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Abstract

We examine Menger-bounded (= o-bounded) and Rothberger-bounded groups. We give internal characterizations of groups
having these properties in all finite powers (Theorems 6 and 7, and Theorem 15). In the metrizable case we also give characteriza-
tions in terms of measure-theoretic properties relative to left-invariant metrics (Theorems 12 and 19). Among metrizable σ -totally
bounded groups we characterize the Rothberger-bounded groups by the corresponding game (Theorem 22).
© 2006 Elsevier B.V. All rights reserved.
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According to [4] the topological group (H,∗) is o-bounded if there is for every sequence (Un: n ∈ N) of open
neighborhoods of 1H , a sequence (Fn: n ∈ N) of finite subsets of H , such that H = ⋃

n∈N
Fn ∗ Un. This notion was

introduced by O. Okunev. In unpublished work [6] Kočinac defined the notion of a Menger-bounded group by the
same definition. Additionally Kočinac defined the notions of a Rothberger-bounded group and a Hurewicz-bounded
group. The group (H,∗) is a Rothberger-bounded group if there is for each sequence (Un: n ∈ N) of neighborhoods
of 1H a sequence (xn: n ∈ N) of elements of H such that H = ⋃

n∈N
xn ∗ Un. And (H,∗) is a Hurewicz-bounded

group if there is for each sequence (Un: n ∈ N) of open neighborhoods of 1H a sequence (Fn: n ∈ N) of finite subsets
of H such that each element of H belongs to all but finitely many of the sets Fn ∗ Hn.

The following “OF” game on H , due to Tkačenko, is also described in [4]: Two players, ONE and TWO, play an
inning per positive integer n. In the nth inning ONE first chooses a neighborhood Un of 1H , and then TWO responds
with a finite subset Fn of H . A play (U1,F1,U2,F2, . . . ,Un,Fn, . . .) is won by TWO if H = ⋃

n∈N
Fn ∗ Un; else,

ONE wins. According to [4] a group is said to be strictly o-bounded if TWO has a winning strategy in this game. It is
clear how to define the corresponding games for the Rothberger-bounded and the Hurewicz-bounded groups, and this
was also done by Kočinac in [6].
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In this paper we shall show that these o-bounded groups fit naturally into the arena of selection principles, and we
shall analyse them as well as the Rothberger-bounded groups from this point of view. Strictly o-bounded groups and
their connection with the Hurewicz-bounded groups is treated in [2].

Our paper is organized as follows: First we introduce the necessary background from the area of selection princi-
ples, and define relevant special types of open covers for topological groups. We treat Menger-bounded groups in the
second section of the paper. In the third section we treat Rothberger-bounded groups.

The following classical fact about topological groups is useful and is often used without special mention:

Theorem 1 (Van Dantzig). If (H,∗) is a topological group with identity element 1H , then there is for each neighbor-
hood U of 1H a neighborhood V of 1H such that V = V −1 ⊂ U .

1. Selection principles, games and open covers

Let A and B be families of collections of subsets of the infinite set S. The symbol S1(A,B) denotes the statement
that for each sequence (On: n ∈ N) of elements of A there is a sequence (Tn: n ∈ N) such that: For each n, Tn ∈ On

and {Tn: n ∈ N} ∈ B. A second selection principle studied also here is denoted by the symbol Sfin(A,B) denotes the
statement that for each sequence (On: n ∈ N) of elements of A there is a sequence (Tn: n ∈ N) such that: For each n,
Tn is a finite subset of On and

⋃{Tn: n ∈ N} ∈ B.
Corresponding to the selection principle S1(A,B) we have the following infinite game, denoted G1(A,B). In this

game two players, ONE and TWO, play an inning per positive integer. In the nth inning ONE first chooses On ∈ A,
and then TWO responds with a Tn ∈ On. In this way they construct a play

O1, T1, . . . ,On,Tn, . . . .

Such a play is won by TWO if {Tn: n ∈ N} is an element of B; else, ONE wins.
Corresponding to the selection principle Sfin(A,B) we have the following infinite game, denoted Gfin(A,B). In this

game two players, ONE and TWO, play an inning per positive integer. In the nth inning ONE first chooses On ∈ A,
and then TWO responds with a finite set Tn ⊆ On. In this way they construct a play

O1, T1, . . . ,On,Tn, . . . .

Such a play is won by TWO if
⋃{Tn: n ∈ N} is an element of B; else, ONE wins.

We are particularly interested here in the case where A and B are open covers of topological spaces or topological
groups. Specifically, let H and G be topological spaces with G a subspace of H . An open cover U of H is said to be
an ω-cover if H /∈ U , and for each finite subset F of H there is a V ∈ U with F ⊆ V . We shall use the notations:

OH : The collection of open covers of H ;
OHG: The collection of covers of G by sets open in H ;
ΩH : The collection of ω-covers of H ;
ΩHG: The collection of ω-covers of G by sets open in H .

The notion of a weakly groupable open cover was defined as follows in [3]: A countable open cover U for a
topological space H is weakly groupable if there is a sequence (Un: n ∈ N) such that: For each n, Un is a finite subset
of U , for m �= n, Um ∩ Un = ∅, U = ⋃

n∈N
Un and for each finite subset F of H there is an n with F ⊆ ⋃

Un. The
symbol Owgp

H denotes the collection of weakly groupable open covers of a space H . And Owgp
HG denotes the collection

of weakly groupable covers of G by sets open in H .
Now let (H,∗) be a topological group with identity element 1H . If U is an open neighborhood of 1H , then x ∗ U

(:= {x ∗y: y ∈ U}) is an open neighborhood of x. Thus, {x ∗U : x ∈ H } is an open cover of H and will be denoted by
the symbol OH (U). For F a finite subset of H and U an open neighborhood of 1H , F ∗U := {f ∗y: f ∈ F and y ∈ U}
is an open set containing F . If U is an open neighborhood of 1H such that there is no finite subset F of H with
F ∗ U = H , then the set ΩH (U) := {F ∗ U : F a finite subset of H } does not have H as a member. Define:

Onbd(H) := {
U ∈O: (∃ open neighborhood U of 1H )

(
U = {x ∗ U : x ∈ H })}.

Also define:

Ωnbd(H) := {
U ∈ Ω: (∃ open neighborhood U of 1H )

(
U = {F ∗ U : F ⊂ H finite})}.
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For each neighborhood U of 1H , ΩH (U) := {F ∗ U : F ⊂ H finite} is an ω-cover of H when H is not an element of
this set.

2. Menger-bounded groups

In our notation the topological group (H,∗) is an o-bounded group if, and only if, it satisfies the selection principle
S1(Ωnbd(H),OH ). The well-known Menger property is Sfin(OH ,OH ). Also, for G a subset of H , the relative Menger
property is Sfin(OH ,OHG).

Theorem 2. Let (G,∗) be a subgroup of topological group (H,∗). Then Sfin(OH ,OHG) implies Sfin(Ωnbd(H),OHG).

Proof. This is easy. �
Item (2) in Theorem 3 below explains the name Menger-bounded group.

Theorem 3. Let (G,∗) be a subgroup of a topological group (H,∗). The following are equivalent:

(1) S1(Ωnbd(H),OHG).
(2) Sfin(Onbd(H),OHG).
(3) Sfin(Ωnbd(H),OHG).

Proof. (1) ⇒ (2): Let (Un: n ∈ N) be a sequence from Onbd(H). For each n choose an open neighborhood Un of
1H such that Un = OH (Un). Then, for each n define Vn = ΩH (Un). Apply S1(Ωnbd(H),OHG) to the sequence
(Vn: n ∈ N) and select for each n a Wn ∈ Vn, such that {Wn: n ∈ N} is a cover of G. For each n let Fn be a finite set
with Wn = Fn ∗ Un. Define Wn := {x ∗ Un: x ∈ Fn} for each n. Then each Wn is a finite subset of Un, and

⋃
n∈N

Wn

is a cover of G.
(2) ⇒ (3): This is clear.
(3) ⇒ (1): Let (Un: n ∈ N) be a sequence in Ωnbd(H) and for each n let Un be a neighborhood of 1H such that

Un = ΩH (Un). Apply Sfin(Ωnbd(H),OHG) to the sequence (Un: n ∈ N): For each n let Vn be a finite subset of Un

such that
⋃

n∈N
Vn is a cover of G. Put

Fn =
⋃

{F ⊂ H : F finite and there is a V ∈ Vn with V = F ∗ Un}.
Then each Fn is a finite subset of H . Put Vn = Fn ∗ Un. Then for each n we have Vn ∈ Un, and we have: {Vn: n ∈ N}
is an open cover of G. �

Indeed, by writing N as a disjoint union of countably many infinite sets Yn, n ∈ N, and applying S1(Ωnbd(H),OHG)

to each sequence (Ω(Uk): k ∈ Yn) independently, one finds a sequence (Fn: n ∈ N) of finite subsets of H such that
for each x ∈ G there are infinitely many n with x ∈ Fn ∗ Un.

The relative versions of the selection principles considered in Theorem 3 hold if, and only if, the absolute versions
hold for the subgroup G:

Theorem 4. Let (G,∗) be a subgroup of the topological group (H,∗). Then the following are equivalent:

(1) S1(Ωnbd(H),OHG).
(2) S1(Ωnbd(G),OG).

Proof. The implication (2) ⇒ (1) is evidently true. We must show that (1) ⇒ (2). Thus, let (Ω(Un): n ∈ N) be a
sequence in Ωnbd(G). Since each Un is a neighborhood (in G) of the group identity we may choose for each n a
neighborhood Tn in H of the identity, such that Un = Tn ∩ G. Next, choose for each n a neighborhood Sn in H of the
identity, such that S−1

n ∗ Sn ⊆ Tn.
Apply (2) to the sequence (Ω(Sn): n ∈ N) of elements of Ω(H): We find for each n a finite set Fn ⊂ H such that

G ⊆ ⋃
Fn ∗ Sn.
n∈N
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For each n, and for each f ∈ Fn, choose a pf ∈ G as follows:

pf

{∈ G ∩ f ∗ Sn if nonempty,

= group identity otherwise.

Then put Gn = {pf : f ∈ Fn}, a finite subset of G. Observe that for each n we have Gn ∗ Un ∈ Ω(Un) ∈ Ωnbd(G).
We show that G = ⋃

n∈N
Gn ∗ Un.

For let g ∈ Gn be given. Choose n so that g ∈ Fn ∗ Sn, and choose f ∈ Fn so that g ∈ f ∗ Sn. Then evidently
G ∩ f ∗ Sn is nonempty, and so pf ∈ G is defined as an element of this intersection. Since pf ∈ f ∗ Sn, we have
f ∈ pf ∗S−1

n , and so g ∈ pf ∗S−1
n ∗Sn ⊆ pf ∗Tn. Now p−1

f ∗g ∈ G∩Tn = Un, and so we have g ∈ pf ∗Un ⊂ Gn∗Un.
This completes the proof. �

As a consequence, we have the following general connection with the corresponding selection principle for general
topological spaces:

Corollary 5. For a subgroup (G,∗) of a topological group (H,∗): If Sfin(OH ,OHG) holds then S1(Ωnbd(G),OG)

holds.

Proof. Theorems 2, 3 and 4. �
The converse of Theorem 2 is not true: In Theorem 8.2 of [7] the authors give an example of a σ -compact zero-

dimensional metrizable group H which contains a subgroup G such that Sfin(OG,OG) fails. Note that the group H ,
being σ -compact, has as topological space the property Sfin(OH ,OH ), and thus as topological group the property
S1(Ωnbd(H),OH ). Consequently the subgroup G also has the property S1(Ωnbd(G),OG).

2.1. Preservation under finite powers

For topological groups weak groupability properties of open covers capture the preservation of selection properties
in finite powers. The following is our first step towards proving this.

Theorem 6. Let (G,∗) be a subgroup of the topological group (H,∗). The following are equivalent:

(1) S1(Ωnbd(H),Owgp
HG).

(2) S1(Ωnbd(H),ΩHG).

Proof. We must prove that (1) ⇒ (2). Let (Un: n ∈ N) be a sequence from Ωnbd(H), and choose for each n a neigh-
borhood Un of 1H with Un = ΩH (Un). Then define for each n: Vn = ⋂

j�n Uj . Each Vn is an open neighborhood of
1H , and each Vn = ΩH (Vn) is in Ωnbd(H).

Apply S1(Ωnbd(H),Owgp
HG) to the sequence (Vn: n ∈ N), and choose for each n a Wn ∈ Vn such that {Vn: n ∈ N}

is a weakly groupable open cover of G. Choose an increasing sequence m1 < m2 < · · · < mk < · · · such that for
each finite subset F of G there is a k with F ⊂ ⋃

mk�j<mk+1
Wj . Also, for each n choose a finite set Fn ⊂ H with

Wn = Fn ∗ Vn.
For i < m1 set Si = ⋃

j<m1
Fj , and for mk � i < mk+1 set Si = ⋃

mk�j<mk+1
Fj . Then each Si is a finite subset

of H , and if we set Mi = Si ∗ Ui for each i, then Mi ∈ Ui for each i, and {Mi : i ∈ N} is in ΩHG. �
Theorem 7. For a subgroup (G,∗) of a topological group (H,∗) the following are equivalent:

(1) For each n the selection principle S1(Ωnbd(H
n),OHnGn) holds.

(2) S1(Ωnbd(H),ΩHG) holds.

Proof. (1) ⇒ (2): Let (Ω(Un): n ∈ N) be a sequence from Ωnbd(H). Write N = ⋃
n∈N

Yn where for each n Yn is
infinite, and for m �= n we have Ym ∩ Yn = ∅.
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For each k, (Ω(Uk
n ): n ∈ Yk) is in Ωnbd(H

k). By (1), choose for each k, for each n ∈ Yk a finite set Fn ⊂ H such
that {Fk

n ∗Uk
n : n ∈ Yk} covers Gk . We show now that {Fn ∗Un: n ∈ N} is in ΩHG. For let F = {f1, . . . , fj } be a finite

subset of G. Then f = (f1, . . . , fj ) ∈ Gj . Pick an n ∈ Yj with h ∈ F
j
n ∗ U

j
n . Then we have F ⊆ Fn ∗ Un ∈ ΩH (Un).

(2) ⇒ (1): Fix an m ∈ N, and let (ΩH (Un): n ∈ N) be a sequence in Ωnbd(H
m). For each k choose a neighborhood

Vk of 1H such that V m
k ⊆ Uk .

Then (ΩH (Vk): k ∈ N) is a sequence from Ωnbd(H). Apply S1(Ωnbd(H),ΩHG) and pick for each k a finite set
Fk ⊂ H with {Fk ∗ Vk: k ∈ N} ∈ ΩHG.

Then {Fm
k ∗ V m

k : k ∈ N} is an open cover of Gm. For each k choose Tk ∈ ΩH (Uk) with Fm
k ∗ V m

k ⊂ Tk . Then
{Tk: k ∈ N} is an open cover of Gm. �

As a result we have the following corollary:

Corollary 8. Let (G,∗) be a subgroup of the topological group (H,∗). Then the following are equivalent:

(1) S1(Ωnbd(H),Owgp
HG).

(2) For each n, S1(Ωnbd(G
n),OGn).

(3) S1(Ωnbd(G),ΩG).
(4) S1(Ωnbd(G),Owgp

G ).

Proof. (1) ⇒ (2): (1) together with (2) ⇒ (1) of Theorem 7 gives that for each n, S1(Ωnbd(H
n),OHnGn). And then

(1) ⇒ (2) of Theorem 4 gives for each n that S1(Ωnbd(G
n),OGn) holds.

(2) ⇒ (3): This follows from (1) ⇒ (2) of Theorem 7, taking H = G.
(3) ⇒ (4): This is clear because any ω-cover is also a weakly groupable cover.
(4) ⇒ (1): Also this is evident. �

2.2. Metrizable groups

Proofs of the following two fundamental facts about metrizable groups can be found in [5]:

Theorem 9 (Birkhoff–Kakutani). A topological group is metrizable if, and only if, it is T0 and first-countable.

Thus, when a group (G,∗) is metrizable, then there is a sequence (Vk: k < ∞) of open neighborhoods of the
identity element such that each Vk is symmetric (i.e., V −1

k = Vk), and for each k, V 2
k+1 ⊆ Vk . A metric d on a

topological group is left-invariant if for all g, x and y in G one has that d(g ∗ x,g ∗ y) = d(x, y). The following
theorem associates a left-invariant metric with neighborhood sequences (Vk: k < ∞) as above:

Theorem 10 (Kakutani). Let (Vk: k < ∞) be a sequence of subsets of the topological group (G,∗) such that {Vk: k <

∞} is a neighborhood basis of the identity element consisting of symmetric neighborhoods, and such that for each k

also V 2
k+1 ⊆ Vk . Then there is a left-invariant metric d on G such that

(1) d is uniformly continuous in the left uniform structure on G × G.
(2) If y−1 ∗ x ∈ Vk then d(x, y) � ( 1

2 )k−2.
(3) If d(x, y) < ( 1

2 )k then y−1 ∗ x ∈ Vk .

In particular: A metrizable group is metrizable by a left-invariant metric d which has the additional properties
stated in the theorem.

Measurelike properties of metrizable spaces are useful in analyzing selection properties in metrizable spaces. We
shall show that similarly, for metrizable groups the measure-like properties with respect to left-invariant metrics
characterize corresponding selection properties. We first review some of the basic facts regarding classical selec-
tion properties in metrizable spaces. Let A be a collection of sets consisting of subsets of H . Following [1] we shall
say that a metric space (H,d) has A-measure zero if there is for each sequence (εn: n ∈ N) of positive real numbers,
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a sequence (In: n ∈ N) such that: For each n, In is a finite set of subsets of H , each of diameter less than εn, and⋃
n∈N

In is a member of A. The following fact is Theorem 4.2.9 of [1]:

Theorem 11. Let H be a zero-dimensional metrizable space with no isolated points, and let G be a subspace of it.
Then Sfin(OH ,OHG) holds if, and only if, H has the OHG-measure zero property in all metrics of the space H .

An analogous statement characterizes the metrizable o-bounded groups:

Theorem 12. Let (G,∗) be a subgroup of the metrizable group (H,∗). The following are equivalent:

(1) S1(Ωnbd(H),OHG).
(2) H has OHG-measure zero with respect to all left-invariant metrics of H .

Proof. (1) ⇒ (2): By Theorem 4 S1(Ωnbd(G),OG) holds. Consider any left-invariant metric which generates the
topology of H . Let (εn: n ∈ N) be a sequence of positive real numbers. For each n choose an H -neighborhood Un

of 1H , of diameter less than εn, and put Wn = Un ∩ G. Apply S1(Ωnbd(G),OG) to the sequence (Ω(Wn): n ∈ N),
and choose for each n an element Gn ∈ ΩG(Wn) such that {Gn: n ∈ N} ∈ OG. For each n choose a finite set Fn with
Gn = Fn ∗Wn, and put In = {f ∗Un: f ∈ Fn}. Observe that each In is finite, and each member of it is an open subset
of H of diameter less than εn, and

⋃
n∈N

In is a cover of G.
(2) ⇒ (1): Let a sequence (O(Un): n ∈ N) of elements of Onbd(H) be given. For each n choose a symmetric

H -neighborhood Vn of the identity element 1H such that

(1) For each n: Vn ⊆ (
⋂

j<n(Uj ∩ Vj )) ∩ Un;

(2) For each n: V 2
n+1 ⊂ Vn;

(3) {Vn: n ∈ N} is a neighborhood basis for the identity element.

For each n, put Vn = O(Vn). Then each Vn is a member of Onbd(H). Let d be the left-invariant metric associated
to the sequence (Vk: k < ∞) by Theorem 10. For each k put εk = ( 1

2 )k .

Claim. If a subset S of H has diameter less than εk , then there is a W ∈ Vk with S ⊂ W .

Proof. For consider such an S and choose an x ∈ S. Consider any y ∈ S. Then as d(y, x) < εk we have x−1 ∗ y ∈ Vk ,
or equivalently, y ∈ x ∗ Vk . But this implies S ⊂ x ∗ Vk . Since x ∗ Vk is an element of Vk , the Claim is proven. �

Now apply the hypothesis that H has OHG-measure zero with respect to the left-invariant metric d . For each k

choose a finite set Ik of subsets of H , each such subset of diameter less than εk , such that
⋃

k<∞ Ik covers G. Then
for each k choose a finite subset Hk of Vk such that each element of Ik is contained in an element of Hk (this uses
the Claim). Finally, for each element of Hk , choose an element of O(Uk) containing it. This defines a finite subset Gk

of O(Uk), and
⋃

k<∞ Gk is a cover of G by sets open in H . �
Observe that whereas zero-dimensionality is a hypothesis in Theorem 11, it is not a hypothesis in Theorem 12.

3. Rothberger-bounded groups

Recall that a topological group (H,∗) is said to be a Rothberger-bounded group if it satisfies S1(Onbd(H),OH ).

Theorem 13. Let (G,∗) be a subgroup of the topological group (H,∗). Then the following are equivalent:

(1) S1(Onbd(H),OHG).
(2) S1(Onbd(G),OG).
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Proof. The implication (2) ⇒ (1) is evidently true. We must show that (1) ⇒ (2). Thus, let (O(Un): n ∈ N) be a
sequence in Onbd(G). Since each Un is a neighborhood (in G) of the group identity we may choose for each n a
neighborhood Tn in H of the identity, such that Un = Tn ∩ G. Next, choose for each n a neighborhood Sn in H of the
identity, such that S−1

n ∗ Sn ⊆ Tn.
Apply (2) to the sequence (O(Sn): n ∈ N) of elements of Onbd(H): We find for each n a point xn ∈ H such that

G ⊆ ⋃
n∈N

xn ∗ Sn.
For each n choose a pn ∈ G as follows:

pn

{∈ G ∩ xn ∗ Sn if nonempty,

= group identity otherwise.

Observe that for each n we have xn ∗ Un ∈ Ω(Un) ∈ Ωnbd(G). We show that G = ⋃
n∈N

pn ∗ Un.
For let g ∈ Gn be given. Choose n so that g ∈ xn ∗ Sn. Then evidently G ∩ xn ∗ Sn is nonempty, and so pn ∈ G

is defined as an element of this intersection. Since pn ∈ xn ∗ Sn, we have xn ∈ pn ∗ S−1
n , and so g ∈ pn ∗ S−1

n ∗ Sn ⊆
pn ∗ Tn. Now p−1

n ∗ g ∈ G ∩ Tn = Un, and so we have g ∈ pn ∗ Un. This completes the proof. �
The next few concepts are useful in analyzing the product properties for Rothberger-bounded groups. For an open

neighborhood U of the identity element 1H and for n ∈ N,

On
H (U) = {

F ∗ U : F ⊂ H and 1 � |F | � n
}
.

The symbol On
nbd(H) denotes the collection of all open covers of the form On

H (U) of the group H . According to [9]:
For a positive integer n, an open cover U of a topological space is said to be an n-cover if there is for each n-element
subset F of the space a U ∈ U with F ⊆ U . Thus, each On

H (U) is an n-cover of the group H .
Now let (Rn: n ∈ N) be a sequence of natural numbers, diverging to ∞. According to notation introduced in [9],

the symbol S1({ORn

nbd(H): n ∈ N)},ΩHG) denotes the statement:

For each sequence (ORn

H (Un): n ∈ N), where each Un is an open neighborhood of 1H , there is a sequence
(Vn: n ∈ N) such that: For each n, Vn ∈ORn(Un), and {Vn: n ∈ N} ∈ ΩHG.

The following theorem is reminiscent of the “quantifier elimination theorem”, Theorem 2.2, of [9].

Theorem 14. For a topological group (H,∗) and subgroup (G,∗) the following are equivalent:

(1) S1(Onbd(H),Owgp
HG).

(2) S1({On
nbd(H): n ∈ N},ΩHG).

(3) For each sequence (Rn: n ∈ N) of natural numbers diverging to ∞, S1({ORn

nbd(H): n ∈ N},ΩHG).

Proof. (1) ⇒ (2): For each n, put Un = On(Un). For each n put Vn = ⋂
j�n Uj and for each n put Vn = O(Vn).

Apply S1(Onbd(H),Owgp
HG) to the sequence (Vn: n ∈ N). For each n choose an xn such that {xn ∗ Vn: n ∈ N} is in

Owgp
HG . Choose a sequence m1 < m2 < · · · < mk < mk+1 < · · · such that: For each finite set F ⊂ G there is an n with

F ⊆ ⋃
mn�j<mn+1

xj ∗ Vj . For each such i define

Fi =
{{xj : j � i} if i < m1,

{xj : mn � j � i} if mn � i < mn+1.

Then put Sn = Fn ∗ Un. For each n we have Sn ∈ On
H (Un), and {Sn: n ∈ N} is an ω-cover of G.

(2) ⇒ (3): Choose 1 < k1 < k2 < · · · < kn < · · · such that (∀j � kn) (Rj � n). Let Un = ORn

H (Un), n ∈ N be given.
Define V1 = ⋂

j�k1
Uj , and for each n put Vn+1 = ⋂

kn�j<kn+1
Uj . Then apply (2) to (On

H (Vn): n ∈ N). For each n

choose Fn ⊂ G with |Fn| � n. With Sn = Fn ∗ Gn, n ∈ N, the set {Sn: n ∈ N} ∈ ΩHG.
(3) ⇒ (1): Let (Rn: n ∈ N) be given. Choose 1 � n1 < n2 < · · · < nk < nk+1 < · · · such that R1 � n1 and for

each k, Rk+1 � (nk+1 − nk).
Now, let Un = OH (Un) be given for each n. Define V1 = ⋂

j�n1
Uj , and Vk+1 = ⋂

nk<j�nk+1
Uj . Then put Vn =

ORn

H (Vn), n ∈ N. Apply (3) to the sequence (Vn: n ∈ N) and choose for each n an Sn ∈ Vn so that {Sn: n ∈ N} ∈ ΩHG.
For each n choose a finite set Fn ⊆ H such that |Fn| � Rn, and Sn = Fn ∗ Vn.
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For each m write Fm = {xnm+1, . . . , xnm+1} with repetitions, if necessary. Then

(xk ∗ Uk: k < ∞)

is a sequence with xk ∗Uk ∈ Uk for each k, the sequence of nj ’s witness the weak groupability of {xk ∗Uk: k < ∞}. �
Now we characterize being Rothberger bounded in all finite powers in terms of weak groupability:

Theorem 15. For a subgroup (G,∗) of a topological group (H,∗) the following are equivalent:

(1) S1(Onbd(H),Owgp
HG).

(2) For each n, S1(Onbd(H
n),Owgp

HnGn).
(3) For each n, S1(Onbd(H

n),OHnGn).

Proof. (1) ⇒ (2): Fix n > 1 and consider Hn = H ×· · ·×H (n copies). For each m let Um = Omm
(Um,1 ×· · ·×Um,n)

be given and define Wm = ⋂
j�n Um,j , a neighborhood of 1H . For each m choose a finite set Fm ⊂ H such that |Fm| �

m, and such that {Fm ∗Wm: m < ∞} ∈ ΩHG. This is possible since S1(Onbd(H),Owgp
HG) implies Sfin(Onbd(H),Owgp

HG)

which implies S1(Ωnbd(H),ΩHG), as we saw in Theorem 6.
Then for each m put Gm = Fm × · · · × Fm (n copies), m < ∞. Then put Sm = Gm ∗ (Um,1 × · · · × Um,1). For

each m we have Sm ∈ Omm
(Um,1 × · · · × Um,n) and we have {Sm: m < ∞} ∈ ΩHG. By (3) ⇒ (1) of Theorem 14,

S1(Onbd(H
n),Owgp

HnGn) holds.
(2) ⇒ (3): This implication is clear.
(3) ⇒ (1): For each n let Un = On(Un) be given so that Un is a neighborhood in H of 1H . Write N = ⋃

k<∞ Yk

where for each k, k � min(Yk) and Yk is infinite, and for m �= n, Ym ∩ Yn = ∅.
For each k: For m ∈ Yk put Vm = O(Uk

m). Then (Vm: m ∈ Yk) is a sequence from Onbd(H
k). Applying (3)

choose for each m ∈ Yk an xm ∈ Hk such that {xm ∗ Uk
m: m ∈ Yk} is a cover of Gk . For each m in Yk write

xm = (xm(1), . . . , xm(k)), and then put φ(xm) = {xm(1), . . . , xm(k)}. Observe that for each m ∈ Yk we have |φ(xm)| �
k � m, and so φ(xm) ∗ Um is in Om(Um). For each m put Vm = φ(xm) ∗ Um, a member of Om(Um) = Vm.

We claim that {Vm: m < ∞} is in ΩHG. For let F ⊂ G be finite and put k = |F |. Write F = {f1, . . . , fk}. Consider
x = (f1, . . . , fk) ∈ Gk . For some m ∈ Yk we have x ∈ xm ∗ Uk

m, and so F ⊂ φ(xm) ∗ Um = Vm. Now (2) ⇒ (1) of
Theorem 14 implies that S1(Onbd(H),Owgp

HG) holds. �
Using the techniques of this paper one also proves:

Theorem 16. For a subgroup (G,∗) of a topological group (H,∗) the following are equivalent:

(1) S1(Onbd(H),Owgp
HG).

(2) S1(Onbd(G),Owgp
G ).

3.1. The metrizable case

Recall that a metric space (X,d) has Borel strong measure zero if there is for each sequence (εn: n ∈ N) of positive
reals a sequence (Xn: n ∈ N) of subsets of X such that for each n we have diam(Xn) < εn, and X = ⋃

n∈N
Xn.

We now show that metrizable Rothberger-bounded groups have a characterization in terms of strong measure zero
which is quite analogous to the one for the Rothberger property of metrizable spaces. For metrizable spaces one has
the following characterization:

Theorem 17 (Fremlin, Miller). For a metrizable space X the following are equivalent:

(1) The space has the property S1(O,O).
(2) The space has Borel strong measure zero with respect to each metrizing metric of the space.

The relative version of this was proved in [8] and is as follows:
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Theorem 18. For a subspace G of σ -compact metrizable space H the following are equivalent:

(1) The space has the property S1(OH ,OHG).
(2) The subspace G has Borel strong measure zero with respect to each metrizing metric of the space H .

Here is the version for metrizable groups and Rothberger boundedness:

Theorem 19. Let (G,∗) be a subgroup of the metrizable topological group (H,∗). The following are equivalent:

(1) S1(Onbd(H),OHG) holds.
(2) G has Borel strong measure zero in each left-invariant metrization of H .

Proof. (1) ⇒ (2): Let a sequence (εn: n ∈ N) of positive real numbers be given. Choose a left-invariant metrization
d of H . For each n, choose an H -neighborhood Un of 1H which is of d-diameter less than εn. Then for each n

put Un = OH (Un), an element of Onbd(H). Apply S1(Onbd(H),OHG) and select for each n a Tn ∈ Un such that
{Tn: n ∈ N} is a cover of G by sets open in H . Since the metric d is left-invariant, for each n we have diamd(Tn) < εn.
It follows that G has strong measure zero in the metric d .

(2) ⇒ (1): Let a sequence (O(Un): n ∈ N) of elements of Onbd(H) be given. For each n choose a symmetric
neighborhood Vn of the identity element such that

(1) For each n: Vn ⊆ (
⋂

j<n(Uj ∩ Vj )) ∩ Un;

(2) For each n: V 2
n+1 ⊂ Vn;

(3) {Vn: n ∈ N} is a neighborhood basis for the identity element.

For each n, put Vn = O(Vn), a member of Onbd(H). Let d be a left-invariant metric associated to the sequence
(Vk: k < ∞) as per Theorem 10. For each k put εk = ( 1

2 )k . As in the proof of Theorem 12 we have: If a subset S of
H has diameter less than εk , then there is a W ∈ Vk with S ⊂ W .

Now apply the hypothesis that G has strong Borel measure zero with respect to the left-invariant metric d . For each
k choose a subset Gk of G of diameter less than εk , such that

⋃
k<∞ Gk = G. Then for each k choose an element Hk

of Vk such that Gk ⊂ Hk . Finally, for each Hk , choose an element Vk of O(Uk) containing it. Then {Vk: k < ∞} is a
cover of G by sets open in H . �

Using earlier results about finite powers, we have:

Theorem 20. For a subgroup (G,∗) of a metrizable group (H,∗) the following are equivalent:

(1) S1(Onbd(H),Owgp
HG).

(2) For each n, Gn has Borel strong measure zero in each left-invariant metric on Hn.

Proof. By Theorems 15 and 19. �
Indeed, using the techniques of this paper one can prove that S1(Onbd(G),Owgp

G ) is, for metrizable groups G,
equivalent to the following strengthened form of Borel strong measure zero: For each sequence (εn: n ∈ N) and left-
invariant metric d , there is a sequence (Sn: n ∈ N) of subsets of G such that for each n we have diamd(Sn) < εn, and
{Sn: n ∈ N} is a weakly groupable cover of G.

Lemma 21. Let (H,∗) be a topological group, and let G be a dense subset (not necessarily a subgroup) of H . Let
V ⊂ H be an open neighborhood of 1H . Then:

(1) {F ∗ V : F ⊂ G finite} is an ω-cover of H .
(2) {x ∗ V : x ∈ G} is an open cover of H .
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Proof. Let U be a neighborhood of 1H . By Theorem 1 pick a neighborhood W of 1H such that W−1 = W ⊆ U .

(1) Consider any finite set K ⊂ H . Since G is dense in H , choose for k ∈ K a gk ∈ G∩ k ∗W . Then F = {gk: k ∈ K}
is a finite subset of G and K ⊂ F ∗ U .

(2) Consider any point x ∈ H . Since G is dense in H , choose a gx ∈ G ∩ x ∗ W . Then x ∈ gx ∗ W . �
Lemma 21 is used in the following theorem:

Theorem 22. Let (G,∗) be a subgroup of a σ -compact metrizable group (H,∗). The following are equivalent:

(1) S1(Onbd(H),OHG).
(2) ONE has no winning strategy in G1(Onbd(H),OHG).

Proof. (2) ⇒ (1): The argument for this direction is standard.
(1) ⇒ (2): We give the argument in the case when H is compact. A number of small but tedious modifications of

the argument gives the proof for H σ -compact. See for example the proof of Theorem 9 in [8].
Let G be a subgroup of the metrizable compact group H . Since the closure of G in H is also a compact subgroup

of H , we may assume that G is dense in H . Let d be any left-invariant metric of H .
Let F be a strategy for ONE in the game G1(Onbd(H),OHG) played on G. In the first inning ONE plays F(∅) =

O(U∅), an open cover of H . Since H is compact, fix a finite subset G1 of G such that {x ∗ U(H)∅: x ∈ G∅} is a
covering for H and a positive real number ε1 which is a Lebesgue number for this finite cover relative to the metric d .
Enumerate G∅ bijectively as (x0

j : j � n∅).
For 1 � j � n∅ put Tj = x0

j ∗ U∅. For each Tj , a response by TWO, consider ONE’s move F(Tj ) = O(Uj ). Then
{x ∗ Uj : x ∈ G} is an open cover of H . Since H is compact, fix a finite set Gj ⊂ G such that {x ∗ Uj : x ∈ Gj } is a
cover for H , and fix a positive real number δj which is a Lebesgue number for this finite cover of H relative to the
metric d . Put ε2 = min{δj : 1 � j � n∅}. Enumerate each Gj bijectively as (xj,1, . . . , xj,nj

).
For j1 � n∅ and j2 � nj1 put Tj1,j2 = xj1,j2 ∗ Uj1 . Then ONE’s response using the strategy F is F(Tj1, Tj1,j2) =

O(Uj1,j2). Now {x ∗ Uj1,j2 : x ∈ G} is an open cover of the compact space H . Choose a finite subset Gj1,j2 of G and
a positive real number δj1,j2 such that {x ∗ Uj1,j2 : x ∈ Gj1,j2} is a cover of H and has Lebesgue covering number
δj1,j2 relative to the metric d . Put ε3 = min({δj1,j2 : j1 � n∅ and j2 � nj1} ∪ {ε2}). Enumerate each Gj1,j2 bijectively
as {xj1,j2,j : j � nj1,j2}.

For j1 � n∅ and j2 � nj1 , and j3 � nj1,j2 , put Tj1,j2,j3 = xj1,j2,j3 ∗ Uj1,j2 . Then ONE’s response using the strategy
F is O(Uj1,j2,j3) = F(Tj1 , Tj1,j2 , Tj1,j2,j3). The set {x ∗Uj1,j2,j3 : x ∈ G} is an open cover of H . Choose a finite subset
Gj1,j2,j3 of G such that the finite subset {x ∗ Uj1,j2,j3 : x ∈ Gj1,j2,j3} of the latter cover of H is a cover of the compact
set H . Then choose a positive real number δj1,j2,j3 which is a Lebesgue number for this finite cover of H relative
to the metric d . Finally, put ε4 = min({δj1,j2,j3 : j1 < n∅, j2 < nj1, j3 < nj2} ∪ {ε3}) and enumerate each Gj1,j2,j3

bijectively as {xj1,j2,j3,j : j � nj1,j2,j3}.
Continuing in this way we obtain the following families:

(1) (nσ : σ ∈ <ω
N) of positive integers;

(2) (Uσ : σ ∈ <ω
N and for i ∈ dom(σ ), σ(i) � nσ�i

) of open neighborhoods in H of 1H ;
(3) (xσ : σ ∈ <ω

N and for i ∈ dom(σ ), σ(i) � nσ�i
) of elements of G;

(4) (δσ : σ ∈ <ω
N and for i ∈ dom(σ ), σ(i) � nσ�i

) of positive real numbers;
(5) (εk: k < ∞) of positive real numbers;
(6) (Gσ : σ ∈ <ω

N and for i ∈ dom(σ ), σ(i) � nσ�i
) of finite subsets of G; and

(7) (Tσ : σ ∈ <ω
N and for i ∈ dom(σ ), σ(i) � nσ�i

) of open subsets of H

such that:

• For each σ ∈ <ω
N for which for i ∈ dom(σ ), σ(i) � nσ�i

,

Tσ = xσ ∗ Uσ�dom(σ )−1;
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• O(Uσ ) = F(Tσ(1), Tσ(1),σ (2), . . . , Tσ );
• Gσ = {xσ�j : j � nσ };
• {xσ�j ∗ Uσ�j : j � nσ } is an open cover of H , with Lebesgue number δσ relative to the chosen metric d ;
• εk = min{δσ : σ ∈ �k

N and for i ∈ dom(σ ), σ(i) � nσ�i
}.

Since G has Borel measure zero relative to the metric d , choose for the sequence (εk: k < ∞) of positive reals
a partition G = ⋃

k<∞ Xk such that for each k we have diamd(Xk) < εk .
Since diamd(X1) < ε1, choose a j1 < n∅ such that X1 ⊂ xj1 ∗ U∅. Then also X1 ⊆ xj1 ∗ U∅ = Tj1 . Since

diamd(X2) < ε2 < δj1 , choose a j2 < nj1 such that X2 ⊂ xj1,j2 ∗ Uj1 . Then also X2 ⊂ xj1,j2 ∗ Uj1 = Tj1,j2 . Con-
tinuing like this, using the fact that diamd(Xk) < εk and that j1, . . . , jk have been selected, we choose jk+1 � nj1,...,jk

such that Xk+1 ⊆ xj1,...,jk+1 ∗ Uj1,...,jk
= Tj1,...,jk+1 . In this way we obtain a sequence (j1, j2, . . . , jk, . . .) where for

each k we have jk+1 � nj1,...,jk
and Xk ⊆ Tj1,...,jk

.
But then the play

F(∅), Tj1 ,F (Tj1), Tj1,j2,F (Tj1 , Tj1,j2), . . .

is lost by ONE. Since F was an arbitrary strategy for ONE, it follows that ONE has no winning strategy in the game
G1(Onbd(H),OHG). �
Theorem 23. For a subgroup (G,∗) of a σ -compact metrizable group (H,∗) the following are equivalent:

(1) ONE has no winning strategy in the game G1(Onbd(H),Owgp
HG).

(2) S1(Onbd(H),Owgp
HG).

(3) For each n, S1(Onbd(G
n),OGn).

In Theorem 8.5 of [7] the authors show that under the appropriate set theoretic hypothesis (the Continuum Hypoth-
esis is an example of one) there is a σ -compact zero-dimensional metrizable group H which contains a subgroup G

which is Rothberger bounded in all finite powers, but as topological space G does not have the property Sfin(OG,OG)

(and thus does not have property S1(OG,OG)).

4. A question about consistency

The group obtained in ZFC in Theorem 1 of [10] is a group of cardinality b, and has property Sfin(Ωnbd,Ω). We
have not found explicit examples of groups satisfying S1(Ωnbd,O), but not S1(Ωnbd,Ω), in the literature. A few
questions in this connection come to mind. We mention only the following two:

Problem 1. Is it consistent that there be a metrizable group having the property S1(Ωnbd,O), but which does not have
this property in all finite powers?

Problem 2. Is it consistent that there be a metrizable group with property S1(Onbd,O) which has S1(Ωnbd,O) in all
finite powers, but does not have S1(Onbd,O) in all finite powers?
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