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A number of studies have shown that ageing is associated with increased amounts of mtDNA deletions and/or
point mutations in a variety of species as diverse as Caenorhabditis elegans, Drosophila melanogaster, mice, rats,
dogs, primates andhumans. This detected vulnerability ofmtDNAhas led to the suggestion that the accumulation
of somatic mtDNA mutations might arise from increased oxidative damage and could play an important role in
the ageing process by producing cells with a decreased oxidative capacity. However, the vast majority of DNA
polymorphisms and disease-causing base-substitution mutations and age-associated mutations that have been
detected in humanmtDNA are transition mutations. They are likely arising from the slight infidelity of themito-
chondrial DNA polymerase. Indeed, transition mutations are also the predominant type of mutation found in
mtDNA mutator mice, a model for premature ageing caused by increased mutation load due to the error prone
mitochondrial DNA synthesis. These particular misincorporation events could also be exacerbated by dNTP
pool imbalances. The role of different repair, replication and maintenance mechanisms that contribute to
mtDNA integrity and mutagenesis will be discussed in details in this article. This article is part of a Special
Issue entitled: Mitochondrial Dysfunction in Aging.

© 2015 Elsevier B.V. All rights reserved.
1. Mitochondrial DNA

Part of mitochondrial uniqueness that separates them from any
other structure within animal cells is their specific origin from ancestral
endosymbiotic bacteria and mitochondrial genome is its most impor-
tant legacy. Mitochondrial genomes from different organisms can vary
greatly in a structure, size and coding capacity ranging from merely
6 kb in Plasmodium falciparum [1] to 11.3 Mb in some flowering plants
[2]. However, most animal mitochondrial DNA (mtDNA), including
human are compact, supercoiled and circular molecules of approxi-
mately 16 kb in size. They are characterized by high gene density and
absence of introns [3].With exception of approximately 1 kb noncoding
regulatory fragment, so-called D-loop, it is entirely transcribed and only
the full expression of mitochondrial genomewill let the cell tomaintain
the proper respiratory capacity [3].

In contrast to nuclear DNA, mitochondrial genome is characterized
by coexistence of numerous identical DNA molecules. The mtDNA
copy number in most human cells ranges from 102 to 104 per cell and
can reach 106–7 in oocytes, often constituting up to 1% of total DNA
cell mass [4]. AlthoughmtDNAwas initially considered to be naked, un-
protected, and vulnerable to damage, research over the last decades has
shown that mtDNA is protein-coated and packaged into nucleoids [5].
The protein that packages mtDNA in animal mitochondria is called
ndrial Dysfunction in Aging.
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mitochondrial transcription factor A (TFAM) and it owes this to its abil-
ity to bind, wrap, bend, and unwind DNA without sequence specificity
[6]. A large number of other mitochondrial proteins have been ascribed
to nucleoids based on their interactionswithmtDNA [7]. However, asso-
ciation of a protein that is essential for mtDNA maintenance does not
necessarily mean that it has a role in structural organization of the nu-
cleoid. Therefore, this view has been challenged by latest results using
stimulated emission depletion (STED) microscopy and showing that
mitochondrial nucleoids have a uniformmean size in a variety of mam-
malian species, and this size corresponds to a single mtDNA molecule
wrapped by TFAM [8].

MtDNA is replicated independently of cell cycle and irrespectively to
the replication of nuclear genes [9]. The proper balance betweenmtDNA
replication,mitochondrial dynamics, mitophagy andmitochondrial bio-
genesis ensure the continuous turnover of mtDNA [9]. The importance
of mitochondrial genetic information is stressed by the fact that mito-
chondria preserved very complex and unique machinery to maintain
and express the content of mtDNA [9]. Many of the proteins involved
in this processes will be discussed in more details later.

Although mitochondria persist their own genome, its coding capac-
ity allows only small, essential, subset of proteins that is vital for mito-
chondrial function in energy production. In humans and most other
animals, these are 13 protein subunits of the respiratory chain (ND1-
ND6, ND4L, CytB, COX I-III, ATPase6 and ATPase8). Besides them, mito-
chondrial genome encodes for all RNA species (2 rRNA and 22 tRNA)
required for mitochondrial genes expression. As a consequence, an
overwhelming majority of ≈ 1100 mitochondrial proteins, including
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those involved in maintenance and expression of mitochondrial ge-
nome, are encoded by nuclear genes, synthesized on cytoplasmic
ribosomes and imported intomitochondria. Remarkably, almost a quar-
ter of these proteins, as estimated in budding yeast, seem to be involved
in maintenance and expression of mtDNA [10]. This raises a question:
why would eukaryotic cells invest more than 250 proteins to be able
tomake just a handful of them insidemitochondria? This question is in-
timately linked to another one:whymtDNAhas been so carefullymain-
tained during evolution? Even after years of research we do not have a
definite answer to these queries although some suggestions have been
made to relate it to high hydrophobicity of mtDNA-encoded proteins or
to the need for additional layer of regulation of the oxidative phosphor-
ylation capacity.

2. Mitochondrial DNAmutations

Since the identification of the first human pathological mtDNA mu-
tations in 1988 [11,12], it became increasingly clear that mtDNA muta-
tions are at the core ofmanyhuman diseases and their frequency is very
high in general population, reaching N 1:200 in live births. Currently
there aremore than 600 different pointmutations reportedly associated
with different human diseases (source: Mitomap.org). Although many
have not been definitively shown to cause disease, for some the evi-
dence is more compelling. Unfortunately, a couple of unique features
of mtDNA genetics and inheritance still makes it very difficult to predict
the course of the disease, prenatal diagnosis and/or genetic counselling
in everyday clinical practice. First of all, mtDNA does not follow the
Mendelian rules of inheritance. In most animals, as in humans, mtDNA
is maternally inherited. Therefore, a mother carrying an mtDNA muta-
tion can transmit it to her children, but only her daughters can further
transmit it to the next generation. As each cell contains ~10,000 copies
of mtDNA a pathogenic mutation could be present in all or just few of
copies of the molecule. Existence of two or more different populations
of mtDNA in a single cell is called heteroplasmy in contrast to
homoplasmy where all mtDNA molecules are identical. This leads us
to yet another problem of the mtDNA complexity: the threshold effect.
Threshold effect represents the minimal critical level of a pathogenic
mutation in mtDNA that should be present in the cell or tissue to have
a deleterious effect. A certain proportion of mutant mtDNA must be
present before reduction of OXPHOS activity is observed, and the
threshold is lower in tissues that are more dependent on oxidative
metabolism. Different thresholds exist for different types ofmtDNAmu-
tations, ranging from 90% for some tRNA mutations [13,14] to 60% for
largemtDNAdeletions [15]. The last but not least problemofmtDNA ge-
netics is mitotic segregation. Random distribution of mtDNAmolecules
during cell division can result in increased amount of mutant mtDNA
molecules in one of the daughter cells. This can lead to a cell carrying
low levels of mutated molecules giving rise to one of relatively high
levels,which in turnwill affect oxidative phosphorylation in that cell. Fi-
nally, given that there are hundreds of genes in nuclear genome bigger
that thewholemtDNA, it is remarkable how this small piece of DNA can
cause so many different metabolic diseases, be causatively linked to
numerous age-associated disease and influence aging process itself.

Although, historically most frequently detected somatic mtDNA
mutations were large deletions that result in smaller, circular mtDNA
molecules [16,17], it is increasingly recognized that the most common
types of mutations observed in the mtDNA are single nucleotide substi-
tutions, single base insertions or single base deletions [18] and thatmost
of us carry appreciable numbers of low-level mtDNA variants in our cell
[19]. The frequency of somatic mtDNAmutations can exceed the muta-
tion frequency of the nuclear genome by several orders of magnitude
[20]. Although initially this difference was attributed to increased
mtDNA damage from elevated concentrations of endogenous reactive
oxygen species produced as by-products of oxidative phosphorylation
[21,22], many recent studies argue against any significant contribution
of oxidative damage in mtDNA mutation accumulation [23–25]. In
recent years, advantages in the whole genome analysis through devel-
opment of next-generation sequencing techniques, allowed also very
detailed analysis of mtDNA mutational spectra in various tissues.
These studies demonstrated that mtDNA mutations indeed increase
with increasing age [23–25]. Surprisingly, G→ T mutations, considered
the hallmark of oxidative damage to DNA, do not follow this trend and
overall represent a minor portion of all detected mutations [25]. Pre-
dominant mutations detected in these studies are transition mutations,
consistent withmisincorporation by DNA polymerase γ or deamination
of cytidine and adenosine as the primary mutagenic events in mtDNA
[23–25]. Overall these results argue against oxidative damage being a
major cause of mtDNA mutagenesis and suggest that replication errors
and/or spontaneous base hydrolysis are responsible for the bulk of accu-
mulating point mutations in mtDNA. Therefore, this review focuses on
recent advances in understanding the role of different proteins involved
inmaintenance, repair and replication of mtDNA and their possible role
in creation of mtDNA mutations.

2.1. Lack of sophisticated packing and histone protection

In a contrastwith highly regular packing of nuclear DNA, mtDNA ex-
ists in a histone-free form indicating that it is deprived of the effective
protection against damage. MtDNA itself sets up into the uniform and
compact structures suggesting the regular and firm packing [8]. Despite
the lack of histones mtDNA is packed in nucleoids by TFAM that binds
and wraps mtDNA molecules providing tight and efficient bundling
[8]. Therefore, besides being an essential regulator of mtDNA transcrip-
tion and replication in higher eukaryotes, TFAM is believed to ensure
the histone-like protection and provide proper architecture to mtDNA
[26]. Abundance of TFAM changes themtDNA levels in amutual, direct-
ly proportional and dose-dependent manner [6,26], hence, the loss of
TFAM in mammalian mitochondria results in complete loss of mtDNA
and embryonic lethality [27]. Tissue specific loss of TFAM leads to car-
diomyopathy, muscle weakness, Parkinson-like neuronal dysfunction
and diabetes (for review see [26]). In agreement, TFAM overexpression
increases mtDNA levels, diminishes oxidative damage and ameliorates
mitochondrial deficiency [28,29]. Recently, the role of TFAM inmodula-
tion of mitochondrial base excision repair has also been suggested [30].
TFAM downregulation associates with higher 8-oxoguanine (8oxoG)
incision activity without changes in OGG1 protein levels and results in
accumulation of mtDNA damage [30]. This is in agreementwith a previ-
ous in vitro study stating that TFAM favours binding to DNA containing
8oxoG or cisplatin adducts [31].

Taken together these data suggest that low levels or complete
loss of TFAM may potentially cause a variety of mtDNA mutations.
MtDNA point mutations and small deletions may be generated due
to the lack of structural protection against the physical and chemical
mutagens. MtDNA deletions and rearrangements may result from af-
fected mtDNA replication and repair on misfolded mitochondrial nu-
cleoids. Finally the complete loss of mtDNAmay take place due to the
extensive degradation of uncoated mtDNA molecules and/or mtDNA
missegregatation into the daughter cells. Thus TFAM deficiency consti-
tutes very potent although nonspecific mtDNA mutator model. On the
other hand, overexpression of TFAM or posttranslation modulation of
its activity might provide interesting antimutator properties.

2.2. Limited mtDNA repair

To prevent the accumulation of DNA damage, that may exert dra-
matic repercussion on a cellular function, five different types of DNA re-
pair emerged in animal cells, exhibiting complementary, yet in some
instances overlapping, substrate specificity: direct reversal, base exci-
sion repair (BER), mismatch repair (MMR), nucleotide excision repair
(NER) and DNA double-stranded break repair. Of the repair mecha-
nisms that have been described in mitochondria, BER is the most
documented.
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2.2.1. Base excision repair
BER repairs a broad range of base modifications, fixes abasic sites

and single-strand breaks in DNA. Thus BER is a major weapon
correcting the hydrolytic, alkylated and oxidative lesions as well as
ROS induced DNA breaks [32]. Mitochondrial BER machinery in-
cludes: DNA glycosylases that recognize and remove mutated base
in a damage-specific manner (OGG1, UNG, NTH1, NEILI1/2, MUTYH,
MTH1), AP endonuclease that process the abasic site (APE1), POLG
that re-synthesizes lacking DNA patches and DNA ligase (LIG3) that
seal the DNA fragments back [33]. There are evidences for both
short-patch and long-patch BER repair pathways in mitochondria
[33]. Interestingly, some studies show that the efficiency of mamma-
lianmitochondrial BER pathway changes with age in a tissue-specific
manner [34].

OGG1, 8-oxoguanine DNA glycosylase specifically recognized and
removes 8oxoG adducts, the major mutagenic lesion generated by
ROS [35]. 8oxoG adducts undergo pairing with adenine or cytosine
during replication thus generating the T:A and G:C transversions [35].
However, OGG1 does not recognize adenines mispaired with 8oxoG
bases. Therefore adenine has to be firstly removed by MUTYH to allow
subsequent pairing [36]. These adducts were found in association with
neurodegenerative diseases, some types of cancer and insulin insensi-
tivity [37].

Although OGG1 acts mostly in nucleus, themitochondria targeted
isoform (Ogg1-2a) has been also identified (Nishioka et al, 1999;
Panduri et al, 2009). In vitro studies showed that the presence of
8oxoG adducts in a DNA template prevents POLG processing through
the lesion, suggesting that POLG cannot bypass these lesions without
preceding action of BER machinery [38]. A number of studies
analysing the effect of OGG1 overexpression in isolated cells suggest
that OGG1 protects against oxidant-induced mitochondrial dysfunc-
tion and intrinsic apoptosis, increases membrane potential, de-
creases mitochondria fragmentation and upregulates mtDNA levels
[39–42] For example, myotubes isolated from Ogg1 overexpressing
animals have increased ATP levels and mitochondrial mass, insulin
sensitivity is enhanced while levels of mitochondrial ROS and
palmitate-induced mtDNA damage were reduced [42]. However,
these data are obtained from cells exposed to high oxygen concen-
trations present in cell culture (20% O2), and it is difficult to under-
stand their physiological relevance as most of cells in our bodies
are confronted to 2–3% O2 and therefore are never exposed to that
level of oxidative stress. In agreement with this, some contradictory
results were obtained in fruit fly cell lines overexpressing OGG1.
Here, decreased accumulation of 8oxoG adducts in mtDNA was de-
tected while cells became more susceptible to oxidative stress
inflicted by paraquat and hydrogen peroxide treatment [43]. Those
findings suggest that although OGG1 may indeed reduce 8oxoG
adducts in mtDNA it rather affects overall mitochondrial function
and decreases cellular survival.

Most studies in vivo suggest that OGG1 function does not affect over-
allmitochondrial function, nor significantly influencesmtDNAmutation
accumulation. OGG1 deficientmice have a 20-fold increase inG levels in
the entire DNA pool, in comparison to wild-type mice [44]. Although it
was initially suggested that the consequences of an OGG1 defect
might be restricted to slowly proliferating tissueswith high oxygenme-
tabolism such as liver or heart, suggesting primary effect on mtDNA
maintenance [44], subsequent studies showed that mitochondria from
Ogg1-/- mice were functionally normal [45]. The authors found no dif-
ferences in maximal phosphorylation rates, no differences in maximal
activities of complexes I and IV and no indication of increased oxidative
stress in mitochondria from Ogg1-/- mice, as measured by protein car-
bonyl content [45]. Moreover, a loss-of-function mutation in Ogg1 did
not significantly influence the somatic mtDNA mutation frequency in
flies with extremely reduced activity of manganese superoxide dismut-
ase 2 (SOD2), a primary enzyme that detoxifies superoxide anionwithin
mitochondria [23]. Although increasedmtDNA damage was detected in
mice deficient of OGG1, but not in mice deficient of OGG1 and MUTYH,
during early heart reperfusion, six weeks after reperfusion in vivo, this
difference disappeared [46]. The lack of functional impairment after
ischemia–reperfusion injury in Ogg1 and Ogg1/Mutyh knockout
models could not be explained by compensatory upregulation of
other potential mitochondrial BER enzymes suggesting that repair
of mitochondrial DNA oxidative base lesions may not be important
for maintenance of cardiac function during ischemia and reperfusion
[46]. Together, these findings indicate that oxidative stress is not a
major cause of somatic mtDNA mutations [23,45,46].

UNG1, uracil DNA glycosylase removes uracil bases misincorporated
into DNA strands. Beside uracil, UNG is also able to remove 5-flurouracil
and oxidation products of cytosine adducts from DNA [47]. Uracil ap-
pears in DNA as a result of spontaneous deamination of cytosine or
due to misincorporation of dUMP instead of dTMP during replication.
Therefore UNG prevents GC to AT transitions [47]. Nuclear (UNG2)
and mitochondrial (UNG1) isoforms of UNG are generated by alterna-
tive splicing and transcription from different positions in the UNG
gene [48].

Inactivation of UNG1 gene in yeast generates a 3-fold increased in
mtDNA point mutation rate [49]. In contrast, specific inhibition of
UNG1 activity in human cells does not result in mtDNAmutator pheno-
type [50]. Similarly, UNG1 deficient mice are characterized by normal
mutation rates in mtDNA and do not differ from their wild-type litter-
mates [51]. However, upon exposure of UNG deficient fibroblasts to
nitric oxide donor, the uracil/cytosine ratio in DNA and a cell death
rate increased [51]. It seems like, as for most other mtDNA repair en-
zymes, that only extremely strong, non-physiological conditions, using
hazardous mutagens results in oxidative damage of mtDNA. This sug-
gests that, in general, mtDNA is well protected from oxidative stress,
possibly via TFAM packing, and that mtDNA mutations accumulate as
a result of other processes. However, the mtDNA mutator properties
of UNG1 should not be completely dismissed, as it was shown that the
expression of forebrain neuron-specific mutant version of UNG1, that
is able to remove thymine instead of uracil from mtDNA, causes accu-
mulation of AP sites in mtDNA leading to apoptosis and neurodegener-
ation [52].

NTH1, Endonuclease III-like 1 initiates the BER repair of oxidized ring
pyrimidine residues. NTH1 recognizes and binds C5-C6 rings saturated
pirimidines and releases the lesion generating the AP site [53]. NTH
was shown to recognize thymine glycol, cytosine glycol and cytosine
hydrate that are formed as a result of aerobic ionizing radiation, oxida-
tive stress and UV irradiation and might be prone to deamination [53].
Other DNA adducts targeted to NTH1 may include ring-opened
formamidopyrimidine lesions that are formed at high rates upon oxida-
tive stress and result fromhydroxyl radical attack on guanine or adenine
[54].

Null Nth1 animals are healthy, fertile and overall phenotypically
indistinguishable from their wild type littermates [53,55]. Furthermore,
mouse embryonic fibroblasts isolated from NTH1 deficient animals did
not show any sensitivity to hydrogen peroxide or menadione [55]. Re-
markably, tissues of NTH1 deficient animals exhibited activity raised
against oxidized thymine suggesting that compensatory enzyme activi-
ty exists in those animals [53,55]. This suggests that mtDNA repair en-
zymes might be not as specific as they are thought to be and they can
take over the function of missing ones.

NEIL1/ NEIL2 (Nei endonuclease VIII-like 1 and 2) are two
DNA glycosylases with preference toward oxidized pyrimidine,
formamidopyrimidine and 5-hydroxyuracil. They have associated DNA
glycosylase/lyase activity towards mismatched thymine and uracil
favouring removal of T:C and U:C mismatches [56,57]. Contrary to
other DNA glycosylases of BER machinery NEIL1/2 exhibit activity to-
ward DNA bubbles formed by mismatched double-stranded DNA.
Therefore they might be able to repair oxidative lesions on replicated
and transcribed DNA [57]. Furthermore, NEIL1/2 are able to repair
DNA lesions independently of subsequent APE processing [160].
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NEIL1 can complement the activity of OGG1 and NTH1, particularly
when those two are downregulated or dysfunctional [54]. Remarkably,
both Neil1 -/- and+/- animals showmetabolic syndrome characterized
by severe obesity, dyslipidemia and liver failure, even when external
stress is absent [58]. NEIL1 deficient animals also showed elevated
steady-state levels of mtDNA deletions even without presence of any
stressors, although the technique used in these studies (qPCR) is not
quantitative and is prone to artefacts [58].

Human NEIL2 also colocalize to mitochondria and it seems to inter-
act with the DNA end-processing enzyme polynucleotide kinase 3′-
phosphatase (PNKP) [59]. Chromatin immunoprecipitation analysis
showed association of NEIL2 and PNKP with the mitochondrial genes
MT-CO2 and MT-CO3 (cytochrome c oxidase subunit 2 and 3); impor-
tantly, both enzymes also associated with the mitochondrion-specific
DNA polymerase γ [59]. Depletion of NEIL2 or PNKP in HEK293 cells in-
creases the rate of single strand breaks, further supporting their role in
maintenance of mtDNA integrity [59].

Therefore, NEIL1/2 when downregulated could act as mtDNA
mutators, even without exposure to additional stress, unlike other BER
associated DNA glycosylases [45,51,53]. It is likely that this is related
to their specific repair function during replication/transcription of
mtDNA, in agreement with notion that mtDNA is prone to damage
only when unwinded/uncoated during replication or transcription.

MUTYH, mammalian homolog of E. coli MutY is another DNA
glycosylase that takes part in correction of 8oxoG oxidative lesions.
MUTYH prevents G:C to T:A transversions by recognizing and excision
of the 2-hydroxyadenine or adenine incorporated opposite to guanine
or 8oxoG, respectively [60,61]. In agreement with strong mutator phe-
notype, MUTYH deficient animals are more prone to spontaneous tu-
mors due to increased nuclear DNA mutation rate [62]. The role of
MUTYH in mitochondria is less clear as it is hard to separate it from
the strong nuclear phenotype. There are some indications that mito-
chondrial MUTYH isoform is needed for mtDNA stability, but more ex-
periments are needed to confirm this [63].

MTH1, is an 8-oxoGTPase present both in nucleus and mitochondria
that works to primarily prevent oxidized dGTP from being incorporated
into DNA and it also shows affinity to 8-oxo-ATP and 2-OH-dATP [64].
As a result oxidized purines cannot generate A:T to C:G and G:C to T:A
transversions. Although it was shown that Mth1–/– mice are slightly
more prone to certain types of tumors, it is likely that the phenotypes
of these mice are related to nuclear DNA mutations, rather than
mtDNA changes, as it was shown that themice accumulate higher levels
of mutations in nuclear encoded genes [65].

APE1, apurininc/apyrimidinic (AP) endonuclease catalyzes incision
of phosphodiester backbone of the AP site created when DNA
glycosylase removes the damaged base from DNA. The lack of APE1 in
rodents is lethal while heterozygous animals showed reduced repair
of certain BER lesions [66]. Although APE1 primary localizes to nucleus
in basal conditions, it was suggested that it shuttles into mitochondria
upon mtDNA damage or elevated oxidative stress to participate in re-
storing of mitochondrial function [67,68]. Again here, it is difficult to es-
timate the significance of APE1 for mitochondrial physiology and
mtDNA maintenance since it harbours a complex function in transcrip-
tion and repair of nuclear DNA [69].

LIG3, DNA ligase III (LIG3) provides sealing of discontinuous DNA
strands and thus confers the last step of DNA lesions repair. LIG3 is an-
other factor of BER repair shared between mitochondria and nucleus
compartment. Nuclear isoform of LIG3 plays a role in a DNA replication,
in some cases of double strand break repair and in broadly defined
single stranded break repair including BER [70]. LIG3, the only vertebral
mitochondrial DNA ligase identified so far [71,72], is absent in yeast
who instead posses Cdc9 ligase essential for the overall DNA sealing
events in replication, repair and recombination of mtDNA [73]. Al-
though initially it was suggested that LIG3 is bound to XRCC1, a key fac-
tor for the single-strand break DNA repair in the nucleus, recent studies
showed that is dispensable for the nuclearDNA repair, but is central and
essential for mitochondrial DNAmaintenance [71,72]. Inside mitochon-
dria LIG3 interacts with tyrosyl-DNA phosphodiesterase 1 (TDP1),
NEIL1/2 glycosylases, and POLG [74]. Downregulation of LIG3 in
human fibroblastoma cell lines decreased mtDNA, levels, diminished
respiration and lead to accumulation of SSB in remaining mtDNA,
while complete lack of LIG3 in murine cells leads to full depletion of
mtDNA, underlying the essential role of LIG3 in mitochondrial genome
maintenance [75,76],

2.2.2. Mismatch repair
The primary role of the MMR pathway is the repair of base-base

mismatches and insertion/deletion loops. The key protein complexes
of the MMR system are the MutS and MutL families which are highly
conserved from lower organisms to eukaryotes [77]. There is little
evidence that nuclear form of MMR exists in mtDNA, and most en-
zymes essential for the MMR are not found in mitochondria [78].
However some findings support the existence of MMR activity in
mammalian mitochondria [79] and the Y-box binding protein 1
(YB-1) may facilitate a unique mitochondrial mismatch repair pro-
cess in human cells [78]. It was also proposed that POLG proof-
reading activity that allows high fidelity replication, might minimize
the need for mismatch DNA repair in mammalian mitochondria [80].
However, that does not explain why budding yeast mitochondria
have canonical mitochondrial MMR, despite having similar POLG
proofreading activity. Historically, first mtDNAmutators were isolat-
ed in yeast and mapped to Mip1 gene, encoding POLG homolog, and
to Msh1 gene, encoding a mitochondrial homolog of Mut S factor
from E.coli that acts in mismatch repair [81]. MSH1 posses DNA bind-
ing activity and dATPase activity that allows recognition, binding and
removal of DNA mismatches. However the affinity of MSH1 toward
different mismatches vary with an overall preference for G:T and A:
T transversions which overlaps with types of transversions permit-
ted by MIP1 [82]. This indicates that MSH1 might acts directly in
post-replication proofreading of errors overlooked by POLG in yeast.

2.2.3. Nucleotide excision repair
Nucleotide excision repair (NER) provides mechanisms for exci-

sion of bulky adducts and helix-distorting lesions from DNA strand
and is efficient toward DNA cross-links. Bulky adducts can be gener-
ated by exposure to UV light or to some of carcinogenic compounds.
Mitochondria lack the NER mechanism responsible for the removal
of UV-induced pyrimidine dimers and consistent with this, mito-
chondria display very poor repair of cisplatin intrastrand crosslinks
[83]. As bulky adducts are not removed from mtDNA and to prevent
replication/transcription stalling, it is likely that mtDNA bearing
bulky lesions is likely directly targeted for degradation [84]. The
only evidence to date for an NER-like mechanism in mitochondria
is the presence of the Cockayne syndrome proteins, CSA and CSB,
which in nucleus are required for the transcription-coupled NER
(TC-NER) [85]. However, the role of CS proteins in mitochondria dif-
fer from their nuclear functions, as they seem to be associated with
BER and transcription of mitochondrial DNA [85]. Although some
other roles, like the one in repair of double strand breaks, have
been proposed for the mitochondrial CS proteins, this has to be con-
firmed by further experimental evidence [85].

2.2.4. Single strand break repair
SSBR is often considered a subpathway of BER due to end processing

events to restore the 5′ and 3′ termini of the DNA, before ligation
proceeds [86]. However, there are other instances whereby end pro-
cessing at an SSB may occur but is not necessarily preceded by the
other steps of BER i.e. removal of a damaged base and cleavage at an
abasic (AP) site [86]. SSBs are often a result of abortive topoisomerase
1 (TOP1) activity involving collisionwith RNA polymerases during tran-
scription or with DNA polymerases during replication [86]. This type of
break has become the focus of much attention in recent years, because
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defects in this type of repair are associatedwith the two genetic disease:
ataxia with oculomotor apraxia type 1 (AOA1, caused by mutations
in aprataxin – APTX) [87] and spinocerebellar ataxia with axonal neu-
ropathy type 1 (SCAN1, caused by mutations in TDP1 – tyrosyl-DNA-
phosphodiesterase 1) [88]. APTX removes 5′-AMP groups that arise
from aborted DNA ligation reactions [89], while TPD1 is a key enzyme
for the repair of trapped TOP1 cleavage complexes [90]. As presence
and activity of these enzymes have recently been identified in themito-
chondrion and mutations in both genes cause ataxia, a feature very
often associated with mitochondrial disease, it was suggested that
both AOA1 and SCAN1 are primarily mitochondrial disorders [32]. In-
deed, both TPD1 and APTX seems to be important for the mtDNAmain-
tenance as their loss leads to mtDNA depletion and/or increased
number of mtDNA mutation [91,92].

2.2.5. Mitochondrial recombination DNA repair (DSBR)
Irradiation, chemical agents and UV light can generate double strand

brakes (DSB) in DNA molecules. DSB are the critical DNA lesions that
might lead to genome rearrangements. Nuclear genome is well
protected from DSB thanks to the homologous recombination (HR)
and non-homologous end joining (NHEJ). It is still not completely
clear if these pathways are present in mammalian mitochondria, as
there are studies supporting both views [93–95]. Some claim that both
DSBR pathways seems to be either entirely absent or heavily attenuated
in mammalian mitochondria [93]. It is speculated that the organelle
may encounter less of the adducts processed by these mechanisms, or
that the high energy demand and complicated mechanics of these
processes may make DNA repair not essential for the mitochondria,
since it has access tomultiple copies of its genomes [93]. Others propose
that inefficient DBSR in mammalian mitochondria may significantly
contribute to large scale deletions observed commonly in patients suf-
fering fromdeficiency inmtDNAmaintenance [94,95]. However, the en-
zymes involved in this process are still largely unknown, although a
number of them, including POLG have been proposed to play a role in
this process [95].

Taken together the evidence from research on different repair
mechanism in mammalian mitochondria again suggests that majority
of deleterious mutations arising from the deficient mtDNA repair are
rather not connected with adducts arising from oxidative damage, but
are linked to mtDNA replication.

2.3. Fidelity of mtDNA replication

Fidelity of DNA replication creates amajor determinant of the genet-
ic information stability. Proper balance between the efficiency andfidel-
ity of DNA synthesis must be maintained by organism to avoid
mutations that can lead to diseases, cancer and even death. On the
other hand, low DNA synthesis fidelity provides diversity of genetic in-
formation, thus allowing flexibility of organisms in reaction to different
environmental stimuli. Fidelity of DNA replication strongly depends not
only onDNApolymerase, the key enzyme responsible for DNA synthesis
fidelity, but also on other enzymes and factors involved in DNAmainte-
nance, as well as on the type of damage in DNA and local DNA sequence
environment.

In a light of recentfindings it became increasingly clear thatmajority
of mtDNA mutations arise as a consequence of errors during mtDNA
replication with POLG as major mediator of mtDNA point mutations in
humans [96]. It was suggested that most mtDNA point mutations are
generated at the early stage of animal development as a result of
insufficient or unfaithful replication [97]. Large mtDNA deletions that
are often found in aged post mitotic tissues are initiated by single-
stranded regions of mtDNA, possibly generated through POLG exonu-
clease activity [95]. These single strands could then anneal with
microhomologous sequences on other single-stranded mtDNA mole-
cules or within the noncoding region and subsequent repair, ligation
and degradation of the remaining exposed single strands would result
in the formation of a circular mtDNA harboring a deletion [95].

Replication of themitochondrial genome requires unique enzymatic
machinery, composed of a set of factors encoded by nuclearDNAand re-
cruited to mitochondria. In vitro studies showed that the basic replica-
tion fork of human mitochondria can be reconstituted using primed
single-stranded DNA substrate and at least five mtDNA maintenance
factors: catalytic and accessory subunit of DNA polymerase gamma
(POLG and POLG2), mitochondrial RNA polymerase (POLRMT), replica-
tive DNA helicase (TWINKLE) and the mitochondrial single-stranded
DNA binding protein (MTSSB) [98]. Although this simple mitochondrial
replisome is sufficient to duplicate a DNA substrate in vitro, proper
maintenance and effective replication of the mitochondrial genome in-
volves a much longer and still growing list of factors [99]. Remarkably,
all those proteins were shown to significantly contribute to mutator
mtDNA phenotypes in mammals.

2.3.1. Mitochondrial DNA polymerase – POLG
Out of 16 highly specialized eukaryotic DNA polymerases, POLG is

the only one mediating all DNA synthesis events inside the mitochon-
dria thus bearing substantial responsibility for maintaining mtDNA.
Although POLG activity contributes just to 1–5% of the total cellular
DNA polymerase activity, it plays a key role in the integrity and viability
of eukaryotic cells [100]. Human POLG is a heterotrimer composed of a
140 kDa catalytic subunit (POLG) and a dimer of the p55 accessory
subunit (POLG2)which increases the activity and processivity of the en-
zyme [101]. The POLG subunit contains two main domains: the 3′–5′
exonuclease domain in the N-terminal part and the polymerase domain
in the C-terminal part [101]. These two domains are connected by a
linker region, which plays a role in DNA binding and processivity
through its contacts with the proximal accessory subunit [101]. POLG
possesses three catalytic activities: a DNA polymerase activity which
synthesizes DNA, a 3′–5′ exonuclease activity that proofreads nascent
DNA molecule and eliminates mispaired nucleotides and a 5′-deoxyri-
bose phosphate (dRP) lyase activity which catalyses the release of 5′-
terminal dRP sugarmoiety from incised apurinic/apyrimidinic sites dur-
ing posttranslational BER [102,103]. The proofreading activity of POLG is
essential for faithful DNA replication as it was estimated that reduces
load of mismatches approximately 20-fold [103,104]. In addition,
POLG exhibits a reverse transcriptase activity in vitro [105], which
could be physiologically relevant as it was shown that the premature
and accelerated aging of HIV-patients is likely caused by adverse effects
of some HIV-antiviral drugs (nucleoside analog reverse-transcriptase
inhibitors) that result in POLG – mediated loss of mtDNA integrity
[106]. Importance of POLG for cell health and viability is further stressed
by phenotypes presented by lower eukaryotic models lacking mito-
chondrial DNA polymerase. Depletion of POLG homolog, MIP1, in
yeast is not lethal, but results in complete loss of mtDNA and lack of
growth on nonfermentable carbon sources [107]. Disruption of POLG
homolog in fruit flies results in lethality at pupa stage associated with
loss of mtDNA, aberrant mitochondrial morphology and impaired
cell proliferation in larval brain [108]. In contrast, polg-1 deficient
C. elegansmutants have normal development and regular morphology,
but severe mtDNA depletion leads to sterility and shortened lifespan
[109]. The overexpression of POLG is also not beneficial for cells andmi-
tochondria. As shown in Drosophila, overexpression of POLG in nervous
system shortens lifespan, while the constitutive overexpression reduces
mtDNA copy number and results in lethality at pupal stage [110].
Similarly, the overexpression of POLG in yeast and roundworms is
toxic (authors observations). In contrast, long-term overexpression of
POLG in cultured human HEK293T cells did not have an impact on
mitochondrial function, reflected by mtDNA content and oxygen con-
sumption [104]. However, these cells were grown in high-glucose con-
dition, making them less dependent on mitochondrial function.

The most common changes in mtDNA that contribute to inherited
polymorphisms and disease-causing somatic mutations are G → A
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transitions (see http://www.mitomap.org/). These mutations allow G:T
mismatches to occur as a relatively frequent event and they overlap
with the DNA base substitutions produced by POLG in vitro and recapit-
ulate in vivo mtDNA mutations spectra produced by wild type or
defective POLG [96,104,111]. Remarkably, the base substitution spectra
generated by yeast MIP1 differs from those in human. This could be
potentially explained by the lack of MMR activity in mammalian
mitochondria that preferably and efficiently removes transitions in
yeast mitochondria [82].

2.3.1.1. POLGmutators.Mutations that abolishMIP1 exonuclease activity
in yeast result in the accumulation of base substitutions in mtDNA,
hence they are named mtDNA mutators [112]. These MIP1 mutations
are at least partially dominant, meaning that even in the presence of
wild-type MIP1, mutations accumulate in mtDNA [112]. MIP1 carrying
D171G, D230A or D347A mutation have even ~500 lower exonuclease
activity and100–200 fold increase in the number of pointmutations, ac-
companied by overall high mtDNA integrity with almost no effect on
MIP1 processivity [113]. MtDNA mutators in the polymerase domain
mostly map in a close vicinity to the polymerase active site and their
low fidelity may results from decreased selectivity toward dNTPs but
also impaired DNA synthesis or DNA positioning on MIP1 active site
[112,114]. They are characterized by modest increase of mtDNA point
mutation frequency that is most likely compensated by proficient 3′–
5′ exonuclease activity, and different extents of decreased polymeriza-
tion processivity, reflected by instability of mtDNA in vivo [114].

Similar to yeast, overexpression of exonuclease-deficient POLG
(D198A, homologous to D171 in yeast) in human cells led to high accu-
mulation ofmtDNApointmutations [104]. Transient expression of POLG
variants D890N or D1135A with mutations in polymerase domain
inhibited endogenous mitochondrial DNA polymerase activity and
caused mtDNA depletion [104]. Development of mtDNA mutator mice,
the first in vivo mtDNA mutator model allowed further understanding
of POLG contribution to mutational load in mammals [115]. The intro-
duced mutation (D257A, homologous to D230A in yeast) mapped to
the exonuclease domain and was designed to create a defect in the
proofreading function of POLG, leading to the progressive, randomaccu-
mulation of mtDNA mutations during the course of mitochondrial bio-
genesis [115]. As the proofreading in these mice was efficiently
prevented, they develop an mtDNA mutator phenotype with a three
to fivefold increase in the levels of random somatic point mutations
[115]. Remarkably, these mutations accumulate at a higher rate during
the time of development from oocytes to early embryonic life of
mtDNAmutator mice, than during the rest of their life when mutations
accumulate in rather linear fashion [115]. In addition to the standard
circular chromosome, mtDNA mutator mice also harbour large linear
mtDNAmolecules caused by replication stalling [116]. These molecules
are around 11–12 kb in length, and encompass the region between the
origins of replication for the heavy (OH) and the light strands (OL).
Around 25–30% of the mtDNA consists of these linear deleted mole-
cules, and this ratio does not change as the animal age [115]. The
POLG exonuclease activity may be involved in resolution of replication
intermediates at OL , which may explain why exonuclease deficiency
will lead to replication stalling, thus leaving the mtDNA molecule sus-
ceptible to breakage at the stall site [116].

2.3.1.2. Can we increase POLG fidelity?. Antimutators are the protein var-
iants, the best established in DNA polymerases group, which reduce
mutational load in DNA. Antimutator profile of DNA polymerases can
be obtained by changes within its protein sequence that increase the
proofreading efficiency, rise nucleotide selectivity or favour dissociation
of polymerase from the primer termini prior to misincorporation [117].
Pioneering studies with bacteriophage T4 DNA polymerase (T4 Pol)
established the paradigm that antimutator amino acid substitutions re-
duce replication errors by increasing proofreading efficiency at the ex-
pense of polymerase processivity [117]. Recently, an attempt has been
made to isolate and characterized antimutator alleles in Mip1, a yeast
POLG homologue [118]. Discovered antimutator Mip1 variants carried
a change in the 3′–5′ exonuclease domain and showed 2–15 fold de-
crease in the mtDNA point mutation frequency in an MMR deficient
background [118]. Biochemical characterization of those variants re-
vealed that stimulated DNA excision versus DNA synthesis could be
beneficial for the proofreading ability of MIP1 [118]. Remarkably, at
least one antimutator variant showed normal polymerase activity sug-
gesting that baseline-proofreading properties of MIP1 are not optimal
and can be still enhanced without decline in overall function of enzyme
[118]. Therefore, it would be of great interest to determinewhether the
corresponding substitutions act as antimutators in human enzyme.
Based on the finding that any modification of the balance between
DNA synthesis and excision must be extremely subtle to favour
exonucleolysis without disturbing processivity of DNA polymerization,
the impact of these substitution in POLG function cannot be anticipated
[118]. Moreover, although yeast and human mtDNA transactions share
many features, substantial differences characterize the replisome, in-
cluding the presence of an accessory subunit in human POLG and differ-
ent DNA helicases. Finally, MMR does not exist in humanmitochondria,
and beside proofreading, the mechanisms by which human mtDNA
point mutations are removed remain to be elucidated [118].

2.3.1.3. POLGmutations and disease.Mutations in POLG are an important
cause of mitochondrial disorders and until today more that 200 differ-
ent pathogenic POLG alleles have been identified (http://tools.niehs.
nih.gov/polg/). Mutations in POLG can: (i) affect the polymerase or 3′–
5′ exonuclease activity; (ii) diminish the recognition of dNTPs; (iii) de-
crease the processivity of the enzyme; (iv) abolish the binding or
partitioning of DNA template between two active sites; (v) or misfold
the overall structure of POLG resulting in its loss [119]. As a consequence
POLGmutations could lead to accumulation of mtDNA point mutation,
increased frequency of mtDNA deletions/large-scale rearrangements,
have a combined effect on accumulation of both point mutations and
deletions, or lead to a depletion of mitochondrial genome [119]. The
clinical identification of mitochondrial diseases associated with POLG
mutations is difficult because POLG-related diseases evolve over time
and have an overlapping range of symptoms with multiple organ sys-
tem involvement and with different degrees of severity and timing of
onset [120]. The most common disease caused by mutations in POLG
gene is adult-onset progressive external ophthalmoplegia (PEO), that
could be a result of dominant or recessivemutation associatedwith sin-
gle or multiple mtDNA deletions and often varying degrees of tissue-
specific mtDNA depletion [120]. A generalized myopathy is present in
most patients PEO patients, and can also be associated with sensory
ataxia, neuropathy, dysarthria, myopathy, Parkinsonism, premature
ovarian failure and cataracts [120]. The Alpers syndrome that leads to
hepatocerebral mtDNA depletion during infancy and death at an early
age, is the most severe form of POLG disease [120]. Remarkably, studies
in animal models show that disease-associated POLGmutations can sig-
nificantly increase the vulnerability of mtDNA to lesions generated by
exogenous mutagens [121,122].

2.3.1.4. POLGmutation and aging. Ageing is associated with both mtDNA
deletions and mtDNA point mutations. The highest levels of age-
associated multiple mtDNA deletions are observed in post-mitotic tis-
sues with high energy demands such as heart, skeletal muscle and
brain [123,124]. The search for mtDNA point mutations, in tissue ho-
mogenates of ageing individuals gave rather disappointing results
with very low levels of specific mutations (0.04–2.2%) [125]. When sin-
gle cells were analysed, mtDNApointmutationswere observed to accu-
mulate to high levels in an age-dependent and tissue-specific manner
[126,127]. Still there was an open question if mtDNA mutations could
be a driving force of ageing? The creation of mtDNA-mutator mice has
provided the first direct evidence that accelerating themtDNAmutation
rate can result in premature aging, consistent with the view that loss of

http://www.mitomap.org/
http://tools.niehs.nih.gov/polg/
http://tools.niehs.nih.gov/polg/
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mitochondrial function is a major causal factor in aging [115]. The
mtDNA mutator mice display a completely normal phenotype at birth
and in early adolescence but subsequently acquiremany features of pre-
mature aging. The increase in somaticmtDNAmutations in thesemice is
associated with reduced lifespan and premature onset of aging-related
phenotypes such asweight loss, reduced subcutaneous fat, alopecia, ky-
phosis, osteoporosis, anaemia, reduced fertility and heart enlargement
[115]. Premature ageing phenotypes in mtDNA mutator mice are not
generated by a vicious cycle of massively increased oxidative stress ac-
companied by exponential accumulation ofmtDNAmutations [128]. In-
stead, the observed phenotypes are a direct consequence of the
accumulation of mtDNA point mutations in protein-coding genes, lead-
ing to a decreased assembly of the respiratory chain complexes, respira-
tory chain dysfunction and thus to premature ageing ofmtDNAmutator
mice [129]. The results indicating that mutations in the protein coding
genes have the most deleterious impact on the somatic cells are in
agreementwith a study showing the existence of strong purifying selec-
tion against mutations within mtDNA protein-coding genes in the
germline [130].

2.3.2. POLG2
To achieve the full processivity, mammalian POLG catalytic sub-

unit requires interaction with the homodimer of 55 kDa POLG2 ac-
cessory subunit [101]. POLG2 binds POLG through the interaction
with its linker region stimulating the holoenzyme affinity to DNA
[98]. Remarkably, the 3′–5′ exonuclease proofreading activity of
POLG is significantly reduced upon association with POLG2 to form
the holoenzyme [131]. This reflects how enhanced processivity can
compromise fidelity of DNA polymerases, highlighting again the im-
portance of proper balance between efficiency and precision of DNA
synthesis for the integrity of mtDNA. Therefore, POLG2 could be an
interesting target for modulation of mtDNA proofreading, as some
variants could potentially have mtDNA antimutator properties.

POLG2 genes have been identified in human, mouse, frog and fruit
fly, but they are missing in the genomes of Saccharomyces cerevisiae
and Caenorhabditis elegans [132]. POLG2 disease mutation are rare and
in most cases reported in patients suffering from PEO [133]. POLG2 is
absolutely required for viability and mtDNA maintenance and its loss
leads to embryonic lethality around E8.0–8.5 [134], similar to deficien-
cies in other mitochondrial proteins necessary for mitochondrial main-
tenance, including POLG [135]. Knockdown of POLG2 in cultured human
cells increased nucleoid numbers, whereas its over-expression reduced
the number and increased the size of mitochondrial nucleoids [136].
Both increased and decreased POLG2 levels altered nucleoid structure
and caused a marked decrease in 7S DNA molecules, which form
short displacement-loops on mitochondrial DNA. Remarkably and in
contrast to POLG, POLG2 preferentially binds to plasmids with a short
displacement-loop, supporting the view that the mitochondrial D-loop
acts as a protein recruitment center, and suggesting that POLG2 is a
key factor in the organization of mitochondrial DNA in multigenomic
nucleoprotein complexes [136].

2.3.3. Mitochondrial DNA helicase – TWINKLE
TWINKLE is amitochondrial DNA helicase required for unwinding

and subsequent separation of mtDNA strands [137]. TWINKLE has
been originally identified in a screen for mutations in patients bear-
ing mtDNA deletions [138]. TWINKLE mutations co-segregate with
PEO, hepatocerebral syndrome associated with mtDNA deletions,
spinocerebellar ataxia and Perrault syndrome. Muscle-specific con-
ditional knockout mice showed that TWINKLE is the unique mtDNA
replicative helicase indispensable to embryonic development and
lack of TWINKLE results in a rapid loss of mtDNA [139]. Animals
overexpressing TWINKLE with PEO patient mutations recapitulate
phenotype presented by human patients with accumulation of
mtDNA deletions and late-onset progressive respiratory deficiency
[140]. Mice overexpressing wild type TWINKLE show 3-fold elevated
mtDNA levels and are protected against heart failure [140]. Similarly,
overexpression of TWINKLE in cardiomyocytes of mice partially defi-
cient in SOD2 (Sod2+/-) prevents stalling of replication, decreases
mtDNA point mutation load and ameliorates the late onset cardio-
myopathy [141]. This finding indicate that beside the role in fluency
and precision of the mtDNA synthesis under normal conditions,
TWINKLE could be important for the accuracy of mtDNA replication
under various stresses.

2.3.4. Mitochondrial single-strand DNA binding protein – MTSSB
Although SSBP (single-stranded DNA-binding proteins) do not pos-

sess direct catalytic activity they are key players in the DNAmetabolism
as they prevent formation of secondary structures and premature re-
annealing and protect DNA from nucleolytic damage. Accordingly,
MTSSB plays an important role in mtDNA replication and repair. This
small protein forms tetramers that coats single-stranded stretches in
mtDNA and thusmaintain two strands of double helix separated stimu-
lating the activity of POLG and TWINKLE [137]. MTSSB directs the origin
specific initiation of mtDNA replication both in vitro and in vivo [142].
Functional interactions between POLG andMTSSB in Drosophila embry-
os greatly enhance the overall activity of POLG by increasing primer rec-
ognition and binding, and stimulating the rate of initiation of DNA
strands [143]. Correspondingly, knockdown of Mtssb in Schneider
cells, leads to growth defects and depletion of mtDNA [143]. Recently
an important role for MTSSB in BER has been proposed, as it was sug-
gested that the massive amount of MTSSB in mitochondria effectively
prevents processing of uracil and other types of damaged bases to
avoid introduction of nicks in single-stranded mtDNA formed during
replication [144]. Local enrichment of UNG1 at DNA-bound MTSSB
may furthermore facilitate rapid access to- and processing of the
damage once the dsDNA conformation is restored [144]. This could be
of potential biological importance, since mitochondria have no or limit-
ed capacity for homologous recombination to process nicks at the repli-
cation fork.

2.3.5. Mitochondrial RNA polymerase – POLRMT
Beside its essential and basic function in mitochondrial transcrip-

tion, POLRMT is also important and distinct role in mtDNA replica-
tion [145]. Indeed, deletion of a distinctive N-terminal extension
of unknown function in the yeast POLRMT homologue (RPO41)
does not affect the mitochondrial transcription, but results in the
loss of mtDNA [146]. Although it remains to be tested if the amino-
terminal extension in human POLRMT has also an exclusive role in
the mtDNA replication, this result indicates that POLRMT might
also be considered as a possible locus for mtDNA replication-
related human diseases.

2.4. Quality and quantity of dNTP pools

MtDNA maintenance depends not only on essential processing fac-
tors but also on the availability and quality of basic units required for
DNA synthesis, dNTPs. Taking into account that mitochondria are sepa-
rated from the rest of the cell, they have to also sustain and guard their
own pool of nucleotides in order to synthesize nucleic acid and provide
intermediates formetabolic reactions. Asymmetry in dNTPpoolsmainly
causes mitochondrial DNA depletion syndromes (MDS), although in
some cases increased levels of mtDNA mutations have also been
described [147,148]. TK2 (thymidine kinase 2), SUCLA2 [adenosine di-
phosphate (ADP)-forming succinyl CoA ligase beta subunit], SUKLG1
[guanosine diphosphate (GDP)-forming succinyl CoA ligase alpha
subunit], RRM2B (ribonucleotide reductase M2 B subunit), DGUOK
(deoxyguanosine kinase), and TYMP (thymidine phosphorylase) en-
code proteins that maintain the mitochondrial dNTP pool; and muta-
tions in any of these genes result in depleting the mitochondria from
DNA building blocks and, subsequently, can contribute to elevated
mtDNA mutability or decrease the mtDNA synthesis rates, ultimately
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resulting inmtDNA loss [148]. The dNTPpool asymmetry ofmammalian
mitochondria seems to be tissue specific, with dGTP present at a much
higher concentration than dATP in mitochondria of postmitotic tissues,
including heart and skeletal muscle, possibly increasing the frequency
of G:T mismatches found in these organs [149]. Remarkably, these
pool imbalances do not differ between young and old animals [149]. It
is not know if dNTP pool imbalances play any role in the generation of
the other specific types of mtDNA mutations that occur with age, such
as transversion or deletion mutations [149].

Mitochondrial dNTP pools are maintained either through active
transport of cytosolic dNTPs or through the purine and pyrimidine
salvage pathways by action of two mitochondrial deoxyribonucleoside
kinases, thymidine kinase 2 (TK2) and deoxyguanosine kinase
(DGUOK). TK2 and DGUOK mediate the first, and rate-limiting, steps
in the phosphorylation of pyrimidine and purine nucleosides, respec-
tively, in the mitochondrial matrix [150]. Mutations in both TK2 and
DGUOK genes lead to decreased synthesis of DNA building blocks inside
mitochondria leading to mtDNA depletion syndrome in human infants.
Although majority of TK2 related MDS have purely myopathic form
[151] an encephalomyopathic presentation with hypotonia, weakness
and epilepsy was also reported [152]. Currently, two forms of DGUOK
deficiencies have been described, the hepatocerebral MDS, which pre-
sents as a multisystem disorder and an isolated hepatic disease later
in infancy or childhood [148].

SUCLA2 and SUCLG1 encode subunits of succinyl CoA ligase (SUCL)
that catalyzes the reversible conversion of succinyl-CoA and ADP or
GDP to succinate and adenosine triphosphate or guanosine triphos-
phate. SUCL also forms a complexwith themitochondrial nucleoside di-
phosphate kinase, and the lack of this complex formation in SUCL
deficiency has been suggested to disturb the kinase function, resulting
in decreased mtDNA synthesis leading to depletion [153]. Mutations
in both genes lead to a mitochondrial disorders manifesting as early
onset encephalomyopathy (SUCLA2) or severe acidosis with lactic
aciduria leading to death within 2–4 days postnatal (SUCLG1) [153].

RRM2b encodes the p53-inducible small subunit (p53R2) of ribonu-
cleotide reductase, a cytosolic enzyme that catalyzes the terminal step
of de novo synthesis of deoxyribonucleoside. As mutations in RRM2b
are associated with severe depletion of mtDNA in both humans and
the gene is expressed in post-mitotic cells it has a key function in the
maintenance of dNTP pools needed for mtDNA replication, although
the precisemechanism leading to this, primarilymitochondrial function
are not fully understood [154].

Thymidine phosphorylase (TYMP) is part of the cytosolic pyrimidine
salvage pathway required for the reversible reaction catalysing
thymidine and phosphate to thymine and deoxyribose-1-phosphate.
Remarkably, mutations in this gene cause MNGIE, mitochondrial
neurogastrointestinal encephalopathy caused by the accumulation of
excess thymidine in the blood, that is uptaken by mitochondria, where
it stimulates the synthesis of unbalanced and elevated dTTP levels by
mitochondrial thymidine kinase 2 (TK2). The imbalance caused by in-
creased dTTP levels results in mtDNA depletion, often accompanied by
multiple deletions [155]. Interestingly, skin fibroblasts from MNGIE
patients do not show any signs of depletion or mtDNA deletions, yet
presented an OXPHOS deficiency, that is a result of numerous mtDNA
pointmutation [147]. Themajority ofmtDNAmutations found in tissues
from MNGIE patients are T-to-C transitions preceded by a short run of
“As” [147]. These results support a mutagenic mechanism involving
competition between dGTP and dATP for incorporation opposite to T
[147].

The adenine nucleotide translocator (ANT) is a very abundant
mitochondrial protein that primarily catalyses ADP/ATP exchange
across the inner membrane. Mutation in ANT1 (or SLC25A4), the heart
and skeletal muscle specific isoform, have been associated with dis-
eases, including autosomal dominant PEO, mitochondrial myopathy
and cardiomyopathy, Sengers syndrome and Facioscapulohumeral
muscular dystrophy (FSDH) (for review [156]). Multiple models have
been proposed to explain the ANT1-induced pathogenesis. Studies
from yeast have suggested that in addition to altered nucleotide trans-
port properties, the mutant proteins cause a global stress on the inner
membrane. Themutant proteins likely interferewith generalmitochon-
drial biogenesis in a dominant-negative manner, which secondarily
destabilizes mtDNA [156].

2.5. A quality control for mtDNA molecules?

When the surplus of mtDNA damage exceeds the repair and buffer-
ing capacities of mitochondria, leading to respiratory chain deficiency
and mitochondrial dysfunction, mutated mtDNA should be deleted
from pool. So far there is no evidence that mutated mtDNA could be se-
lectively degraded by any of the mitochondrial nucleases. Therefore
damaged mtDNA has to be removed by some large-scale mechanism
recognizing deleterious product of mtDNA genes expression, that is –
defective respiratory chain. Combined action of mitochondrial fission
and mitophagy could provide an elegant, self-purifying mechanism for
removal of defectivemtDNAmolecules from the cellular pool. Nonethe-
less, mtDNA deletions often constitute a substantial proportion of total
mtDNA array in patients with mitochondrial disorders andmtDNAmu-
tations accumulate in both, disease and ageing. Therefore, it seems
difficult to justify a significant role of mitophagy in mitochondrial qual-
ity control when persistent retention of mutated mtDNA, hosted by
defective mitochondria is very common. Tissue specificity, stage of de-
velopment and distinction between mtDNA deletions and point muta-
tions can be substantial in a discourse of mtDNA damage fate in
various cell types, especially in post-mitotic versus dividing somatic
cells. Rigid retaining of eachmtDNAmutation type could result fromdif-
ferent selective advantages. Finally, the turnover of individual mtDNA
molecules can vary from one cell type to another and could decline in
a course of aging. Recently, possible mechanisms for expansion and fix-
ing mtDNA mutations in a light of current findings have been reviewed
in details [157–159] and will not be discussed in more details here.

3. Conclusions

In recent years, many novel factors contributing to formation of
mtDNA mutations have been discovered. In many cases, the precise
function and molecular mechanisms leading to mtDNA mutation accu-
mulation are still not completely understood. What became clear is
that unfaithful mitochondrial DNA synthesis is themain the contributor
to themtDNAmutagenesis, while oxidative damage seems to play only
minor role in this process. Further understanding of molecular mecha-
nism of action will likely lead to discovery of potential therapeutic tar-
gets with hope of finding the new ways of treating mitochondrial
disorders.
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