(t \in T \). Using (1) and the fact that \(X \) is 2-arc-transitive, we can reduce our analysis to the following three possibilities: Either \(d = 3 \) (and \(\Gamma \cong K_3 \)) and all edges between two blocks in \(X_C \) have the same orientation; or \(d = 2 \), in which case \(X_C \cong K_{n/2, n/2} \); or \(r = 2 \) and the bigraph between two adjacent blocks in \(X_C \) is a directed 4-cycle. It is immediate that the first possibility gives rise to a disconnected graph \(X \), and applying the argument, used in the penultimate paragraph of the proof of [3, Lemma 7.3], so does the second possibility. Finally, if \(r = 2 \) then \(D \) is generated by \(\{u_0, u_{n/2}, v_0, v_{n/2}\} \). If the kernel of the action of \(A \) on \(D \) is \(\langle \rho_{n/2} \rangle \), then \(\{u_0, u_{n/2}\} \) gives rise to a new imprimitivity block system \(B' \) satisfying part (a) of (ii). If however the kernel of the action of \(A \) on \(D \) is transitive on the blocks, then \(B' = D \) satisfies part (b) of (ii).

Case 4. \(X_B \) is a deleted lexicographic product.

Using a similar argument as in Case 3, we end up with two possibilities. Either \(d = 2 \), and so \(X_C \cong K_{n/2, n/2} - n/2K_2 \), or \(r = 3 \) and the bigraph between two adjacent blocks in \(X_C \) is a directed 6-cycle. Again, the first possibility is covered in the penultimate paragraph of the proof of [3, Lemma 7.3]. As for the second possibility, we see that \(\langle \rho_{n/3} \rangle \) is normal in \(A \) and the corresponding orbits give rise to an imprimitivity block system \(B' \) satisfying part (a) of (ii), thus completing the proof of Lemma 3.

Proof of Theorem 1. With Lemma 3 in hand, the proof literally follows that of [3, Theorem 8.4]. Part (b) of Lemma 3(ii) is taken care by [3, Lemmas 7.4 and 7.5], whereas the argument in the case of cyclic blocks, given at the end of the proof of [3, Theorem 8.4], may be extended to show that a 2-arc-transitive dihedrant which is a cyclic cover of \(K_{q+1}^4 \) (arising from cyclic blocks) is also a cyclic cover of \(K_{q+1, q+1} - (q + 1)K_2 \) (arising from cyclic blocks).

References