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Abstract New series of 3,4-diaryl-2-thioxoimidazolidin-4-ones and 3-alkylthio-4,5-diaryl-4H-

1,2,4-triazoles were designed, synthesized and evaluated for their activity as anti-inflammatory

agents. Compounds 20, 21, 23 and 34 are highly selective inhibitors of COX-2 enzyme at a concen-

tration of 100 mM relative to celecoxib, the standard reference. (±)-3-(4-Phenoxy-phenyl)-5-phe

nyl-2-thioxoimidazolidin-4-ones 23 exhibited the most active anti-inflammatory agent.
ª 2015 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Non-steroidal anti-inflammatory drugs (NSAIDs) constitute
one of the most widely used classes of drugs. NSAIDs 1–11
are commonly used as anti-inflammatory, analgesic,
antirheumatic and antipyretic agents (Rodriguez et al., 1998);

(Chart 1). The common mechanism of action for NSAIDs is
inhibition of the synthesis of PGs by inhibiting the key
regulatory cyclooxygenase ‘‘COX’’ enzyme. In 1989, it was

determined that there were at least 2 isoforms of cyclooxyge-
nase: COX-1, or prostaglandin H1 synthase, and COX-2, pros-
taglandin H2 synthase. COX-1 is expressed in most tissues,
regulates physiological processes such as gastric cytoprotec-

tion, kidney function, and platelet aggregation, and is stimulated
by growth factors and hormones. It has been called the ‘‘house
keeping’’ enzyme (Sperling, 1995; Kulkarni and Jain, 2005;

Singh, 1998; Graumlich, 2001; Lee, 2011; Noble et al., 2000).
However, the unfavorable side effect of NSAID drugs

mainly is the whole GI tract damage including a wide spectrum
s poten-
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Chart 1 Classic NSAIDs.
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of lesions. About 1–2% of NSAID users experienced a serious
GI complication during treatment due to the inhibition of
COX-1 (Griffin et al., 1991; Hollander, 1994; Laine, 1996;
Scheiman, 1996).

A new generation of selective cyclooxygenase-2 (COX-2)
inhibitors allowed the desired synthesis of cytoprotective pros-
taglandins, in conjunction with a simultaneous inhibition of

pro-inflammatory prostaglandin synthesis, thereby reducing
dyspepsia and ulceration. COX-2 selective inhibitors are
also known to suppress synthesis of prostacyclin, a potent

vasodilator and gastro-protective. They are validated as anti-
inflammatory therapeutics for the treatment of rheumatoid
arthritis with less gastrointestinal and renal toxicity
(Crofford et al., 2000; Gauthier et al., 2006; Navidpour

et al., 2006; Chrischilles and Wallace, 1993; DuBois et al.,
1988).

The pharmacophore structural features of the selective

COX-2 inhibitors are possessing a central heterocyclic five
membered ring system bearing two vicinal aryl moieties, such
as pyrazole (celcoxib, 12), 2(5H)furanone (refecoxib, 13), and

isoxazole (valdecoxib, 14) (Chart 2) (Penning et al., 1997; Li
et al., 1999; Talley et al., 2000a,b; Li et al., 2003). Also, the
substituted sulfonyl group is considered one of the pharma-

cophoric moieties responsible for the selective recognition of
the key amino acid residues at COX-2 active site pocket.

On the basis of these considerations, and in view of
the reported COX-2 inhibitory activity of certain

2-thioimidazolidin-4-one derivatives (Gauthier et al., 2006), a
Please cite this article in press as: Al-Turki, D.A. et al., Design, synthesis, molecular m
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series of (±)-2-thioxoimidazolidin-4-ones of the general struc-
ture (A) bearing two aryl moieties at 3- and 5-positions of the
imidazolidine ring and carrying different substituents on the
3-aryl residue was synthesized. COX-2 inhibitory potency of

several 1,2,4-triazole derivatives was evaluated (Maxwell
et al., 1984; Gosowami et al., 1984; Amir and Shikla, 2004).
Accordingly, certain 4,5-diaryl-4H-1,2,4-triazoles of the

general structure (B) and (C) possessing C3-thio and alkylthio
substituents and carrying a methylsulfonyl moiety in the
4-position of one aryl moiety were synthesized. In addition, and

in order to enhance COX-2 selectivity, the benzylthio derivatives
(D) were synthesized. The proposed compounds have a character-
istic molecular pattern and bulk volume to fulfill the pharma-
cophoric requirements for better recognition at the COX-2

binding active site. The newly synthesized analogs were evaluated
for their COX selectivity and their anti-inflammatory activity.
2. Chemistry

To spotlight on the significance of the functional groups that
will be used as a key to identify the difference in recognition

in both COX-1 and COX-2 active sites and to achieve proper
selective COX-2 inhibitors, Schemes 1 and 2 were used to
prepare different series of (±)-3-(Substituted phenyl)-5-phe

nyl-2-thioxo-imidazolidin-4-ones 20–23, 1-(4-methylsulfonyl
phenyl)-4-substituted phenyl-2,4-dihydro-3H-1,2,4-triazole-3-
thiones 29–32, and 3-(4-methyl or chloro-benzylthio)-4-
odeling and biological evaluation of novel diaryl heterocyclic analogs as poten-
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substituted phenyl-5-(4-methylsulfonyl)-4H-1,2,4-triazoles 33

and 34.

(±)-3-(Substituted phenyl)-5-phenyl-2-thioxoimidazolidin-
4-ones 20–23 were prepared following the reported procedures
(Gauthier et al., 2006). The isothiocyanate derivatives 15–18
were reacted with a solution of (±)-a-phenylglycine 19 in 1:1

water/pyridine mixture at alkaline pH, followed by acidifica-
tion with 1N hydrochloric acid. The reaction yielded the
desired final compounds 20–23, Table 1. The crude products

were purified by applying preparative thin layer chromatogra-
phy using CHCl3:CH3OH (7:3, v/v).

In the present work methyl 4-methyl sulfonyl benzoate ester

was easily prepared following the classical esterification
method (El-Emam and Ibrahim, 1991), by heating 4-methyl
sulfonyl benzoic acid with pure methanol in the presence of
Please cite this article in press as: Al-Turki, D.A. et al., Design, synthesis, molecular m
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sulfuric acid as a dehydrating agent to yield the desired ester
in 98% yield. The target hydrazide 24 was prepared in high

yield by heating the methyl ester with hydrazine hydrate in
ethanol (El-Emam and Ibrahim, 1991). The acid hydrazide
24 was allowed to react with the appropriate isothiocyanate
in ethanol to obtain the corresponding thiosemicarbazides

25–28. Compounds 25–28 were refluxed in saturated aqueous
sodium carbonate solution to afford the corresponding target
compounds 29–32.

Alkylation of 5-(4-methylsulfonyl phenyl)-4-substituted
phenyl-2,4-dihydro-3H-1,2,4-triazol-3-thiones 30 and 31 was
achieved through utilizing anhydrous potassium carbonate in

ethanol, followed by treatment with methyl iodide or p-
chlorobenzyl chloride to afford the corresponding alkylated
compounds 33 and 34.
odeling and biological evaluation of novel diaryl heterocyclic analogs as poten-
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Table 1 Percentage inhibitory activity against COX-1, COX-2 and Percentage increase in right paw weight carrageenan-induced

edema of the tested compounds.

Compd R or R1 R2 % Inhibition % Increase in right paw weight

COX-1 COX-2

Celecoxib – – – 80.6 66.2 ± 12.6

20 2-OCH3 – 0 49.3 Toxic

21 4-OCH3 – 0 62.9 37.0 ± 5.5*

22 4-SCH3 – 0 28.8 Toxic

23 4-OPh – 0 59.6 16.6 ± 4.3**

29 2-OCH3 – 7.0 3.9 74.3 ± 5.7

30 3-OCH3 – 0 0 71.0 ± 4.2

31 4-SCH3 – 0 0 60.0 ± 13.8

32 4-Oph – 0 0 68.8 ± 11.7

33 3-OCH3 4-Cl-Bn 0 0 50.8 ± 14.9

34 4-SCH3 4-Cl-Bn 0 60.1 68.6 ± 6.9

For COX-1, COX-2 inhibition, all compounds were tested at a concentration of 100 lM, except the standard (celecoxib) which was used at

50.0 lM.

For carrageenan-induced paw edema data are expressed as mean ± standard error of mean (SEM), where (n = 4) represents the number of

animals.
* p< 0.05 compared with control group using one-way ANOVA followed by Dunnett’s post-hoc test.
** p< 0.01 compared with control group using one-way ANOVA followed by Dunnett’s post-hoc test.
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3. Results and discussion

3.1. In vitro COXs inhibitory effect and selectivity of tested

compounds

The effect of the tested compounds on COX-1 and COX-2
activity was carried out using a commercially available COX
inhibitor screening enzyme immuno-assay (EIA) kit Pradelles
et al., 1985. The results of this assay (Table 1) showed that

compounds 20, 21, 23 and 34 are highly selective inhibitors
of COX-2 enzyme. Although these compounds were tested at
a high concentration (100 lM), no inhibition of COX-1 activ-

ity was detected, supporting the conclusion that these com-
pounds are highly selective against COX-2. Conversely, other
compounds were inactive against either COX-1 or COX-2.
3.2. In vivo anti-inflammatory effect of tested compounds

Subplantar injection of carrageenan in the rat paw elicited an

inflammatory response that was characterized by an increase in
the right paw weight (Winter et al., 1962; Mielens et al., 1968).
Pre-treatment of rats with compound 23 resulted in a signifi-
cant decrease in the carrageenan-induced paw edema. The %

increase in the right paw edema was significantly lower than
that of control group (Table 1). The obtained results suggest
that compound 23 is active anti-inflammatory in vivo.

Conversely, pre-treatment of rats with other compounds did
not affect the carrageenan-induced paw edema significantly.
Moreover, compounds 20 and 22 were toxic to the animals

at the tested dose (150 mg kg�1) showing symptoms of CNS
stimulation.

Considering the results of both in vitro and in vivo experi-

ments revealed that, compound 23 is a highly selective COX-
2 inhibitor with active anti-inflammatory effect (see Fig. 1).
Please cite this article in press as: Al-Turki, D.A. et al., Design, synthesis, molecular m
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3.3. Molecular modeling study

The binary complex of the cyclooxygenase-2 enzyme (1CX2)
coupled with the selective COX-2 inhibitor; SC-558 was used
as a reference to modeling and docking study (Fig. 2).

Studying the hydrogen bonding interaction of the pyrazole
hetero-ring of SC558 with the 1CX2 active site revealed that
the N1 of the pyrazole ring contributed preferable hydrogen

bonds with the key pocket residue Tyr355. The sulfonyl oxy-
gen and the terminal amino group conferred three H-bonds
with the ‘catalytic triad’ residues of 1CX2 pocket Phe518,

His90 and Arg513, respectively.
Comparative computational study was performed to the

designed compounds 20–23 and 29–34 to examine their degree

of selective recognition at the binding active site with the
conserved amino acids of both COX-1 and COX-2 binding
pockets. Compound 20 with the 2-methoxy substituted group
showed hydrogen binding recognition with Leu352, which is

considered one of the common shared conserved residues in
both COX-1 and COX-2 binding pockets. However, com-
pound 20 showed high degree of recognition with the key

amino acid residues of COX-2 pocket namely Tyr355,
Val523 and Ala527 and that is in agreement with the in vitro
binding data (Fig. 3).

Comparative binding study of compound 23 indicated that
the 4-phenoxy substitution forced the stabilization at W-
shaped conformation that allows the terminal phenoxy group

to be directed toward wide edge of the hydrophobic binding
cavity. This conformational organization enhances the overall
interactive recognition with the key amino acid residues of
COX-2, and as a result imidazole ring was hanged with three

stable hydrogen bonds with Ala527, Leu352 and Val523, the
key residues present mainly in COX-2 binding pocket. The
three phenyl rings of the 23 were stabilized within the lipophilic

cavity where the van der wall interaction and the hydrophobic
odeling and biological evaluation of novel diaryl heterocyclic analogs as poten-
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Figure 2 (a) Crystal structure of the non-selective COX-1 inhibitor 1MM (1PGF) showing the putative hydrogen bonding at the binding

active site. (b) Crystal structure of the selective COX-2 inhibitor showing the putative hydrogen bonding at the 1CX2 active site. With its

docked ligand; SC-558.
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interaction were established due to the presence of Tyr348,
Tyr385 and Tyr355. The phenoxy oxygen performed electro-
static interaction with the amino acid Ser353, the one of the

conserved residues at the selective binding pocket (Fig. 4).
Compound 23 showed proper recognition that goes properly
with its biological effect in both in vitro and in vivo screenings.

The triazole analogs including compounds 29–34 showed
no selectivity toward COX-1. This group of compounds is
Please cite this article in press as: Al-Turki, D.A. et al., Design, synthesis, molecular m
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characterized by the presence of terminal sulfonyl moiety that
was considered crucial in the compound’s recognition with
three conserved amino acid residues namely His90, Arg513

and Phe518. Modeling study of the binding mode of com-
pound 29 indicated that, methyl-sulfonyl function performed
conformational recognition with Ile517, Gln192, His90, while

the terminal 2-methoxy group accomplished the binding with
Ser530 (Fig. 4).
odeling and biological evaluation of novel diaryl heterocyclic analogs as poten-
015), http://dx.doi.org/10.1016/j.jsps.2015.07.001
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Figure 3 Comparative binding recognition of compound 20 at the two binding pockets of (a) COX-1 and (b) COX-2.

23 a 23 b

Figure 4 Comparative binding recognition of compound 23 at the two binding pockets of (a) COX-1 and (b) COX-2.
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Compound 30 stabilized within the COX-2 binding pocket
by the interaction with 3-methoxy group and the correspond-
ing Tyr385 and Tyr355. The polar sulfonyl group also

performed network of hydrogen bonding interaction with
three conserved residues namely Arg513, Phe518 and His90.
In compounds 31 and 32, the methoxy substitution has been

changed to a methylthio or a phenoxy group. This alteration
led to a change in the binding style but maintained the
minimum common feature required for recognition within

the binding pocket, mainly the sulfonyl function group.
Compounds 33 and 34 substituted with the 4-chlorobenzyl

group allowed the stabilization of the configuration by lipophi-
lic interaction with the lipophilic pocket residues where the

benzyl group oriented in a manner that allows the lipophilic
lattice from the surrounding residues Phe205, Tyr385 and
Tyr 348 (Fig. 5).

4. Experimental

Experimental synthesis has been done in the chemistry labora-

tory at pharmaceutical department; faculty of pharmacy; King
Saud University; Female sector. All reagents and solvents were
obtained from commercial suppliers and were used without
Please cite this article in press as: Al-Turki, D.A. et al., Design, synthesis, molecular m
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further purification. Melting points (�C) were determined in
open glass capillaries using Branstead 9001 electrothermal
melting point apparatus and are uncorrected. Elemental

analyses were recorded on a PERKIN-ELMER 2400 C,H,N
elemental analyzer. NMR spectra were obtained on a Bruker
AC 500 ultra shield NMR spectrometer (Fallanden,

Switzerland) at 500.13 MHz for 1H and 125.76 MHz for 13C,
and the chemical shifts are expressed in d (ppm) downfield
from tetramethylsilane (TMS) as internal standard; coupling

constant (J) are expressed in Hz. Deuterio-chloroform
(CDCl3) and deuteriodimethyl sulfoxide (DMSO_d6) were
used as solvents. Mass spectral (MS) data were obtained on
a Perkin Elmer, Clarus 600 GC/MS mass spectrometers.

Carrageenan and dimethylsulfoxide (DMSO) were purchased
from Sigma Chemical Co., St. Louis, MO, USA. Celecoxib
was obtained from Pfizer Inc., NY, USA. COX inhibitor

screening assay kit was obtained from Cayman Chemical
Company (Ann Arbor, MI, USA). Male Sprague–Dawley rats
weighing 200 ± 30 g from Mansoura University Animal

House (Mansoura, Egypt) were used.
All animal housing, care and treatment were strictly carried

out in accordance with the University Guidelines for the Care
and Use of Laboratory Animals. Food was withheld 12 h
odeling and biological evaluation of novel diaryl heterocyclic analogs as poten-
015), http://dx.doi.org/10.1016/j.jsps.2015.07.001

http://dx.doi.org/10.1016/j.jsps.2015.07.001


29 30

31 32

33

34

Figure 5 Docking of the triazole analogs; 33 and 34 at the binding pocket of COX-2.
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before the experiment, with free access to water. Tested com-
pounds were first dissolved in (DMSO) and diluted into reaction
buffer (in vitro experiment) using celecoxib as reference standard.

Immediately before in vivo experiment, tested compounds

were first dissolved in (DMSO) and diluted 0.5%
Please cite this article in press as: Al-Turki, D.A. et al., Design, synthesis, molecular m
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carboxymethylcellulose. Carrageenan was dissolved as a 1%
in saline and left overnight.

All modeling experiments were conducted with Hyperchem
6.03 package from Hypercube and Moelgro molecular viewer

(Hyperchem, 1999; Molegro Virtual Docker MVD, 2007).
odeling and biological evaluation of novel diaryl heterocyclic analogs as poten-
015), http://dx.doi.org/10.1016/j.jsps.2015.07.001
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4.1. Synthesis of (±)-3-(substituted phenyl)-5-phenyl-2-
thioxoimidazolidin-4-ones (20–23)

(±)-a-Phenylglycine (1.5 g; 9.9 mmol) is suspended in a mix-
ture of 1:1 pyridine/H2O (60 ml), warmed to 40 �C and

adjusted to pH 9 with sodium carbonate solution 1N. The
required isothiocyanate derivative (14.9 mmol) is added por-
tion wise over 1 h with stirring. Three hours later, the solvents
are evaporated under reduced pressure, and the crude residue

is dissolved in water (100 ml). The solution was extracted three
times with toluene (3 · 50 ml) and then acidified with
hydrochloric acid 1N solution. The formed precipitate is

extracted with ethyl acetate (3 · 50 ml). The organic layers
were combined, washed with water, dried over anhydrous
magnesium sulfate and evaporated under vacuum. The

obtained residue was purified by applying preparative thin
layer chromatography using CHCl3:CH3OH (7:3, v/v) to
obtain the target 3, 5-diaryl-2-thioxoimidazolidin-4-ones (20–

23).

4.1.1. (±)-3-(2-Methoxyphenyl)-5-phenyl-2-
thioxoimidazolidin-4-one 20

Yield: 73%, mp: 193–194 �C. MS: m/z; M+ 298 (5%). 1H
NMR (DMSO-d6), d 3.71 (s, 3H, OCH3), 5.49 (s, 1H,
ANHACHACOA), 7.02 (d, 1H, ArH), 7.10–7.23 (m, 3H,
ArH), 7.30–7.45 (m, 5H, ArH),10.82 (brd, 1H, NH).

Analysis for C16H14N2O2S (298.36): C, 64.41; H, 4.73;
Found: C, 64.20; H, 4.50.

4.1.2. (±)-3-(4-Methoxyphenyl)-5-phenyl-2-
thioxoimidazolidin-4-one 21

Yield: 95%, mp: 197–199 �C. MS: m/z; M+ 298 (7%). 1H
NMR (DMSO-d6), d 3.79 (s, 3H, OCH3), 5.57 (s, 1H,

ANHACHACOA), 6.82 (d, 2H, J= 8.5 Hz, ArH), 7.20 (d,
2H, 7.5 Hz, ArH), 7.35–7.45 (m, 5H, ArH), 10.97 (brd, 1H,
NH). 13C NMR: d 55.9, 63.1, 114.5, 126.3, 126.4, 127.6,

129.5, 130.5, 135.0, 159.7, 173.32 (C‚O), 183.7 (C‚S).
Analysis for C16H14N2O2S (298.36): C, 64.41; H, 4.73;
Found: C, 64.33; H, 4.43.

4.1.3. (±)-3-(2-Methylthiophenyl)-5-phenyl-2-
thioxoimidazolidin-4-one 22

Yield: 15%, mp: 214–215 �C. MS: m/z; M+; 314(10%). 1H

NMR (DMSO-d6), d 2.48 (s, 3H, SCH3), 5.56 (s, 1H,
ANHACHACOA), 7.22–7.30 (m, 5H, ArH), 7.32–7.35 (m,
2H, ArH), 7.38–7.44 (m, 2H, ArH), 10.95 (brd, 1H, NH).

Analysis for C16H14N2OS2 (314.43): C, 61.12; H, 4.49;
Found C, 61.20; H, 4.34.

4.1.4. (±)-3-(4-Phenoxyphenyl)-5-phenyl-2-

thioxoimidazolidin-4-one 23

Yield: 50%, mp: 250–252 �C. MS: m/z; M+; 360(4%). 1H
NMR (DMSO-d6), d 5.61 (s, 1H, imidazolidine-H), 7.09–7.12

(m, 4H, ArH), 7.19–7.22 (m, 1H, ArH), 7.36 (d, 2H,
J= 8.5 Hz, ArH), 7.39–7.49 (m, 7H, ArH), 11.04 (brd, 1H,
NH). 13C NMR: d 63.2, 118.5, 119.9, 124.6, 127.6, 128.7,
129.3, 129.5, 130.7, 131.0, 134.9, 156.3, 157.6, 173.2 (C‚O),

183.4 (C‚S). Analysis for C21H16N2O2S (360.43): C, 69.98;
H, 4.47; Found C, 69.85; H, 4.27.
Please cite this article in press as: Al-Turki, D.A. et al., Design, synthesis, molecular m
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4.2. Synthesis of 1-(4-methylsulfonyl benzoyl)-4-substituted
phenyl-thiosemi-carbazide (25–28)

To a solution of 4-methylsulfonylbenzoic acid hydrazide 24

that was prepared as reported (El-Emam and Ibrahim, 1991)

(0.32 g, 1.5 mmol) in absolute ethanol (5 ml), the appropriate
isothiocyanate (1.55 mmol) was added and the mixture was
stirred at room temperature for 24 h. The formed precipitate
was filtered, dried and recrystallized from ethanol to give the

desired products 25–28 as white solids.

4.2.1. 1-(4-Methylsulfonyl benzoyl)-4-(2-methoxyphenyl)

thiosemicarbazide 25

Yield: 59%, mp: 180 �C. MS: m/z; M+; 379 (10%). 1H NMR
(DMSO-d6), d 3.28 (s, 3H, SO2CH3), 3.75 (s, 3H, OCH3), 6.94–
7.17 (m, 4H, ArH), 8.02–8.16 (m, 4H, ArH), 9.32 (brd, 1H,

NH), 9.90 (brd, 1H, NH), 10.83 (brs, 1H, NH). Analysis for
C16H17N3O4S2 (379.45): C, 50.64; H, 4.52; Found: C, 50.60;
H, 4.49.

4.2.2. 1-(4-Methylsulfonyl benzoyl)-4-(3-methoxyphenyl)
thiosemicarbazide 26

Yield: 75%, mp: 175 �C. MS: m/z; M+; 379 (18%). 1H NMR

(DMSO-d6), d 3.28 (s, 3H, SO2CH3), 3.75 (s, 3H, OCH3), 6.75–
7.24 (m, 4H, ArH), 8.08–8.18 (m, 4H, ArH), 9.80 (brd, 2H, 2
NH), 10.80 (brd, 1H, NH). Analysis for C16H17N3O4S2
(379.45): C, 50.64; H, 4.52; Found: C, 50.69; H, 4.35.

4.2.3. 1-(4-Methylsulfonyl benzoyl)-4-(4-methylthiophenyl)

thiosemicarbazide 27

Yield: 100%, mp: 200 �C. MS: m/z; M+; 395 (5%). 1H NMR
(DMSO-d6), d 2.47 (s, 3H, SCH3), 3.28 (s, 3H, SO2CH3), 7.24–
741 (m, 4H, ArH), 8.08–8.19 (m, 4H, ArH), 9.79 (brs, 2H,

NH), 10.80 (brs, 1H, NH). Analysis for (395.52): C, 48.59;
H, 4.33; Found: C, 48.55; H, 4.35.

4.2.4. 1-(4-Methylsulfonyl benzoyl)-4-(4-phenoxyphenyl)
thiosemicarbazide 28

Yield: 68%, mp: 200 �C. MS: m/z; M+; 441 (14%). 1H NMR
(DMSO-d6), d 3.28 (s, 3H, SO2CH3), 6.95–7.25 (m, 4H, ArH),

7.35–7.43 (m, 5H, ArH), 8.03–8.23 (m, 4H, ArH), 9.83 (brd,
2H, NH), 10.82 (brd, 1H, NH). Analysis for C21H19N23O4S2
(441.52): C, 57.13; H, 4.34; Found: C, 57.35; H, 4.350.

4.3. Synthesis of 5-[4-(methylsulfonyl)phenyl]-4-substituted
phenyl-2,4-dihydro-3H-1, 2, 4-triazol-3-thiones (29–32)

A mixture of compounds (25–28, 1.5 mmol) and saturated

aqueous sodium carbonate solution (15 ml) were heated under
reflux with stirring for 12 h. The obtained solution was cooled
and neutralized with hydrochloric acid 10%. The formed pre-

cipitate was filtered, washed with water, dried and then recrys-
tallized from ethanol to give compounds 29–32.

4.3.1. 5-(4-Methylsulfonylphenyl)-2-methoxyphenyl-2,4-dihydro-
3H-1,2,4-triazol-3-thione 29

Yield: 45%, mp: >300 �C. MS: m/z; M+; 361 (3%). 1H NMR
(DMSO-d6), d 3.21(s, 3H, SO2CH3), 3.55(s, 3H, OCH3), 7.13–
odeling and biological evaluation of novel diaryl heterocyclic analogs as poten-
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7.79 (m, 4H, ArH), 7.85–8.06 (m, 4H, ArH), 14.24 (brd, 1H,
NH). Analysis for C16H15N3O3S (361.44): C, 53.17; H, 4.18;
Found C, 53.22; H, 4.45.

4.3.2. 5-(4-Methylsulfonylphenyl)-3-methoxyphenyl-2,4-
dihydro-3H-1,2,4-triazol-3-thione 30

Yield: 60%, mp: 267 �C. MS: m/z; M+; 361 (7%). 1H NMR

(DMSO-d6), d 3.22 (s, 3H, SO2CH3), 3.74 (s, 3H, OCH3),
6.92–7.33 (m, 4H, ArH), 7.55–7.92 (m, 4H, ArH), 14.28 (brd,
1H, NH). 13C NMR: d 43.6 (SO2CH3), 56.0 (OCH3), 115.3,

115.7, 121.2, 127.6, 129.5, 130.7, 131.0, 135.7, 142.6, 149.6,
160.2, 169.5. Analysis for C16H15N3O3S (361.44): C, 53.17;
H, 4.18; Found C, 53.25; H, 4.30.

4.3.3. 5-(4-Methylsulfonylphenyl)-4-methylthiophenyl-2,4-
dihydro-3H-1,2,4-triazol-3-thione 31

Yield: 92%, mp: 255 �C. MS: m/z; M+; 377 (1%). 1H NMR

(DMSO-d6), d2.51(s, 3H, SCH3), 3.23(s, 3H, SO2CH3), 7.34–
7.65 (m, 4H, ArH), 7.70–7.93 (m, 4H, ArH), 14.27 (brs, 1H,
NH). 13C NMR: d 14.8 (SCH3), 43.6(SO2CH3), 126.5, 127.6,

129.5, 129.6, 131.0, 131.2, 141.0, 142.7, 149.7, 169.7. Analysis
for C16H15N3O2S3 (377.5): C, 50.91; H, 4.01; Found C,
50.85; H, 4.00.

4.3.4. 5-(4-Methylsulfonylphenyl)-4-phenoxyphenyl-2,4-
dihydro-3H-1,2,4-triazol-3-thione 32

Yield: 54%, mp: 246 �C. MS(EI): m/z; M+; 423 (3%). 1H

NMR (DMSO-d6), d 3.28 (s, 3H, SO2CH3), 7.04–7.41 (m,
4H, ArH), 7.44–7.75 (m, 4H, ArH), 7.88–7.99 (m, 5H, ArH),
14.31 (brd, 1H, NH). Analysis for C21H17N3O3S2 (423.51):
C, 59.56; H, 4.05; Found: C, 59.50; H, 4.00.

4.4. Synthesis of 3-(alkyl or aralkyl thio)-4-substituted phenyl-

5-(4-methyl-sulfonyl)-4H-1, 2, 4-triazoles (33 and 34)

The appropriate halides namely p-chlorobenzyl chloride
(0.5 mmol) was added to a solution of (30, 31, 0.5 mmol) in
ethanolic sodium carbonate 2% (5 ml). The mixture was stir-

red and heated under reflux for 24 h. The solvent was evapo-
rated under reduced pressure; the obtained residue was
washed with water, dried and then recrystallized from ethanol

to give the title compounds 33 and 34.

4.4.1. 3-(4-Chloro-benzylthio)-4-(3-methoxyphenyl)-5-(4-
methylsulfonyl)-4H-1,2,4-triazole 33

Yield: 38%, mp: 120 �C. MS: m/z; M+; 486 (4%). 1H NMR
(CDCl3), d 3.03 (s, 3H, SO2CH3), 3.80 (s, 3H, OCH3), 4.54
(s, 2H, CH2Ph), 6.75–7.78 (m, 4H, ArH), 7.78–7.80 (m, 4H,

ArH), 7.85–7.87 (m, 4H, ArH). Analysis for
C23H20ClN3O3S2 (486.01): C, 56.84; H, 4.15; Found: C,
56.80; H, 4.11.

4.4.2. 3-(4-Chloro-benzylthio)-4-(4-methylthiophenyl)-5-(4-
methylsulfonyl)-4H-1,2,4-triazole 34

Yield: 38%, mp: 175–8 �C. MS: m/z; M+; 502 (7%). 1H NMR

(CDCl3), d2.51 (s, 3H, SCH3), 3.02 (s, 3H, SO2CH3), 4.51 (s,
2H, CH2Ph), 7.08–7.22 (m, 4H, ArH), 7.25–7.77 (m, 4H,
ArH), 7.79–7.87 (m, 4H, ArH). 13C NMR: d 15.1 (SCH3),
36.5 (CH2Ph), 44.2 (SO2CH3), 127.0, 127.3, 127.7, 128.8,
Please cite this article in press as: Al-Turki, D.A. et al., Design, synthesis, molecular m
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129.0, 129.3, 130.1, 133.9, 134.6, 134.7, 141.9, 143.1, 152.9,
154.0. Analysis for C23H20ClN3O2S3 (502.07): C, 55.02; H,
4.02; Found: C, 55.10; H, 4.09.

5. Biological evaluations

5.1. In vitro COX-1 and COX-2 inhibition assay

The assay includes both bovine COX-1 and human recombi-

nant COX-2 enzymes to perform screening of isozyme-
specific inhibitors using celecoxib was used as standard
(Pradelles et al., 1985). The tested compounds were added to

both COX-1 and COX-2 with the substrates and buffers to
perform the COX reaction according to kit instructions. The
COX-derived PGH2 produced in the COX reaction is reduced

to the more stable PGF2a by SnC12, and the amount of PGF2a

was quantified via enzyme immunoassay (EIA) using a broadly
specific antiserum that binds to all the major PG compounds
according to kit instructions. The product of the enzymatic

reaction has a distinct yellow color that was absorbed strongly
at 412 nm. The intensity of the color, which determined spec-
trophotometrically, is proportional to the amount of PG tracer

bound to the well, which is inversely proportional to the
amount of free PG present in the well during the incubation.
Therefore, the more the inhibition of COX by any of the tested

compounds, the less PG produced, and the more absorbance
or color developed.

5.2. In vivo carrageenan-induced paw edema

This method was originally described by Winter et al. (1962)
and modified by Mielens et al. (1968). It is a model of acute
inflammation. Tested compounds were administered

(150 mg kg�1) 1 h before injecting 0.1 ml of 1% carrageenan
into the subplantar region of the right hind paw. The left hind
paw of each rat received a subplantar injection of equal vol-

ume of normal saline. Control group received the vehicle
instead of tested compounds. After a further 3 h, the rats were
humanely killed by cervical dislocation and the hind paws

removed at the paw hairline (tibiotarsic articulation) and
weighed.

5.3. Data analysis

In vitro experiment, calculations and analysis of data were car-
ried out according to the reported instructions. The concentra-
tion of each sample was identified by extrapolating its %B/B0

on the standard curve, and then the % inhibition of COX-1
and COX-2 by each inhibitor was calculated.

For in vivo experiment, data were expressed as

mean ± standard error of mean (SEM), where (n) equals the
number of animals (rats). The carrageenan-induced paw
edema was calculated as following:

% Increase in right paw edema

¼ right paw weight� left paw weight

left paw weight
� 100

Significant differences between groups were determined

with one-way ANOVA with Dunnett’s post-hoc test.
odeling and biological evaluation of novel diaryl heterocyclic analogs as poten-
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6. Computational molecular modeling

6.1. COX-2 enzyme structure

Starting coordinate of the cyclooxygenase-2 enzyme, ‘‘1CX2’’
in complex with a selective inhibitor, SC-558, code ID 1CX2,

was obtained from the Protein Data Bank of Brookhaven
National Laboratory, Fig. 2 (Kurumbail et al., 1996).

6.2. COX-1 enzyme structure

Starting coordinate of the cyclooxygenase-1 enzyme, ‘‘1PGF’’
in complex with a non-selective inhibitor, Iodoindomethacin
‘‘IMM’’ codeID 1PGF, was obtained from the Protein Data

Bank of Brookhaven National Laboratory, Fig. 2 (Loll
et al., 1996).

6.3. The selective COX-2 inhibitor SC-558

The crystal structure of SC558 selective inhibitor was depicted
at the binding active site showing the putative hydrogen bond-

ing with the conserved amino acid residues.

6.4. COX-1 non-selective IMM

The crystal structure of 1MM non-selective inhibitor was cap-
tured at the binding active site showing the putative hydrogen
bonding with the surrounding amino acid residues.

6.5. Molecular structure of the synthesized imidazoles and
triazoles

The imidazole or triazole analogs (20–23 and 29–34) were con-

structed from fragment libraries in the Hyperchem program
followed by energy minimization using the ‘‘Amber force
field’’. The partial atomic charges for each analog were assigned

with the semiempirical mechanical calculation method ‘‘AM1’’
implemented in Hyperchem 6.03. Conformational search was
performed around all the rotatable bonds with an increment

of 100 using conformational search module as implemented
in HyperChem 6.03 All the conformers were minimized until
the Root Mean Square (RMS) deviation was 0.01 kcal/mol Å.

6.6. Docking and molecular geometrical optimization

Lowest energy conformer of each new analog ‘‘global-
minima’’ was docked into the two enzymes COX-1 and

COX-2 binding cavity 1CX2 & 1PGF. For each of the tested
analogs, energy minimizations were performed using 1000
steps of steepest descent, followed by conjugate gradient min-

imization to a RMS energy gradient of 0.01 kcal/mol Å.
Hydrogen bonds with a bond length up to 3.5 Å were consid-
ered. The active site of the enzyme was defined using a radius

of 8.0 Å around the ligands SC-558 and IMM.
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