Monotonicity of the Power Functions of Modified Likelihood Ratio Criterion for the Homogeneity of Variances and of the Sphericity Test*

E. M. CARTER

University of Guelph, Guelph, Ontario

AND

M. S. SRIVASTAVA

University of Toronto, Toronto, Canada

Communicated by C. G. Khatri

The modified likelihood ratio criterion for testing the homogeneity of variances of p univariate normal populations, and the sphericity test, are both shown in this paper to have a monotone nondecreasing power function.

1. INTRODUCTION

Let $s_j, j = 1, ..., p$ be independently distributed as $\sigma \chi^2_{n_j}$. The likelihood ratio criterion (hereafter referred to as LRC) for testing

$$H_0: \sigma_1 = \cdots = \sigma_p = \sigma$$

(say) vs $H_1: \sigma_i \neq \sigma_j$, for some $i \neq j$, $i, j = 1, ..., p$, where σ is unknown, is given by:

Reject H_0 if

$$\left(\prod_{j=1}^{p} \frac{s_j}{\sigma_j^2}\right) \left(\sum_{j=1}^{p} \frac{s_j}{\sigma_j^2}\right)^{N(p)} \leq c,$$

where

$$N(r) = \sum_{j=1}^{r} n_j$$

Received February 1976; revised August 1976.

Key words and phrases: Monotonicity, sphericity test, homogeneity of variances.

* Supported by the National Research Council of Canada.
and \(c \) is so chosen that the error of the first kind (size of the test) is at a specified level. Without loss of generality we shall assume that the parameters \(\sigma_j \) are ordered as \(\sigma_1 \geq \cdots \geq \sigma_p \). The power of this test is shown in the next section to be a monotone nondecreasing function of \(\delta_j = (\sigma_j/\sigma_{j+1}) \), \(j = 1, 2, \ldots, p - 1 \), \(\delta_j \geq 1 \).

It is to be noted that the above test is the modified LRC [1] in which the \(N_i \)'s, the sample sizes from the \(i \)th population, are replaced by \(n_i \)'s, the degrees of freedom associated with \(s_i \)'s, for testing the homogeneity of variances of \(p \) normal populations. It may be mentioned that the unmodified LRC is not even unbiased unless the sample sizes are equal (see [3]). Similarly if \(x_1, x_2, \ldots, x_N \) are independent and identically distributed as \(N_p(\mu, \Sigma) \) then the LRC for testing

\[
\begin{align*}
H_0: \Sigma &= \sigma I, \quad \sigma > 0, \quad \mu \text{ unknown vs} \\
H_1: \Sigma &\neq \sigma I, \quad \mu \text{ unknown},
\end{align*}
\]

is given by

\[
|S| (\text{tr } S)^{-p} \leq c,
\]

where

\[
S = \sum_{j=1}^{N} (x_j - \bar{x})(x_j - \bar{x})' \sim W_p(\Sigma, n), \quad n = N - 1,
\]

and \(c \) is determined by the size of the test. The power of this test in (5) depends only on the characteristic roots of \(\Sigma \), say \(\sigma_1 \geq \cdots \geq \sigma_p \) and this power is a monotone nondecreasing function of \(\delta_j = \sigma_j/\sigma_{j+1} \), \(j = 1, 2, \ldots, p - 1 \), \(\delta_j \geq 1 \). This second problem can be reduced to a special case of the first problem.

2. Monotonicity of the Test for Homogeneity of Variances

This property is the content of the theorem below.

Theorem 1. Let \(s_i \) be independently distributed as \(\frac{1}{2} \sigma_i X_{n_j}^2 \), \(j = 1, \ldots, p \). Suppose also that \(\sigma_1 \geq \cdots \geq \sigma_p \). Let

\[
A = A(s_1, \ldots, s_p) = \left\{(s_1, \ldots, s_p): \left(\prod_{j=1}^{p} s_j^{n_j} \right)^{1/N(p)} \leq c\right\},
\]

where we define \(N(r) = \sum_{j=1}^{r} n_j \), and \(c \) is an arbitrary constant. Let \(P(A) = \) probability of \(A \). Then for any \(k, 1 \leq k \leq p - 1 \) \(P(A) \) is a nondecreasing function of \(\delta_k = \sigma_k/\sigma_{k+1} \), while the remaining \((p - 2) \) parameters \(\delta_i = \sigma_i/\sigma_{i+1} \), \(i = 1, \ldots, p - 1, i \neq k \), are held fixed.
HOMOGENEITY OF VARIANCES AND SPHERICITY TEST

Proof. As the region A is invariant under scale transformations of the s_i's, we consider the transformation

$$x_j = s_j/s_k, \quad j = 1, 2, ..., p, \quad j \neq k.$$

Then integrating over s_k we obtain the joint density function of $x_1, ..., x_{k-1}, x_{k+1}, ..., x_p$ as

$$c_1 \left[\prod_{j=1}^{p} \left(\sigma_k/s_j \right)^{f_j} x_j^{f_j-1} \right] \exp \left[-\sum_{i=1}^{p} \sigma_k x_i/\sigma_i \right]^{f_0},$$

where $f_j = \frac{1}{2}n_j$, $j = 1, ..., p$, $f_0 = \sum_{j=1}^{p} f_j$, and $c_1 = (\prod_{i=1}^{p} \Gamma(f_i))/\Gamma(f_0)$. Now consider a transformation of the kind,

$$x_i = x_{k+1}u_i, \quad i = k + 2, ..., p,$$

$$x_{k+1} = u_{k+1} \left(1 + \sum_{j=1}^{k-1} x_j \right) / \left(1 + \sum_{j=k+2}^{p} u_j \right).$$

The joint p.d.f. of $x_1, ..., x_{k-1}, u_{k+1}, ..., u_p$ is given by

$$c_1 \left[\prod_{j=1}^{k-1} \lambda_j \left(x_j^{f_j} \right)^{f_j-1} \prod_{i=k+2}^{p} \lambda_i \left(u_i^{f_i} \right)^{f_i-1} \right] \exp \left(\sum_{i=k+1}^{k} \delta_i y \right) u_{k+1}^{f_{k+1}-1} \left(1 + \delta_i y u_{k+1} \right)^{-f_0}$$

$$\times \left(1 + \sum_{j=1}^{k-1} \lambda_j x_j \right)^{-f(k+1)} \left(1 + \sum_{j=1}^{k-1} \lambda_j x_j \right)^{-\sum_{i=k+2}^{p} \lambda_i f_i},$$

where $f_{k+1} = \sum_{i=k+1}^{p} f_i$, $\lambda_j = \sigma_k/\sigma_j$ for $1 \leq j \leq k$, $\lambda_i = \sigma_{k+1}/\sigma_i$ for $k + 2 \leq i \leq p$, $\delta_k = \sigma_k/\sigma_{k+1}$, and

$$\gamma = \left(1 + \sum_{j=1}^{k-1} x_j \right) \left(1 + \sum_{j=k+2}^{p} u_j \right) \left(1 + \sum_{j=k+2}^{p} \lambda_j x_j \right)^{-1} \left(1 + \sum_{j=k+2}^{p} u_j \right)^{-1}.$$

Hence the conditional p.d.f. of u_{k+1} given $x_1, ..., x_{k-1}, u_{k+2}, ..., u_p$ is given by

$$\text{const} \left[\delta_0 y \right]^{f_{k+1}} u_{k+1}^{f_{k+1}-1} \left[1 + \gamma \delta_2 u_{k+1} \right]^{-f_0},$$

and the conditional region for u_{k+1} is

$$\omega_1: u_{k+1}^{f_{k+1}}(1 + u_{k+1})^{-f_0} \leq \frac{c(1 + \sum_{i=k+2}^{p} \lambda_i x_i^{f_i} \left(1 + \sum_{j=k+1}^{k-1} x_j \right) \delta_i x_j f_j)}{(\prod_{j=1}^{k-1} x_j^{f_j})(\prod_{i=k+2}^{p} u_i^{f_i})}.$$

Since the parameter point is $\sigma_1 \geq \cdots \geq \sigma_k \geq \sigma_{k+1} \geq \cdots \geq \sigma_p$, we obtain that $\lambda_1 \leq \cdots \leq \lambda_{k+1} \leq 1 \leq \lambda_{k+2} \leq \cdots \leq \lambda_p$, and, hence, that $\gamma \geq 1$. Therefore from the properties of the F test (see [2])

$$P(u_{k+1} \in \omega_1 | x_1, ..., x_{k-1}, u_{k+2}, ..., u_p)$$
increases as δ_k increases from one with λ_i, $i = 1, \ldots, p - 1, i \neq k$, kept fixed, or equivalently with $\delta_i = \sigma_i/\sigma_{i+1}$, $i = 1, \ldots, p - 1, i \neq k$, kept fixed. Hence on averaging with respect to the conditional variables we obtain the required result.

Corollary 1. Suppose that for any test the conditional acceptance region given $x_1, \ldots, x_{k-1}, u_{k+2}, \ldots, u_p$ is of the form $a < u_{k+1} < b$. If $a(1 + a)^{-\theta} \geq b'(1 + b)^{-\theta}$ then the power of the test is monotone increasing in $\delta_k = \sigma_k/\sigma_{k+1}$ for fixed $\delta_i = \sigma_i/\sigma_{i+1}$, $i = 1, \ldots, p, i \neq k$.

3. Monotonicity of the Sphericity Test

Let S be distributed as $w_p(\Sigma, n)$. The density of S is given by

$$
\pi^{-1}p(p-1) \prod_{j=1}^{p} \Gamma^{-1}(n - j + 1) | \Sigma |^{-1/2} | S |^{\frac{1}{2}(n-(p+1))} \exp - \text{tr} \Sigma^{-1}S.
$$

Define $P(B) = \text{probability of } B$ where $B = \{ S: | n(\text{tr } S)^{-1} < \epsilon \}$. As B is invariant under orthogonal transformations we shall assume Σ to be diagonal (u_1, \ldots, u_p) with $u_1 \geq \cdots \geq u_p$. Therefore

$$
P(B) = \int_{B} \pi^{-1}p(p-1) \prod_{j=1}^{p} \Gamma^{-1}(\frac{1}{2}(n - j + 1)) | S |^{\frac{1}{2}(n-(p+1))} \prod_{j=1}^{p} \sigma_j^{-1/2} \left(\exp - \sum_{j=1}^{p} s_j \sigma_j^{-1} \right) dS.
$$

By making the transformation

$$
S = \text{diag}(s_{11}/\sqrt{s}, \ldots, s_{pp}/\sqrt{s})R \text{ diag}(s_{11}, \ldots, s_{pp})
$$

we obtain

$$
P(B) = \int_{B} \pi^{-1}p(p-1) \left(\prod_{j=1}^{p} \Gamma^{-1}(\frac{1}{2}(n - j + 1)) \right) \Gamma^{\frac{1}{2}(n)} | R |^{\frac{1}{2}(n-1)(p+1)}

\cdot \int_{B(s_{jj}, j-1, \ldots, p | R)} \prod_{j=1}^{p} \sigma_j^{-1/2} \exp - \sum_{j=1}^{p} s_j \sigma_j^{-1} \prod_{j=1}^{p} ds_j dR,
$$

$$
B(s_{jj}, j = 1, \ldots, p | R) = \left\{ (s_{11}, \ldots, s_{pp}) : \left(\prod_{j=1}^{p} s_{jj}^{n} \right) \left(\sum_{j=1}^{p} s_{jj} \right)^{-np} \leq C | R |^{-n} \right\}.
$$

By simply applying the theorem of Section 2 to the inner integral we obtain the result that $P(B)$ is a monotone nondecreasing function of each $\delta_k = \sigma_k/\sigma_{k+1}$.
REFERENCES

