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Saddle-point optimality criteria of Kuhn-Tucker and Fritz Johns are 
established in the case of continuous time programming problems. The functions 
involved are not assumed to be differentiable. In the process, an important 
theorem of the alternative is also proven. 

1. INTRODUCTION 

Tyndall [IO] treated rigorously the following two continuous time program- 
ming problems, which originated from Bellman’s bottleneck problems [I]. 

PRIMAL PROBLEM Maximize 

s 

T 
a’(t) z(t) dt 

0 

subject to 

where z(t) is an n x I vector-valued function, bounded and measurable on 

P, Tl. 

DUAL PROBLEM. Minimize 

subject to 
s 

T 
c’(t) w(t) dt 

0 

B’(t) w(t) 2 u(t) $- IT K’(s, t) w(s) ds 06,tG.T 

w(t) > 0 O-It-j! 
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where w(t) is an m x 1 vector-valued function, bounded and measurable on 

W, Tl. 
Assuming B and K are nonnegative constant matrices, a(t), c(t) are continuous 

vector-valued functions defined on [0, T], and under the regularity condition 

{x(t): Bz(t) < 0, z(t) > 0 Vt E [0, T]} = {0}, 

Tyndall [lo] proved a duality theorem. Levinson [8] generalized and consider- 
ably shortened Tyndall’s results. He let a(t), c(t), B(t) be piecewise continuous 
on [0, T] and K(t, S) be piecewise continuous on [0, T] x [0, T]. Grinold [4, 51 
relaxed Tyndall’s regularity assumptions and required that a(t), c(t), B(t), 
K(t, S) be bounded and measurable. Hanson and Mond [6] generalized the 
duality theory by considering a concave objective function of the primal problem. 
They also established the complementary slackness principle and the Kuhn- 
Tucker conditions. Farr and Hanson [2, 31 further generalized the continuous 
time programming problem by introducing nonlinear, differentiable constrains 
and establishing the complementary slackness principle and Kuhn-Tucker 
theorem in their setup. In [3]. they introduced the time lag effect, thus extending 
the results of Larsen and Polak [7]. 

The purpose of this paper is to consider the continuous time programming 
problem (linear and nonlinear) in an entirely different direction. We establish 
the Kuhn-Tucker and Fritz Johns saddle-point optimality criteria without 
assuming differentiability of the functions involved. In the process we prove a 
theorem of the alternative (Theorem 7 below) which is of great value in itself. 
This puts the continuous time programming problem in the same perspective 
as the classical nonlinear programming problem, as presented in [9, Chap. 51. 

2. SUFFICIENT OPTJMALITY CRITERIA 

We consider the following: 

~~AXIMIZATION PROBLEM (MP). Maximize 

subject to 

f(@)) < c(t) + lot g(s, t, 4s)) ds O<t<T 

z(t) > 0 O<t<T (1) 

where a(.) is an 72 x 1 vector-valued function defined on [0, T]. Let Dn be the 
collection of all such functions which are bounded and measurable. Let D,” 
be the collection of all such nonnegative functions. 
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f( .) is an m x 1 vector-valued function defined on D”. c( .) is an m x I vector- 
valued function defined on [0, T]. g(., ., .) is an m x I vector-valued function 
defined on [0, t] x [0, T] x D” for each t E [0, 7’1. +(.) is a real-valued function 
defined on D”. 

Note. All vectors are considered column vectors and the integrals are in 
the Lebesgue sense. Let 

S = /z(t) E DTL: z(t) 3 0 Vt E [0, T],f(z(t)) < c(t) + Jb’g(s, t, z(s)) ds/ . 

S is called the set of feasible solutions of MP. 
If there exists a T(t) E S such that Z(Z) = max,(t)EJ E(x), we say Z(t) is a solution 

of the maximization problem (MP). 
For our further study, we assume that D” is suitably normed (say, 11 z(t)11 = 

maxtst,,,TI xi”=, / x,(t)1 for all z(t) E 0”). 

LOCAL MAXIMIZATION PROBLEM (LMP). Find a a(t) in S, if it exists such 
that for some open ball 23,(x(t)) = {z(t) E DTL: 11 s(t) - x(t)/1 < S} around g(t) 

with radius 6 > 0, z(t) E B,(%(t)) n S implies Z(Z) < Z(Z). 
Let Dm be the collection of all m x 1 vector-valued functions defined on 

[0, T]. Then we consider The Fritz- John saddle-point problem (F JSP). 
Find %(t) E Dn+, f(t) E Dm, r0 real, (fO, F(t)) > 0 ‘v’t E [0, T], if they exist 

such that G(.%(t), f0 , r(t)) < G(%(t), F,, , r(t)) < G(z(t), F,, , p(t)) for all Y(t) E D”“, 
y(t) > 0 and for all z(t) E D,” and where G(z(t), ro, r(t)) = $ [-+,&z(t)) + 

y’(t) x {f@(t)) - 4) - Sk s, t, Z(S)) ds}] dt. Throughout, a prime on a vector 
means the transpose of that vector. 

THE KUHN-TUCKER SADDLE-POINT PROBLEM (KTSP). Find ,%(t)E D+‘/, 
u(t) E DnL, e(t) > 0 Vt E [0, T], if th y e exist such that F(.%(t), u(t)) < F(z(t), u(t)) 

< F@(t), it(t)) Vu(t) E D”, u(t) 3 0 Vt E [0, T] and b(t) E D,n where 

w4t), u(t)) = JOT r-4(+> + u’(t) {f@(t)) - c(t) - &(s, t, z(s) q1 fit. 
Remark *. If (s(t), r;, f(t)) is a solution of FJSP and r. > 0, then (z(t), 

(l/r,) f(t)) is a solution of KTSP. Conversely, if (i?(t), a(t)) is a solution of 
KTSP, then (s(t), 1, u(t)) is a solution of FJSP. 

The following first four results are easy to establish. Our Theorems I, 3, and 4 
are analogous to Theorems 52.1, 5.2.2, and 5.2.4 in Mangasarian [9] and hence 
can be proven following Mangasarian’s line of argument. We state them without 
proofs. 

THEOREM 1. If S is a convex set and y5 is a concave function in z(t), then the 
set of solutions of MP z’s convex. 

LEMMA 2. If f is convex in z(t) and g is concave in z(t), then S is a convex set. 
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THEOREM 3. Let S be convex and Z(t) be a solution of MP. If 4 is strictly con- 
cave at n(t), then z(t) is the unique solution of MP. 

THEOREM 4. If i?(t) is a solution of MP, then it is also solution of LMP. The 
converse is true if S is convex and 4 is concave at H(t). 

THEOREM 5 (Sufficiency). If (2(t), C(t)) is a solution of KTSP, then g(t) is a 
solution of MP almost everywhere on [0, T]. If (T(t), v,, , F(t)) is a solution of FJSP 
and F,, > 0 then Z(t) is a solution of MP almost everywhere. 

Proof. The second statement is an easy consequence of the first statement 
and Remark *. 

Let (z(t), ti(t)) b e a solution of KTSP. Then for all u(t) in D”, u(t) 2 0 and 
for all z(t) in S, 

s oT - $(@)) dt + l= jWf(“(“)) - u’(t) 49 - It u’(t)&, t, ,W dsj dt 
< i7 - 4(.%(t)) dt + i’ /C’(t) f (z(t)) - u’(t) c(t) - jOt u’(t)g(s, t, z(s)) ds/ dt 

< L7 - +(t>> dt + L’ /“‘(t)f (z(t)) - u’(t) c(t) - L’ u’(t)g(s, t, z(s)) dsl dt. 

(2) 

From the first inequality in (2), we have 

L7 (u’(t) - W)) [f@(t)) - c(t) - j.$, t, x(s)) dsj dt e 0. (3) 

Let 

Ai = ] t E [0, T]: f@(t)) - q(t) - L’g,(s, t, n(s)) ds < 01 

B, = It E [0, T]: f@(t)) - q(t) - itgi(s, t, Z(S)) ds > 01 

for i -= 1, 2,..., m where f,(,%(t)) is the ith component of the vector function 

f (z(t)) = (fi(.qt))Y.~f&(t)))‘. s imi ar 1 interpretations apply to ci(t) and 
g*(s, t, 2(s)). Note that A, n Bi = 0 and Ai u Bi = [0, T] for all i = I,..., m. 
Since the vector function u(t) is at our disposal, we can choose 

f&O) 
“@) = L&(t) + 1 

VtEAi 
Vt E Bi 1 

409/59/3-3 
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for i = I,..., m. Now 

0 > j’ {ut’(t) - ii*‘(t)} /j@(t) - Ci(2) - jo’&(S, 4 X(s)) ds/ dt 
0 

= I; y @(t)) - 44 - jot s&s 2, %s)) dsl dt 

+ sB( 2 [t-iW) - 4) - jot ids, t, W) ds/ dt 

But this is possible only (in view of the definition of Bi) if Bi has Lebesgue 
measure 0. Therefore, fi(.%(t)) - c<(t) - sigi(s, t, Z(s)) ds < 0 a.e. on [0, T], 
i.e., 

f,(z(t)) < cd(t) + jotgi(s, t, X(S)) ds a.e. on LO, Tl. 

Now T=A,uB,=.‘.= A,uB, and A,nB,=O for i=l,...,m. We 

take A = nyCl Ai , B = iJz, Bi . Then 0 d p(B) < C:I CL(BJ = C~I 0 = 
0 3 p(B) = 0, wh ere p is the Lebesgue measure on the sigma field of subsets 

of [0, T]. Also note that 

Hence 

:= fi (Ai u B) = fi T = T. 
i=l 

f(W) < c(t) + jot g(s, t, ,W) h ‘Jt E A, 

i.e., x(t) is a feasible solution of MP a.e. on [0, T]. 
(3a) 

Now u(t) 2 0 Vt E [0, T] and f@(t)) < c(t) + jig(s, t, Z(S)) ds a.e. on [0, T]. 
Hence 

u(t) /f@(t)) - c(t) - jotg(s, t, Z(S)) ds/ < 0 a.e. on LO, Tl. 

Therefore 

j,’ z%‘(t) /f@(t)) - c(t) - jot&, t, Z(S)) dsj dt < 0. (4) 
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But taking u(t) = 0 in (3), we have 

joT u’(t) [f@(t)) - c(t) - l’g(s, t, Z(S)) ds/ dt > 0. 

Combining (4) and (5) together, we get 

$ g’(t) If@(t)) - c(t) - 6 g(s, t, z(s)) dsl dt = 0. 

(5) 

(6) 

From the second inequality in (2) and by (6), we have 

I oT - 4@(t)) dt 

< jo= - 4(N) dt + joT u’(t) jf(W - c(t) - jot g(s, 4 -4s)) ds/ dt. 

Hence 

s ,’ - @i(t)) dt < j’ - o +Mt>> dt. 

(This is because, ii(t) > 0 Vt E [0, T] and for all feasible z(t), f(z(t)) - c(t) - 
sig(s, t, z(s)) ds < 0.) Hence Jt+(%(t)) > j;+(t)) for all x(t) E S, i.e., z(t) 
is an optimal solution of MP a.e. on [0, T] and this proves the theorem. 

With some suitable restrictions on the functions f, c, and g, we can easily 
produce an optimal solution. We do this in the next theorem. 

THEOREM 6. Let 

(i) (T(t), ii(t)) be a solution of KTSP; 

(ii) f (0) = 0; 

(iii) c(t) >, 0 Vt E [0, T]; 

(iv) g(s, t, x(s)) > 0 Vs E [0, t], t E [0, T], z(s) 3 0 Vs E [0, T]. 

Then there exists an optimal solution x*(t) of MP. 

Proof. By Theorem 5, z(t) is an optimal solution of MP a.e. on [0, T]. 
Define 

Z(t) if 
z*(t> = [O 

teA 
if I tEB ’ 

Then by (3a) and hypotheses (ii), (iii), and (iv), x*(t) is a feasible solution of ME’. 
Now 

@*I = jk*(tN dt = Jl, #W> dt + jBW) dt = jA4WN dt 
n 

= :Q(%(t)) dt = Z(z) 
s 

(Since p(B) = 0, p(A) = p([O, T]).) H ence z*(t) is an optimal solution of MP. 
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3. NECESSARY OPTIMALITY CRITERIA 

For the rest of the paper we assume that 

Al. $(z(t)) is concave in z(t). 

A2. f(z(t)) is convex in z(t). 

A3. g(s, t, x(s)) is concave in Z(S) and hence S is convex. 

A4. H&(t)) =f,(z(t)) - ci(t) - $,gi(s, t, Z(S)) ds is in L1[O, T] for 
i=l ,...> m; x(t) E Dn. 

A5 X = R x L”[O, T] x ... x L”[O, T], where Lm[O, T] repeats m 
times and R is the set of all reals. 

We first prove the following important 

THEOREM 7. If the system of inequalities 

Z(Z) - E(z) < 0 and f-m+)) d 0 

has no solution z(t) E D” for a Jixed z(t) S, then there exists 

such that 

(flJ > f(t)> E x, (ro , f(t)> 3 0 Vt E [O, T] 

where 

yg(Z@) - l(z)) + f- H’@(t)) r(t) dt 3 0 b(t) E D”, 
0 

Jwe)) = vw9,..., K&(t)))‘. 

Proof. Consider Wztt) = ((z, y(t)) E X: r > Z(X) -Z(x), y(t) >H(z(t))) for each 
Z(t) E Dn. Let W = ~J~D- Wztt) and V = ((0, a)} where 0 is the m-dimensional 
zero vector. Note that V n W is empty by the hypothesis of the theorem. The 
set V is trivially convex. We show that W is also convex. Let (rl , yl(t)) E W, 
(r2 , yz(t)) E W. Then there exist z,(t) E Dn, z,(t) E Dn such that k,(t) + 
(2 - /\) z2(t) E D” for 0 < X < 1 and 

implies 

I 

rl > 4~) - 44, n(t) 2 f&(t)) 
and 

r2 > 4%) - %J,Y&) 3 ff(+(t)) I 

hrl > VW - k)), h(t) > M+,(t)) 
and 

(1 - A) r4 > (1 - A) (Z(Z) - l(z.J), (1 - h)y2(t) 2 (1 -.- X) H(z,(t)) I 
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implies 

AYlP> + (1 - 4Y&) 3 ~fe,(t)) + (1 - 4 H(@)) 1 * 

hr, + (1 - X) rs > l(S) - XZ(z,) - (1 - X) Z(z,) 
and 

Now 

r1 + (1 - 4 r-2 > E(z) - [qz,) + (1 - X) l(z,)] 

= Z(z) - .I“ P4Mt)) + (1 - 4 5Km)l at 
0 

> 43 - ~‘+(A.&) + (1 - X) &(t)) dt (since I$ is concave) 
0 

= Z(T) - Z(Xz, + (1 - ;\) xs). 

Also 

AYlP) + (1 - 4 Y&) 2 wG(tN + (1 - 4fh4t)) - c(t) 

- s t MS, t, d4) + (1 - 4 & t> ~&>)I ds 
0 

2 f(k(t) + (1 - 3 dt)) - c(t) 

- s t [M, t, @)) + (1 - 4 g(s, t, +>)I ds 
0 

(since f is convex) 

- s h, t, 4(s) + 1 - 4 44) ds 
0 

(since g is concave in z(t)). 

Therefore @r, + (1 - h) ye, AyJt) + (1 - h)y,(t)) E W, i.e., W is convex. 
Because of the way r and y(t) are chosen, W has at least one interior point. 
Hence by [II, Theorem 1, p. 2191 th ere exists a continuous linear functional 
which separates W and V. This means there exists pa E R, x”(t) in Lm[O, T] x 

.*. x L”[O, T] such that 

0 < foor + 
s 

Tyf(t) x”(t) dt VP, r(t)) E WY (7) 
0 

where x”(t) = (q”(t),..., xmo(t))‘. Taking y’(t) = (1, O,..., 0) in (7) we have 

s 

T 

0 < TOY + xlo(t) dt. (8) 
0 
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Now Y can be chosen as large as we wish. Therefore, for a fixed value 
of J; XrU(t) dr, Too’ -I- J’ 0 qn(t) dt can be made negative if we choose large r and 
assume F,, is negative. But this will violate (8). Hence 

F,, > 0. (9) 

Next, since it is possible to have -v(t) = H(z(t)), (7) implies 0 < fC,r I 
si H’(z(t)) x0(t) dt which in turn implies 

0 < r,(Z(Z) - Z(z)) + CT0 + j-“T H’(x(t)) x0(t) dt (10) 

where Y = Z(Z) - Z(z) + E. (Th e c once of E > 0 depends upon z. But for any h . 
given z, E can be made arbitrarily small since Y can be brought arbitrarily close 
to I(%) - Z(x).) From (IO) it follows that 

0 < r,(Z(z) - Z(z)) + 1’ H’(x(t)) x’)(t) dt. 
0 

(11) 

(From (10) we have -&,, < r,(Z(.%) - Z(z)) + liH’(z(t)) Y’(t) dt.) If 

inf 
z(t)EDn 

[ru(Z(i) - Z(x)) + 1’ H’(z(t)) x0(t) dt( := 4 < 0, 
0 

we can choose E so small that E~;U < 6. Hence 

inf 
z(t)eDn 

/fo(Z(%) - Z(z)) + 1’ H’(x(t)) x”(t) &I = 4 < --ET0 
0 

and this contradicts (10). Hence 

inf 
&t&D- 

[f,,(Z(i) - Z(z)) + J^“’ H’(z(t)) x0(t) dt/ 3 0 

which means 

jb(Z(Z) - Z(z)) + ST H’(z(t)) x”(t) dt > 0. 
0 

Next we show that x0(t) = (qO(t),..., xmo(t)) 3 0 a.e. on [0, T]. Suppose 
x,0(t) c 0 a.e. on [0, T] for i = I ,..., m. Then choose 

and 

1 T 

z(t) = z(t), r=- xiO(t) dt > 0 
‘0 

y(t) = (0 )...) 0, ro + 1) 0 ,..., 0)’ 
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and (7) becomes 

0 < for + 
s 

Ty’(t) x”(t) dt 
0 

= Toor + 
s 

T (To + 1) x,“(t) at 
0 

which is nonsense. 

= for - for - 7 = -7 < 0 

Therefore x,0(t) > 0 a.e. on [0, T] for i = l,..., m. For i = l,..., m, let 

A& = {t E [O, T]: Q(t) > O} 

Bi = {t E [O, T]: x,0(t) < 0). 

Note that CL(&) = 0. Define 

fi(t) = [ 
x,O(t) if t 6 Xi 

-xio(t) -I if t E Bi for i = l,..., m. 

Therefore, i(t) = (rl(t),..., TV,(t))' > 0, t E [0, T]. From (11) we have 

0 < fo(Z(z) - Z(x)) + s’ H+(t)) x”(t) dt 
0 

= r,(Z(z) - Z(z)) + 2 j’ H&i(t)) xio(t) dt 
iso 0 

= fo(@) - 44) + f [j- f+(t)) xi'(t) dt + s, ,K(@)) 4'(t) dt] 
%=I Aj 1 

= fo(@) - z(4) + ? [j- f+(t)) Xl'(t) dt + s,, W@)) (-Q(t)> dt] . 
is1 A, 1 

(This is possible because Lebesgue measure of Bi is zero and so SE, k(t) dt = 0 
for any bounded function K(t).) 

= f~:,(Z(z) - z(z)) + f,, [I, ffdz(t)) fdt) dt + 1, ffdz(t)) fi(t) dt] 
1 

= foW4 - 44) + f [ jA,uB, WW fi(t) dt] 
i=l * * 

= r,(Z(z) - Z(z)) + ‘f j’ H,(z(t)) fi(t) dt 
i-1 0 

= fo(Z(Z) - Z(z)) + s,’ H’(z(t)) r(t) 

and this proves the theorem. 
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We now prove the Fritz-John saddle-point necessary optimality theorem 
in our setup. 

THEOREM 8. Let z(t) be a solution of MP. Then there exists (F,, , f(t)) E X, 

(To , f(t)) > 0 for all t ; [O, 2’1 such that 

(i) li H’(S?(t)) f(t) dt = 0 

(ii) (.F(t), To , F(t)) solves F JSP. 

Proof. Existencz of (fO , f(t)) E X, (rs, I) > 0 Vt E [0, T] such that 
shown by Theorefn 7. To prove (i), fo(Z(2S) - Z(z)) + Ji H'(z(t)) f(t) 2 0 is 1 

we observe that f(t) > 0 and H@(t)) =f(f(t)) - c(t) - sig(s, t, Z(s)) ds < 0. 
Hence H’@(t)) f(t) < 0 Vt E [0, T]. This implies that 

s 
T W(z(t)) f(t) < 0 (12) 

0 

But from (1 l), taking z(t) = z(t), 

joT H’@(t)) ‘(t) dt > 0. (13) 

Hence by (12) and (13), we have (i). 
To establish (ii), notice that by (11) -~o(Z(%)) < -~o(l(z)) + ji H’(z(t)) I dt. 

Therefore by (i), 

--)‘,(I(%)) + j+‘H’(z(t)) r(t) dt < --r,Z(z) + j’H’(z(t)) r(t) dt. (14) 
0 0 

Again, since H(.?(t)) =f(.%(t)) - c(t) - $g(s, t, X(S)) ds < 0, for r(t) > 0, r(t) 

in Lm[O, T] x ... X Lm[O, T], 
si H'(%(t)) r(t) < 0. Therefore 

we have H'@(t)) r(t) < 0. This implies that 

-foZ(if) + j-’ H’@(t)) r(t) dt < -foZ(z) + s’ H’@(t)) f(t) dt. (15) 
0 0 

Combining (14) and (15) we have (ii). 
In order to establish Kuhn-Tucker saddle-point necessary optimality theorem, 

we introduce Karlin’s constraint qualification for our problem. 

KARLIN’S CONSTRAINT QUALIFICATION. We say H@(t)) satisfy Karlin’s 
constraint qualification on [O, t] x [0, T] x D” if and only if there does not 
exist r’(t) = (r(t),..., ml(t)) > 0, r(t) * 0 such that fi H’(z(t)) r(t) dt > 0 for 
all x(t) in Dn. 
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THEOREM 9. 1j H(x(t)) satisjies Karlin’s constraint qualification on 
[O, t] x [O, T] x Dn and z(t) is a solution of MP, then i?(t) and some e(t) in 
L”[O, T] x 
J; $@) &;$pJ;; T1p a(t) a O f 

or all t in [0, T] solve KTSP and 

Proof. If f,, of Theorem 8 is positive, then Theorem 9 follows from Remark * 
and Theorem 8. So we only need to show that f0 > 0. Suppose f0 = 0, then 
F(t) > 0 for all t in [0, T] and from the second inequality of FJSP 

0 = 1’ H’@(t)) f(t) dt 
0 

s 

T 

< H@(t)) r(t) dt for all z(t) E D*. 
0 

This violates Karlin’s constraint qualification. Hence, r. > 0 and the theorem is 
proven. 
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