As a marker of atherosclerotic burden, coronary artery calcium has been found to be more prevalent and more extensive in diabetic patients (1–3). The most recent guidelines of the National Cholesterol Education Program recommend that diabetes mellitus be considered a coronary artery disease (CAD) equivalent, owing to the high incidence of atherosclerosis-related events in patients suffering from this ailment (4–8). Despite the high prevalence of coronary artery calcium, it remains to be determined whether screening diabetic patients with electron beam tomography (EBT) to detect subclinical disease improves a physician’s ability to predict events. Furthermore, it is unclear whether a patient with diabetes but without detectable coronary artery calcium carries a risk of cardiovascular events similar to that of a subject with no diabetes and no evidence of coronary atherosclerosis. For the purpose of this analysis we utilized the U.S. National Death Registry to verify all-cause mortality in a cohort of 10,377 asymptomatic individuals submitted to EBT screening for coronary calcification between 1996 and 2000 at one clinical center. Survival data were analyzed in subjects with and without diabetes, and survival curves were compared in the two groups according to their baseline coronary calcium score (CCS).

MATERIALS AND METHODS

Patient selection. We followed 10,377 asymptomatic individuals referred by their primary care physician between 1996 and 2000 for coronary calcium screening with EBT. Individuals were referred for screening based upon the presence of established risk factors for atherosclerosis, and as such were not an unselected cohort representative of the general population. All subjects were initially screened by an internist and had at least one of the following CAD risk factors: diabetes mellitus, systemic hypertension, hypercholesterolemia, current smoking, and a family history of premature CAD. Patients with a prior history of CAD (including hospital admission for chest pain, acute coronary syndromes, or prior coronary revascularization) were excluded.

Data collection. Information regarding the presence of categorical cardiac risk factors was collected in every patient by written questionnaires. Systemic arterial hypertension was defined as a documented history of high blood pressure or treatment with antihypertensive medications. Current smoking or cessation of smoking within three months of testing was defined as positive smoking status. Hypercho-
lesterololemia was defined as known but untreated hypercho-
sterololemia or current treatment with lipid-lowering med-
ications. Individuals were classified as affected by diabetes if
they carried an established diagnosis of diabetes mellitus
made by a physician and/or were receiving treatment with
insulin or oral hypoglycemic agents. An estimated Framing-
ham risk score was calculated on each patient, and the
methodology has been previously reported from this data set
(9).

Electron beam tomography. Patients signed an informed
consent to undergo screening by EBT and to release their
medical records for the purpose of conducting clinical
research. The EBT imaging was performed on either an
Imatron C-100 or a C-150 scanner (GE-Imatron, South
San Francisco, California). Thirty-six to 40 contiguous
3-mm-thick tomographic sections were obtained starting at
the level of the carina and extending to the diaphragm with
100-ms scan time per section. Tomographic imaging was
electrocardiographically triggered at 60% to 80% of the RR
interval. Coronary calcification was defined as a plaque of at
least three contiguous pixels (voxel size = 1.03 mm3) with
an attenuation ≥130 HU. Quantitative CCSs were calcu-
lated according to the method described by Agatston et al.
(10). All EBT scans were reviewed by either one of two
experienced investigators (P.R. and T.Q.C.) in random
order on a NetraMD workstation (ScImage, Los Altos,
California). Because calcium scoring was performed for
clinical purposes and not for research purposes it was
 calculated only once for each patient. Although both intra-
and interobserver score variabilities are not available for this
study, prior local verification and published evidence re-
vealed a median interscan and interreader variability of 8%
to 10% (11,12).

Follow-up procedures. The occurrence of all-cause death
was verified by the National Death Index. All screened
individuals provided informed consent for follow-up, and
our human investigations committee approved procedures
for follow-up, including review of medical records. The
average follow-up interval between the time of EBT screen-
ing and the verification of death via the National Death
Index was 5 ± 3.5 years (range 2 to 5 years).

Statistical analysis and estimation of risk. The primary
end point for this analysis was time to all-cause mortality.
Preliminary comparative analyses included statistical com-
parison of traditional cardiac risk factors and CCS in both
diabetic and nondiabetic individuals. For comparisons of
categorical variables, a chi-square statistic was employed.
For comparisons of statistical differences in the average age
of diabetic and nondiabetic subjects, a univariable analysis of
variance test was applied. Both univariable and multivariable
Cox proportional hazards survival models were employed to
assess time to demise. Initially, cumulative differences in
survival between subjects with and without diabetes were
compared using an unadjusted (i.e., univariable) Cox pro-
portional hazards model for time to five-year survival. A
stratified (by diabetic status) Cox proportional hazards
model was employed to compare all-cause survival by CCS
for subjects with and without diabetes. In subset analyses of
diabetic individuals, stratified Cox models were also em-
ployed to calculate all-cause survival by CCS for female,
hypercholesterolemic, elderly (i.e., age ≥70 years), and
hypertensive diabetic patients. A first-order test for inter-
action was employed to evaluate survival differences in
patients with and without diabetes with a CCS of 0 versus
>0.

A multivariable (or risk factor-adjusted) Cox proportional
hazards survival model was calculated to evaluate the statis-
tical significance of traditional risk factors (i.e., age, gender,
hypertension, hyperlipidemia, smoking, and family history of
premature coronary disease) and of CCS in diabetes and
no-diabetes subsets. Candidate variables included those
with an initial p < 0.10 based upon the univariable analysis.
The final model included all variables with a p ≤ 0.20.

Finally, a receiver operating characteristic (ROC) curve
was utilized to evaluate the event classification ability for
estimated Framingham risk score and CCS in the predic-
tion of all-cause mortality (9).

RESULTS

Comparison of traditional risk factors. The clinical char-
acteristics of the 10,377 subjects are shown in Table 1 About
10% of the subjects were affected by diabetes mellitus,
and men and women were equally represented in either
patient cohort. Hypertension and smoking were more prev-
alent in subjects with diabetes, whereas family history of
CAD was less prevalent in this group (Table 1).

All-cause mortality rates in patients with and without
diabetes. The Cox survival curves showed that overall
mortality was significantly greater (chi-square = 43, p <
0.0001) in patients with diabetes than in those without
diabetes (Fig. 1). Furthermore, when comparing risk-factor

| Table 1. Clinical Characteristics of the 10,377 Asymptomatic Subjects Undergoing Coronary Calcium Screening With Electron Beam Tomography |
|---|---|---|---|
| Diabetess (n = 903) | No Diabetess (n = 9,474) | p Value |
| Age | 57 ± 10 | 53 ± 10 | < 0.0001 |
| Women | 43.0% | 40.1% | 0.10 |
| Hypertension | 63.2% | 41.7% | < 0.0001 |
| Family history of premature coronary disease | 64.5% | 69.1% | 0.005 |
| Hyperlipidemia | 64.0% | 60.1% | 0.112 |
| Current smoker | 44.1% | 39.2% | 0.005 |
| Age 57 | 10

Abbreviations and Acronyms

- CAD = coronary artery disease
- CCS = coronary calcium score
- CI = confidence interval
- EBT = electron beam tomography
- ROC = receiver operating characteristic

Mean ± SD or percent.
subsets, all-cause mortality was greater in patients with diabetes (Table 2). Statistically significant differences in all-cause mortality were noted for several patient subsets, including the elderly (i.e., age ≥70 years), hypertensive subjects, and current smokers. As an example, five-year mortality was 15.8% and 7.8% for individuals with diabetes and without diabetes, respectively, 70 years of age and older (p < 0.05 for all comparisons of diabetic vs. nondiabetic individuals).

All-cause survival by CCS. Figure 2 shows the survival curves for subjects with and without diabetes mellitus according to the amount of coronary calcium found at the time of EBT screening. As shown, mortality increased with increasing baseline CCS levels for both diabetic and non-diabetic individuals and was highest in subjects with a CCS >400. In a risk-adjusted model, there was a significant interaction of CCS with diabetes (p < 0.0001), indicating that for every increase in CCS there was a greater increase in mortality for diabetic compared to nondiabetic subjects.

Five-year all-cause survival was similar for diabetic and nondiabetic individuals with no coronary calcium at the time of EBT screening (Fig. 3) (survival, 98.8% vs. 99.4%, respectively, p = 0.49). These similarities were noted despite the greater prevalence of hypertension (59% vs. 35% in nondiabetic subjects, p < 0.0001), women (57% vs. 49% in nondiabetic subjects, p < 0.0001), and older age (mean, 52 ± 9 vs. 49 ± 9 years in nondiabetic subjects, p < 0.0001) in the diabetic patient cohort with a calcium score of 0. Using a first-order test for interaction, no significant differences existed in survival between diabetic subjects and nondiabetic individuals with a calcium score of 0 (p = 0.19). The statistical power of this test was: beta = 0.47 for alpha = 0.05.

Mortality with diabetes and other co-morbidities. Table 3 shows a pattern of increasing mortality with higher baseline calcium scores in diabetic subjects affected by other co-morbidities. The trend was evident in diabetic women, hypercholesterolemic subjects, hypertensive subjects, and the elderly (≥70 years of age).

Multivariable models estimating mortality. In a multivariable model, predictors of all-cause mortality in subjects affected by diabetes mellitus were age, systemic hypertension, smoking, and CCS (Table 4). There was a 44% (95% confidence interval [CI] 20% to 80%) increased risk of death for every increase in CCS grouping from 11 to 100 to 101 to 400, 401 to 1,000, and >1,000 (p = 0.0001). Individuals without diabetes mellitus demonstrated similar predictors of mortality as did the diabetic subjects. Although hypercho-

Table 2. All-Cause Mortality Rates by Clinical Characteristics in the Study Population

<table>
<thead>
<tr>
<th>Condition</th>
<th>Diabetes (n = 903)</th>
<th>No Diabetes (n = 9,474)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Survivors Deceased</td>
<td>Survivors Deceased</td>
</tr>
<tr>
<td>Age ≥70 yrs</td>
<td>84.2% 15.8%</td>
<td>92.2% 7.8%</td>
</tr>
<tr>
<td>Women</td>
<td>94.8% 5.2%</td>
<td>97.8% 2.2%</td>
</tr>
<tr>
<td>Hypertension</td>
<td>92.3% 7.7%</td>
<td>97.2% 2.8%</td>
</tr>
<tr>
<td>Family history of premature coronary disease</td>
<td>95.0% 5.0%</td>
<td>98.1% 1.9%</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>95.3% 4.7%</td>
<td>98.2% 1.8%</td>
</tr>
<tr>
<td>Current smoker</td>
<td>93.0% 7.0%</td>
<td>96.8% 3.2%</td>
</tr>
</tbody>
</table>

p < 0.05 for all comparisons of diabetic vs. nondiabetic individuals.
Lesterolemia was not an independent predictor of all-cause death in diabetic patients (Table 4), it was associated with decreased all-cause mortality in nondiabetic subjects (Table 5).

Based upon the Framingham risk equation, all of the 903 diabetic subjects were considered high risk, whereas 62% and 24% of the nondiabetic subjects were intermediate and high risk, respectively (p < 0.0001). We then compared the added value of the CCS in estimating all-cause mortality over and above an estimated Framingham risk score by means of an ROC curve. For nondiabetic patients, the C-index for the Framingham risk score was 0.61 (95% CI 0.57 to 0.65, p < 0.0001) but increased to 0.70 when CCS was used (95% CI 0.66 to 0.74, p < 0.0001). For diabetic patients, the C-index was substantially higher for the CCS (C-index, 0.72, 95% CI 0.64 to 0.79, p < 0.0001) when compared with the estimation of mortality based upon the Framingham risk score alone (C-index, 0.50, 95% CI 0.42 to 0.58, p = 1.0).

DISCUSSION

Patients affected by diabetes mellitus have been shown to have extensive coronary artery calcium deposits on EBT imaging (1–3). In this large observational study, we showed that the presence of any degree of coronary artery calcium in patients with diabetes mellitus portends a higher risk for all-cause mortality than in nondiabetic patients. Additionally, the absence of coronary artery calcium indicated a low

Figure 2. Cox proportional hazards survival (n = 10,377) by electron beam tomography coronary calcium measurements in subjects with and without diabetes mellitus (chi-square = 204, p < 0.0001). The number of subjects in each calcium score category is in parentheses.

Figure 3. Cox proportional hazards cumulative survival for subjects with and without diabetes mellitus with a calcium score of 0. The number of subjects in each calcium score category is in parentheses.
Atherosclerosis appears to be an important modifier of outcome even in the presence of established severe risk factors for atherosclerosis such as diabetes mellitus. Hence, the absence of measurable short-term risk of death for diabetic patients as well as nonfatal CAD events are of additional concern and could still occur.

Our clinical experience closely resembles the observations recently made by Kang et al. (13) and Giri et al. (14). In those studies, patients affected by diabetes mellitus who underwent a stress myocardial perfusion single-photon emission computed tomography had a much greater risk of acute coronary events and death than did nondiabetic individuals for any degree of demonstrable perfusion abnormality. Similar data were published by Marwick and colleagues (15) using stress echocardiographic techniques. Taken together, these findings suggest that any extent of disease burden is more dangerous in diabetic patients than in nondiabetic individuals.

Because the risk of CAD-related events in patients with diabetes mellitus is as high as that of individuals with known CAD, diabetes is currently considered a CAD equivalent. In general, the findings on EBT imaging studies corroborate this clinical observation. In fact, the amount of coronary artery calcium detected by EBT in diabetic patients without established CAD is similar to that of nondiabetic subjects with known CAD (16,17). Furthermore, diabetes mellitus abolishes the well-known advantage of women over men in prevalence and extent of coronary artery calcium and atherosclerosis burden (18,19). However, the notion of diabetes as a CAD equivalent may not apply to diabetic subjects without evidence of coronary atherosclerosis by EBT. In this subset, which represented 30% of the diabetic patients in our cohort, the short-term mortality risk was equivalent to that of nondiabetic subjects. These findings imply that coronary calcium screening may identify a subgroup of diabetic patients who are at low risk of death, although nonfatal CAD events are of additional concern and could still occur.

The mechanisms causing the extensive accumulation of calcium in the arterial system of patients affected by diabetes mellitus are largely unknown but are likely multifactorial. Although pathological studies have demonstrated that the amount of calcium per plaque area is similar among diabetic and nondiabetic patients (20), diabetics tend to have a larger atherosclerotic plaque burden (18), likely explaining the observed larger amount of coronary calcium. Recent evidence indicates that advanced glycation end-products induce the expression of genes and enzymes involved in the active calcification processes taking place in the atherosclerotic plaque (21,22). In fact, hyperglycemia induces the expression of the bone morphogenetic enzyme osteopontin in vascular smooth muscle cells (22). Osteopontin is in turn capable of inducing the expression of platelet-derived growth factor (22). Hence, hyperglycemia may initiate a pro-atherogenic and pro-thrombotic effect that ultimately results in calcification of the plaque. Vascular calcification in diabetic subjects is not limited to calcification in the subintimal space, but extends to the medial layer of the vessel wall (23,24). Though not associated with typical atherosclerotic processes, this form of calcification also poses a very substantial risk of cardiovascular events in diabetic patients (24) and can contribute to the larger degree of calcification seen in diabetes mellitus.

Diabetes mellitus carries a very high risk for cardiovascular complications; unfortunately, the incidence rates of this ailment and that of obesity and the metabolic syndrome—a precursor of diabetes—are rapidly increasing in

<table>
<thead>
<tr>
<th>Relative Risk Ratio</th>
<th>95% Confidence Intervals</th>
<th>Chi-Square</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>1.06</td>
<td>1.03–1.09</td>
<td>15</td>
</tr>
<tr>
<td>Hypertension</td>
<td>3.76</td>
<td>1.59–8.77</td>
<td>9</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>0.72</td>
<td>0.41–1.26</td>
<td>1</td>
</tr>
<tr>
<td>Current smoker</td>
<td>1.76</td>
<td>0.99–3.11</td>
<td>4</td>
</tr>
<tr>
<td>Coronary calcium</td>
<td>1.44</td>
<td>1.16–1.80</td>
<td>10</td>
</tr>
</tbody>
</table>

Model chi-square = 67, p < 0.0001. Calcium categories = 0–10, 11–100, 101–400, 401–1000, >1000.
both developed and developing countries (25–27). Several facts render an early and accurate diagnosis of coronary artery atherosclerosis desirable in diabetes mellitus: the decrease in cardiovascular mortality in diabetic patients has not matched the decrease seen in the general population (28); diabetic patients are often asymptomatic even with advanced stages of CAD (6,7); and both the complication and mortality rates of diabetic patients with acute coronary events far outweigh that of nondiabetic subjects (29–31). At the same time, recent evidence shows that aggressive medical management of lipids and systemic hypertension in diabetic patients led to a significant reduction in micro- as well as macrovascular disease along with a remarkable reduction in risk of cardiovascular events (32–36). Thus, screening for coronary artery calcium could prove to be a useful tool to risk-stratify asymptomatic diabetic subjects with the ultimate goal to conduct a more or less aggressive therapy tailored to the individual rather than the disease state.

Our findings differ in part from those of Qu et al. (37). Similar to our report, the investigators noted an increased risk of events in diabetic patients compared to nondiabetic subjects in the presence of coronary calcification (37). However, the investigators were unable to prove an interaction between diabetic status and coronary calcium score as we did in our study. Several important differences between our analyses should be noted. Qu et al. (37) studied a smaller cohort (1,312 individuals, 19% diabetic subjects) of high-risk subjects, mostly males and on average 10 years older than our patients. Furthermore, they used an EBT imaging protocol with reduced sensitivity for detection of coronary calcium (38) and chose a combination of cardiovascular outcomes as their end point rather than all-cause mortality. All of the above reasons may have contributed to the substantial differences noted between our studies.

There were a few limitations to our report. First, we utilized self-reported risk-factor categories without continuous variables. We did not collect information that would allow the clear distinction of insulin-dependent and insulin-independent individuals. Nonetheless, coronary calcification is equally increased in the two types of diabetes mellitus compared to the general population (1–3,16,17,19) and risk-factor categories appear to be as robust as continuous variables for appraisal of risk (39). Our patients were referred by primary care physicians and may not have been representative of the general population. We used all-cause mortality as an end point for our study rather than a cardiovascular end point. The use of all-cause mortality may actually reduce the amount of bias in classification of events noted in previous reports (40); it is receiving ever-growing approval as an end point for cardiovascular outcome research (41). Furthermore, the majority of fatal events are cardiovascular in nature in most developed and several developing countries. Of note, studies from three different continents showed that the risk of cardiovascular mortality and all-cause mortality associated with diabetes mellitus is very similar (42–44).

In summary, coronary artery calcification by EBT appears to be a useful tool for risk stratification of subjects suffering from diabetes mellitus. Aggressive medical therapy should be provided in the presence of calcification and potentially intensified according to the degree of coronary calcification. Patients suffering from diabetes mellitus and free of coronary artery calcification are at low risk of death in the short to intermediate time period.

Reprint requests and correspondence: Dr. Paolo Raggi, Section of Cardiology, Tulane University School of Medicine, 1430 Tulane Ave., SL-48, New Orleans, Louisiana 70112. E-mail: praggi@tulane.edu.

REFERENCES

1669 Value of Coronary Calcium Screening

Raggi et al.

21. Towler DA, Bidder M, Latiﬁ T, Coleman T, Semenkovich CF.

20. Dziedzic Goclawska A, Fuch U, Krautschick I, Ostrowski K, Sta-

19. Calhoun HM, Rubens MB, Underwood SR, Fuller JH. The effect of

diabetes mellitus on prognosis and serial left ventricular function after acute myocardial infarction: contribution of both coronary
disease and diastolic left ventricular dysfunction to the adverse

in non-insulin-dependent diabetes mellitus. Arterioscler Thromb

17. Mielke CH, Shields JP, Broemelung LD. Coronary artery calcium,

15. Mokdad AH, Bowman BA, Ford EA, Vinicor F, Marks JS, Koplan

stratification using stress single-photon emission computed tomogra-
phy myocardial perfusion imaging in patients with symptoms suggestive

of coronary artery calcium measurements by electron beam tomography.

and topographic pattern of progression of coronary calcification in
symptomatic patients: an electron-beam CT study. Arterioscler Thromb

coronary artery calcium measurements by electron beam tomography.

10. Agatston AS, Janowitz AS, Hildner FJ, Zusmer NR, Viamonte M Jr.,

8. Mokdad AH, Bowman BA, Ford EA, Vinicor F, Marks JS, Koplan

7. Koistinen MJ. Prevalence of asymptomatic myocardial ischaemia in

Prevalence of cardiovascular and renal complications in older adults
with normal or impaired glucose tolerance or NIDDM: a population-

5. Calhoun HM, Rubens MB, Underwood SR, Fuller JH. The effect of

diabetes mellitus on the gender difference in coronary artery
stenosis in non-insulin-dependent diabetes mellitus. Arterioscler Thromb

4. McQuire DK, Emanuelsson H, Grangeeb CB, et al. Influence of
diabetes mellitus on clinical outcomes across the spectrum of acute
coronary syndromes: findings from the GUSTO-IIb study. Eur Hear

3. Pyyola K, Pedersen TR, Keksulshus J, Faergeman O, Olsson AG,
Thorgeirsson G. Cholesterol lowering with simvastatin improves
prognosis of diabetic patients with coronary heart disease. A subgroup
analysis of the Scandinavian Simvastatin Survival Study (4S). Diabetes

2. Heart Protection Study Collaborative Group. MRC/BHF heart pro-
tection study of cholesterol lowering with simvastatin in 20,536
high-risk individuals: a randomized placebo-controlled trial. Lancet
2002;360:7–22.

Multifactorial intervention and cardiovascular disease in patients with

UKPDS Group. Intensive blood-glucose control with sulphonylureas
or insulin compared with conventional treatment and risk of compli-
cations in patients with type 2 diabetes (UKPDS 33). Lancet 1998;
352:837–53.

blood-pressure lowering and low-dose aspirin in patients with hyper-
tension: principal results of the Hypertension Optimal Treatment
(HOT) randomised trial. HOT Study Group. Lancet 1998;351:1755–
62.

Qw W, Le TT, Azew SP, et al. Value of coronary artery calcium
scanning with computed tomography for predicting coronary heart

Callister TQ, Janowitz W, Raggi P. Sensitivity of two electron beam
tomography protocols for the detection and quantification of coronary

Wilson PWF, D’Agostino RB, Levy D, Belanger AM, Silbershatz H,
Kannel WB. Prediction of coronary heart disease using risk-factor

Assaf AR, Lopane KL, McKenney JL, Carleton RA. Possible in-
fluence of the prospective payment system on the assignment of discharge

Lauer MS, Blackstone EH, Young JB, Topol EJ. Cause of death in
patients with symptoms suggestive of atheroembolic disease. N Engl J

Matsumoto K, Seya Y, Abe Y, Ueki Y, Tominaga T, Miyake S.
Inflammation and insulin resistance are independently related to
all-cause of death and cardiovascular events in Japanese patients with

mellitus on mortality from all-cause and coronary heart disease in

Khaw KT, Wareham N, Luben R, et al. Glycated haemoglobin,
diabetes, and mortality in men in Norfolk cohort of European
prospective investigation of cancer and nutrition (EPIC-Norfolk).