Inter J Nav Archit Oc Engng (2009) 1:20~28
http://dx.doi.org/10.2478/IJNAOE-2013-003

Three dimensional numerical simulations for non-breaking solitary wave interacting
with a group of slender vertical cylinders
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ABSTRACT: In this paper we validate a numerical model for wave-structure interaction by comparing numerical results with
laboratory data. The numerical model is based on the Navier-Stokes (N-S) equations for an incompressible fluid. The N-S
equations are solved by a two-step projection finite volume scheme and the free surface displacements are tracked by the
volume of fluid (VOF) method. The numerical model is used to simulate solitary waves and their interaction with a group of
slender vertical piles. Numerical results are compared with the laboratory data and very good agreement is observed for the
time history of free surface displacement, fluid particle velocity and wave force. The agreement for dynamic pressure on the
cylinder is less satisfactory, which is primarily caused by instrument errors.
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INTRODUCTION

Vertical cylinders are among the most commonly used
structures in coastal and offshore engineering. In the
nearshore region they are used for jetties or piers and in
deepwater for offshore platforms and windmill farms. In
designing these structures, it is critical to be able to calculate
wave forces acting on each individual cylinder and, in some
cases, a group of cylinders. For a slender cylinder, where the
diameter of the cylinder (D) is small in comparison with the
design wavelength ( A), the Morison formula (Morison,
O’Brien, Johson and Schaaf 1950) is a good approximation
for calculating the wave forces. On the other hand, if the
diameter of the cylinder or the distance between two adjacent
cylinders is not sufficiently small, the presence of cylinders
will generate significant scattered waves and the wave forces
can be accurately calculated only if the interaction between
waves and cylinders is fully considered (Sapkaya and
Issacson 1981).

Information on wave forces can be obtained by means of
laboratory experiments or numerical simulations. Even when
the Morison formula is used, the dependency of two
coefficients, Cp (drag coefficient) and C), (mass coefficient),
on the design wave conditions and the geometry of the
cylinder must be determined based on the experimental data
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or numerical simulations. Since laboratory experiments are
usually constrained by the physical dimensions of the
laboratory facilities, it is not very always feasible to perform
extensive parameter studies (e.g., variation of water depth,
diameter and inclination of cylinders, wave parameters,
breaker type, and configuration of cylinders in a group) even
if the costs are of no concern. The alternative is to use
numerical simulations as supplements to laboratory experiments.
In other words, a limited numbers of experiments can be
designed so that the laboratory data are effectively used to
validate numerical models. The validated numerical models
can then be used to simulate scenarios with much wider range
of physical parameters of interest. Moreover, accurate
numerical simulations will also provide much more detailed
insights into the physical processes that could not be
achieved by experimental approach.

Modeling the interaction between waves and a group of
cylinders faces multiple challenges similar to other wave-
structure interaction problems. First of all, the flow is
complex and three-dimensional. The free surface runs up and
down on the cylinders. For large incident waves, breaking
might occur in front of cylinders and flow separation on the
lee side of the cylinders. Therefore, local, but strong
turbulence in the vicinity of the cylinder and near the free
surface need to be considered. So far, most of the numerical
models developed for three-dimensional wave propagation
have been built upon the potential flow theory. For instance,
using integral equation methods, highly accurate numerical
models have been developed for wave propagation over
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varying bathymetry in shallow water and for wave-body
interaction in deep water (Xue, Xu, Liu and Yue 2001; Liu,
Xue and Yue 2001; Guyenne and Grilli 2006). However, the
potential flow assumption limits these models’ applications
to irrotational flow.

Three-dimensional Euler’s equations or Navier-Stokes
(N-S) equations must be employed to describe rotational
flows. Theoretically, the direct numerical simulation (DNS)
can always be performed to resolve the entire spectrum of
motions ranging from large eddy motions to the smallest
turbulence (Kolmogorov) scale motions. Clearly, the DNS
requires very fine spatial and temporal resolutions and most
of DNS applications can only be applied to relatively low
Reynolds number flows within a small computational domain
(Kim, Moin, and Moser 1987). With the currently available
computing resources, the DNS is still not a feasible approach
for investigating wave-structure interaction problems if wave
breaking and flow separation are important.

The alternatives to the DNS approach for computing the
turbulent flow characteristics include the Reynolds Averaged
Navier-Stokes (RANS) equations method and the Large Eddy
Simulation (LES) method. In the RANS equations method,
only the ensemble-averaged (mean) flow motion is resolved.
The turbulence effects appear in the momentum equations for
the mean flow and are represented by the Reynolds stresses,
which are often modeled by an eddy viscosity model. The
eddy viscosity can be further modeled in several different
closure models (Pope 2001). For example in the k—¢
closure model, the eddy viscosity is hypothesized as a
function of the turbulence kinetic energy (TKE, k) and the
turbulence dissipation rate (¢ ), for which balance equations
are constructed semi-empirically. Lin and Liu (1998) have
successfully applied the k& —¢ turbulence model in their
studies of wave breaking and runup in the surf zone, in which
the mean flow is primarily two dimensional. Lin and Liu’s
model has been extended and applied to many different
coastal engineering problems, including the wave-structure
interaction (e.g., Liu, Lin and Chang 1999).In the LES
method, the three-dimensional turbulent motions are directly
simulated and resolved down to a pre-determined scale, and
the effects of smaller-scale motions are then modeled by
closures, which are still not well understood for complex
flows (Pope 2004). In terms of the computational expense,
LES lies between RANS and DNS. Compared to DNS in
solving high-Reynolds-number flows, LES avoids explicitly
representing small-scale motions and therefore, the
computational costs can be greatly reduced. Compared to
RANS models, because the large-scale unsteady motions are
computed explicitly, LES can be expected to provide more
statistical information for the turbulence flows in which
large-scale unsteadiness is significant (Pope 2001, 2004).

The flow governing equations for LES are filtered N-S
equations by applying a low-pass spatial filter. Similar to the
RANS approach, a term related to the residual-stress tensor
or the sub-grid-scale (SGS) Reynolds stress tensor appears in
the filtered N-S equations. Thus, a closure model is also
required to relate the residual-stress tensor to the filtered
velocity field. The traditional Smagorinsky model
(Smagorinsky 1963) is probably the simplest LES-SGS
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model and has been used in several breaking wave studies
Watanabe and Saeki 1999; Lin and Li 2002; Christensen and
Deigaard 2001; Liu, Wu, Raichlen, Synolakis and Borrero
2005). Recently, Mo, Irschik, Oumeraci and Liu (2007)
applied the model developed by Liu et al. (2005), which was
originally designed for studying landslide generated tsunamis,
to calculate the wave forces acting on a single slender pile, in
which the breaking is insignificant. On the other hand, using
the same model, Wu and Liu (2009b) calculated the impact
forces acting on a vertical cylinder by a broken bore. The
LES model as also described in Wu and Liu (2009a) solves
the filtered NS equations using a two-step projection
algorithm with finite volume formulation. The Volume-of-
Fluid (VOF) method (Hirt and Nichols 1981) is employed to
track free surface motions. The Smagorinsky SGS model is
employed in the model.

The main objective of the present paper is to check first
whether the core algorithms of the model (i.e., the VOF
method and the two-step projection methods) are adequate
for dealing with the interaction between waves and a group of
cylinders. Since the available experimental data are for non-
breaking solitary waves, we will ignore the viscous and
turbulent effects in the original model and focus only on the
Euler’s equations without any dissipative mechanism. The
laboratory data sets, containing large-scale measurements of
the water surface elevation, the fluid particle velocity, the
pressure at different locations around the circumference of
the cylinders and total wave forces are used to check the
accuracy of the numerical model.

THE NUMERICAL MODEL

Fluid motions of incompressible and inviscid fluid can be
described by the Euler’s equations:

Vou=0 (1)
ou 1

—+V:(uu)=—-Vp+ 2
= (uu) SVpre ¥

where u represents velocity vector, p water density, g the
gravity force vector, ¢ time, and P pressure.

On the free surface, the dynamic boundary condition
requires that the pressure field be zero. On the other hand, the
kinematic boundary condition is replaced by requiring the
conservation of a volume of fluid function, f, representing the
volume fraction of water within a computational cell. The f
value equals to one, if the cell is full, zero if empty, and
0</<1 if the cell is partially filled with water, representing a
free surface cell. The governing equation for f can be
described by:
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The Euler’s equations are solved by the two-step
projection method (Hirt and Nichols 1981). The momentum
equations, (2), are split into two fractional steps:

n+l__* no_n
p U —pu n n
—_— = —V uu 4
- (p"uu) @
n+lun+1 _ n+lu*
10 — _vpn+l +pn+lg (5)
At

in which the superscript “n” denotes the n-th time step.
Equation (4) is an explicit expression for the interim velocity,
u ", referred to as the predictor step. On the other hand, (5) is
called the projection step. Combining (4) with (5) produces
the time discretization of Equation (2):
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No additional approximation results from this decomposition.

Equation (5) relates u"*’ to u”. By adopting the continuity

condition, (1), we have:
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The above equation is also called the Poisson Pressure
n+l

Equation (PPE). The pressure p at the new time step can

be obtained by solving (2.7). The two-step projection method
is implemented in a finite volume algorithm so that
unstructured computational grids (cells) can be used. We also
note that a multidimensional PLIC (Piecewise Linear
Interface Calculation) method (Rider and Kothe 1998) is
utilized to construct the free surface. The details of the
algorithm can be found in Wu and Liu (2009b).

COMPARISON OF LABORATORY DATA AND
NUMERICAL RESULTS

To check the capability and accuracy of our current
numerical model, numerical simulations of non-breaking
solitary waves and their interaction with a group of three
vertical cylinders were conducted and the results were
compared with the experiments conducted in the Tsunami
Wave Basin at the O. H. Hinsdale Wave Research Laboratory
(WRL) of the Oregon State University (OSU).

Laboratory Set-Up in the OSU Experiments

The wave basin at the WRL of OSU has an effective
length of 160 ft (48.8 m), a width of 87 ft (26.5 m) and a
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depth of 7 fi (2.1 m). Stainless steel circular cylinders with a
diameter, D, of 4 fi (1.219 m) were instrumented and installed
in the basin. This paper deals only with a series of
experiments of non-breaking solitary waves with either one
or three cylinders being placed on flat bottom of the basin.
A sketch of the placement of these cylinders is shown in Fig. 1.
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Fig. 1 A sketch of the locations of cylinders, instruments and
wave-maker.

The wave basin at the WRL of OSU has an effective
length of 160 ft (48.8 m), a width of 87 ft (26.5 m) and a
depth of 7 f# (2.1 m). Stainless steel circular cylinders with a
diameter, D, of 4 ft (1.219 m) were instrumented and installed
in the basin. This paper deals only with a series of
experiments of non-breaking solitary waves with either one
or three cylinders placed on flat bottom of the basin. A
sketch of the placement of these cylinders is shown in Fig. 1.
For the one-cylinder experiments, those two cylinders closer
to the wave maker are removed. To measure wave
characteristics 10 wave gauges and 5 Acoustic Doppler
Velocimetries (ADVs) were deployed. Their locations are
also indicated in Figure 1. Additionally, 47 pressure
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transducers were fixed on the cylinder, which is farthest from
the wave maker. As sketched in Figure 2 the pressure
transducers are uniformly distributed along the frontline of
the cylinder with spacing Az = 0.1m and are also spread out
over the circumference in four horizontal cross sections. In
this paper two representative experimental cases (one
cylinder and three cylinders) are used to check the numerical
results in detail. In both cases the still water depth is fixed at
h = 0.75m and the wave height of the solitary wave take the
value of H = 0.3m. In the first case with one cylinder, the
cylinder with pressure transducers remains in place.
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Fig. 2 A sketch of the locations of pressure transducers on
the cylinder.

Numerical simulations of OSU solitary wave experiments

The numerical simulations were performed only in a half
of the wave basin because of the symmetric arrangement of
the locations for cylinders and the computational resource
constraint. The origin of the coordinate system is located on
the incident boundary, with z = 0 indicating the bottom of the
basin. The length of the computational region in the direction
of wave propagation in front of the cylinders is one
wavelength that contains 95% of the total mass of the
incident solitary wave. The lateral domain length is 3D or 5D
for the case of single cylinder and the case of three cylinders,
respectively, to ensure that the reflection from the lateral wall
has not reached the cylinders at the end of each numerical
simulation.

The upper (ceiling) and lower (bottom of the wave basin)
boundaries and two lateral boundaries as well as the surface
of the cylinders of the computational domain are rigid
boundaries. Therefore, the no-flux (free slip) boundary
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condition is applied. The incident wave information,
including the velocity and the free surface displacement, are
provided from the experimental data at the upstream
boundary, while a numerical sponge layer is appended at the
end of numerical wave tank to damp out the outgoing wave.
Unstructured meshes (finite volumes) are used to discretize
the computational domain with smaller volumes in the
vicinity of the cylinders. Generally speaking, the volume size
is chosen such that there are 60 to 120 grids within one
wavelength in the horizontal directions, L/Ax=0(60~120)
and 15 to 20 grids within the wave height in the vertical
direction, H/Ax=0(15~20), where L denotes the wavelength
and H the wave height. The total cell number is 568,854

and 1,469,795 for single-cylinder case and three-cylinder
case, respectively. The mesh used for the three-cylinder
simulation is shown in Fig. 3.

Fig. 3 The three-dimensional mesh for numerical simulations.

The experimentally measured time history of free surface
displacements at the wave gauge #1 located at 8.36 m from
the wave maker (see Fig. 1) was used as the input incident
wave boundary condition at the upstream boundary. The
corresponding fluid velocity for the incident wave is
calculated using the following approximate formula (Goring
and Raichlen 1980):
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where 77 denotes the measured time history of free surface
elevation, H the wave height, / the water depth.
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Figure 4 shows the numerical results for the time
histories of free surface displacements at several wave gauge
locations. In these plots the free surface displacement is

normalized by H while the time is scaled by \/h/g .

Excellent agreement between the numerical results and the

n/H

n/H 1f

-05k L I ! ! ! ! ! L
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experimental data is observed for the leading waves at all
locations. However, some noticeable differences appear for
the secondary scattered waves, which could be the
consequence of flow separation.
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Fig. 4 Time histories of free surface displacements at all wave gauges. The circles are experimental data and the solid lines are

numerical results.

Fig. 5 shows the time histories of particle velocity
components at different locations. ADV velocity meters are
installed at different location as shown in Figure 1. The
agreement between the experimental data and the numerical
results for all three velocity components is quite good. It is
not surprising the flow filed is dominated by the velocity
component in the direction of wave propagation, since
solitary wave is a long wave. It is interesting to observe that

although the second wave crest (due to the wave scattering)
appeared in the free surface measurements at wave gage #5
shown in Fig. 4 these oscillations disappeared in the
horizontal velocity measurements by ADV2 shown in Fig. 5.
The dynamic pressure responses along the front line of the
cylinder are shown in Fig. 6. The positions of the pressure
transducers can be found in Fig. 2.
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Fig. 5 Time histories of particle velocity components at different ADV locations starting from the upper left panel as ADV1
and ending at the lower right panel as ADVS5. The dashed lines are experimental data and the solid lines are numerical results.
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Fig. 6 Time histories of dynamic pressure along the front line of the cylinder. The positions of the pressure transducers
can be found in Fig. 2.
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The numerical results for the vertical pressure profile
along the front face of the cylinder at the wave crest phase
are also sown in Fig. 7. The agreement between the numerical
results and experimental data is rather disappointing. The
measured data are not reasonable at several transducers. For
example negative pressures are measured under wave crest at
transducer 10. It suggests that some of these transducers did
not function properly.

z/h

1.2

Fig. 7 Numerical solutions for dynamic pressure over the
depth in front of the cylinder.

To further ensure that the simulation results are accurate,
the time history of the free surface runups at front face of the
cylinder and the total force acting on the instrumented
cylinder are compared with measured data in Fig. 8 and 9,
respectively. Excellent agreement is observed.

2 T
1.5F 1
1+ Runup Gauge |
n/H
05 .
| Rcacacacacacacd OOO_
-05 | 1 1 | ! 1 | | 5
-6 -4 -2 0 2 4 6 8 10 12

Fig. 8 Free surface runups at front of the cylinder. Circles are
measurements and the solid line denotes the numerical results.
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Fig. 9 Total wave force acting on a cylinder for the three-
cylinder case. Circles are measurements and the solid line
denotes the numerical results.

DISCUSSION ON THE EFFECTS OF MULTIPLE
CYLINDERS

Numerical results for the one-cylinder case have also
been compared with the experimental data with satisfactory
agreement. Similar comparisons for periodic waves
interacting with single cylinder can also be found in Mo et al.
(2007). In this section, we will show the differences between
one-cylinder case and three-cylinder case by using the
numerical results.

In Fig. 10 the free surface displacements around the
perimeter of the cylinder are shown for both the case of three
cylinders and the one cylinder case. It is clear that because of
the wave scattering by the two cylinders in front of the
instrumented cylinder the leading wave has a smaller wave
height and a shorter wavelength. The scattered waves also
generated the second wave crest in the case of three cylinders,
which are visible along the front face of the cylinder
(0<8<90°). Due to the block of the cylinder, the incident
solitary wave deforms locally and a trailing wave is created
and propagates along the perimeter of the cylinder. This
feature is local in the vicinity of a cylinder and occurs in both
one-cylinder and three-cylinders cases.

Fig. 11 shows the vertical profiles of the dynamic
pressure along the front face of the cylinder for both cases at
the phase when the wave crest reaches the cylinder. Over all,
the magnitudes of the dynamic pressure are slightly smaller
for the 3-cylinder case. Because of the wave scattering, the
maximum wave force is also smaller in the 3-cylinder case as
shown in Fig. 9 and 12.
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Fig. 10 Free surface displacements around the perimeter of
the cylinder. The blue line denotes the case of three cylinders
and the black line represents the one cylinder case.
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Fig. 11 Vertical profiles of the dynamic pressure along the
front face of the cylinder. Solid line represents the 3-cylinder
case and the dashed line denotes the 1-cyliner case.
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Fig. 12 Total wave force acting on the cylinder in the single
cylinder case. Circles are measurements and the solid line
denotes the numerical results.

CONCLUDING REMARKS

A 3D numerical model, developed for studying water
wave-structure interaction problems, has been tested with
experimental data for solitary waves interacting with one
cylinder and a group of three vertical cylinders. For the tested
cases, waves are non-breaking and turbulence is negligible.
The comparisons show that the numerical model is capable of
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predicting free surface displacement and fluid particle
velocity, provided that the correct incident boundary
conditions are applied. The relatively less satisfactory
agreement is observed in the dynamic pressure on the
cylinder. This could be due to the measurement errors.

The numerical model needs to be further validated for
breaking waves. More careful measurements for dynamic
pressure as well as the forces acting on each cylinder need to
be collected.
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