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varying bathymetry in shallow water and for wave-body 
interaction in deep water (Xue, Xu, Liu and Yue 2001; Liu, 
Xue and Yue 2001; Guyenne and Grilli 2006). However, the 
potential flow assumption limits these models’ applications 
to irrotational flow. 

Three-dimensional Euler’s equations or Navier-Stokes 
(N-S) equations must be employed to describe rotational 
flows. Theoretically, the direct numerical simulation (DNS) 
can always be performed to resolve the entire spectrum of 
motions ranging from large eddy motions to the smallest 
turbulence (Kolmogorov) scale motions. Clearly, the DNS 
requires very fine spatial and temporal resolutions and most 
of DNS applications can only be applied to relatively low 
Reynolds number flows within a small computational domain 
(Kim, Moin, and Moser 1987). With the currently available 
computing resources, the DNS is still not a feasible approach 
for investigating wave-structure interaction problems if wave 
breaking and flow separation are important.   

The alternatives to the DNS approach for computing the 
turbulent flow characteristics include the Reynolds Averaged 
Navier-Stokes (RANS) equations method and the Large Eddy 
Simulation (LES) method. In the RANS equations method, 
only the ensemble-averaged (mean) flow motion is resolved. 
The turbulence effects appear in the momentum equations for 
the mean flow and are represented by the Reynolds stresses, 
which are often modeled by an eddy viscosity model. The 
eddy viscosity can be further modeled in several different 
closure models (Pope 2001). For example in the k ε−  
closure model, the eddy viscosity is hypothesized as a 
function of the turbulence kinetic energy (TKE, k ) and the 
turbulence dissipation rate ( ε ), for which balance equations 
are constructed semi-empirically. Lin and Liu (1998) have 
successfully applied the k ε−  turbulence model in their 
studies of wave breaking and runup in the surf zone, in which 
the mean flow is primarily two dimensional. Lin and Liu’s 
model has been extended and applied to many different 
coastal engineering problems, including the wave-structure 
interaction (e.g., Liu, Lin and Chang 1999).In the LES 
method, the three-dimensional turbulent motions are directly 
simulated and resolved down to a pre-determined scale, and 
the effects of smaller-scale motions are then modeled by 
closures, which are still not well understood for complex 
flows (Pope 2004). In terms of the computational expense, 
LES lies between RANS and DNS. Compared to DNS in 
solving high-Reynolds-number flows, LES avoids explicitly 
representing small-scale motions and therefore, the 
computational costs can be greatly reduced. Compared to 
RANS models, because the large-scale unsteady motions are 
computed explicitly, LES can be expected to provide more 
statistical information for the turbulence flows in which 
large-scale unsteadiness is significant (Pope 2001, 2004).  

The flow governing equations for LES are filtered N-S 
equations by applying a low-pass spatial filter. Similar to the 
RANS approach, a term related to the residual-stress tensor 
or the sub-grid-scale (SGS) Reynolds stress tensor appears in 
the filtered N-S equations. Thus, a closure model is also 
required to relate the residual-stress tensor to the filtered 
velocity field. The traditional Smagorinsky model 
(Smagorinsky 1963) is probably the simplest LES-SGS 

model and has been used in several breaking wave studies 
Watanabe and Saeki 1999; Lin and Li 2002; Christensen and 
Deigaard 2001; Liu, Wu, Raichlen, Synolakis and Borrero 
2005). Recently, Mo, Irschik, Oumeraci and Liu (2007) 
applied the model developed by Liu et al. (2005), which was 
originally designed for studying landslide generated tsunamis, 
to calculate the wave forces acting on a single slender pile, in 
which the breaking is insignificant. On the other hand, using 
the same model, Wu and Liu (2009b) calculated the impact 
forces acting on a vertical cylinder by a broken bore. The 
LES model as also described in Wu and Liu (2009a) solves 
the filtered NS equations using a two-step projection 
algorithm with finite volume formulation. The Volume-of-
Fluid (VOF) method (Hirt and Nichols 1981) is employed to 
track free surface motions. The Smagorinsky SGS model is 
employed in the model.  

The main objective of the present paper is to check first 
whether the core algorithms of the model (i.e., the VOF 
method and the two-step projection methods) are adequate 
for dealing with the interaction between waves and a group of 
cylinders. Since the available experimental data are for non-
breaking solitary waves, we will ignore the viscous and 
turbulent effects in the original model and focus only on the 
Euler’s equations without any dissipative mechanism.  The 
laboratory data sets, containing large-scale measurements of 
the water surface elevation, the fluid particle velocity, the 
pressure at different locations around the circumference of 
the cylinders and total wave forces are used to check the 
accuracy of the numerical model. 
 
 
 
THE NUMERICAL MODEL   
 

Fluid motions of incompressible and inviscid fluid can be 
described by the Euler’s equations:                              
 

0∇ ⋅ =u                                       (1) 
 

( ) 1 p
t ρ

∂
+∇⋅ = − ∇ +

∂
u uu g                      (2)  

 
where u represents velocity vector, ρ water density, g the 
gravity force vector, t time, and P pressure. 

On the free surface, the dynamic boundary condition 
requires that the pressure field be zero. On the other hand, the 
kinematic boundary condition is replaced by requiring the 
conservation of a volume of fluid function, f, representing the 
volume fraction of water within a computational cell. The f 
value equals to one, if the cell is full, zero if empty, and 
0<f<1 if the cell is partially filled with water, representing a 
free surface cell. The governing equation for f can be 
described by: 
 

( ) 0f f
t

u∂
+∇⋅ =

∂
                              (3)   
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The Euler’s equations are solved by the two-step 
projection method (Hirt and Nichols 1981). The momentum 
equations, (2), are split into two fractional steps: 

 

( )
1 *n n n nn

t
u u uuρ ρ

ρ
+ −

=−∇⋅
Δ

                  (4) 

             
1 1 1 *

1 1
n n n

n np
t

u u gρ ρ
ρ

+ + +
+ +−

=−∇ +
Δ

            (5) 

 
in which the superscript “n” denotes the n-th time step.  
Equation (4) is an explicit expression for the interim velocity, 
u＊, referred to as the predictor step. On the other hand, (5) is 
called the projection step. Combining (4) with (5) produces 
the time discretization of Equation (2): 

         

( )
1 1

1 1
n n n n

n n np
t

u u uu gρ ρ
ρ ρ

+ +
+ +−

=−∇⋅ −∇ +
Δ

    (6) 

 
No additional approximation results from this decomposition. 
Equation (5) relates un+1 to u＊. By adopting the continuity 
condition, (1), we have: 
 

1 *

1

n

n

p
t

u g
ρ

+

+

⎛ ⎞∇ ⎟⎜ ⎟∇⋅ =∇⋅ +⎜ ⎟⎜ ⎟⎜Δ⎝ ⎠
                       (7)  

 
The above equation is also called the Poisson Pressure 

Equation (PPE). The pressure 1np +  at the new time step can 
be obtained by solving (2.7). The two-step projection method 
is implemented in a finite volume algorithm so that 
unstructured computational grids (cells) can be used. We also 
note that a multidimensional PLIC (Piecewise Linear 
Interface Calculation) method (Rider and Kothe 1998) is 
utilized to construct the free surface.  The details of the 
algorithm can be found in Wu and Liu (2009b). 

 
 
 

COMPARISON OF LABORATORY DATA AND 
NUMERICAL RESULTS 
 

To check the capability and accuracy of our current 
numerical model, numerical simulations of non-breaking 
solitary waves and their interaction with a group of three 
vertical cylinders were conducted and the results were 
compared with the experiments conducted in the Tsunami 
Wave Basin at the O. H. Hinsdale Wave Research Laboratory 
(WRL) of the Oregon State University (OSU). 
 
 
Laboratory Set-Up in the OSU Experiments 
 

The wave basin at the WRL of OSU has an effective 
length of 160 ft (48.8 m), a width of 87 ft (26.5 m) and a 

depth of 7 ft (2.1 m). Stainless steel circular cylinders with a 
diameter, D, of 4 ft (1.219 m) were instrumented and installed 
in the basin. This paper deals only with a series of 
experiments of non-breaking solitary waves with either one 
or three cylinders being placed on flat bottom of the basin.  
A sketch of the placement of these cylinders is shown in Fig. 1.  

 
 

 
Fig. 1 A sketch of the locations of cylinders, instruments and 
wave-maker. 
 
 

The wave basin at the WRL of OSU has an effective 
length of 160 ft (48.8 m), a width of 87 ft (26.5 m) and a 
depth of 7 ft (2.1 m). Stainless steel circular cylinders with a 
diameter, D, of 4 ft (1.219 m) were instrumented and installed 
in the basin. This paper deals only with a series of 
experiments of non-breaking solitary waves with either one 
or three cylinders placed on flat bottom of the basin.  A 
sketch of the placement of these cylinders is shown in Fig. 1. 
For the one-cylinder experiments, those two cylinders closer 
to the wave maker are removed. To measure wave 
characteristics 10 wave gauges and 5 Acoustic Doppler 
Velocimetries (ADVs) were deployed. Their locations are 
also indicated in Figure 1. Additionally, 47 pressure 
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Figure 4 shows the numerical results for the time 
histories of free surface displacements at several wave gauge 
locations. In these plots the free surface displacement is 
normalized by H while the time is scaled by /h g .  
Excellent agreement between the numerical results and the 

experimental data is observed for the leading waves at all 
locations. However, some noticeable differences appear for 
the secondary scattered waves, which could be the 
consequence of flow separation.

 
 

 
 
 

 
 

 
 
 

 
 

 
 

 
Fig. 4 Time histories of free surface displacements at all wave gauges. The circles are experimental data and the solid lines are 
numerical results. 

 
 
Fig. 5 shows the time histories of particle velocity 

components at different locations. ADV velocity meters are 
installed at different location as shown in Figure 1. The 
agreement between the experimental data and the numerical 
results for all three velocity components is quite good. It is 
not surprising the flow filed is dominated by the velocity 
component in the direction of wave propagation, since 
solitary wave is a long wave. It is interesting to observe that 

although the second wave crest (due to the wave scattering) 
appeared in the free surface measurements at wave gage #5 
shown in Fig. 4 these oscillations disappeared in the 
horizontal velocity measurements by ADV2 shown in Fig. 5. 
The dynamic pressure responses along the front line of the 
cylinder are shown in Fig. 6. The positions of the pressure 
transducers can be found in Fig. 2. 
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Fig. 6 Time histories of dynamic pressure along the front line of the cylinder. The positions of the pressure transducers 
can be found in Fig. 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

     
 

         
 
Fig. 5  Time histories of particle velocity components at different ADV locations starting from the upper left panel as ADV1 
and ending at the lower right panel as ADV5. The dashed lines are experimental data and the solid lines are numerical results. 
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predicting free surface displacement and fluid particle 
velocity, provided that the correct incident boundary 
conditions are applied. The relatively less satisfactory 
agreement is observed in the dynamic pressure on the 
cylinder. This could be due to the measurement errors.  

The numerical model needs to be further validated for 
breaking waves. More careful measurements for dynamic 
pressure as well as the forces acting on each cylinder need to 
be collected. 
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