JOURNAL OF
Algebra

# Group classes and mutually permutable products 

James C. Beidleman ${ }^{\text {a }}$, Hermann Heineken ${ }^{\text {b,* }}$<br>${ }^{\text {a }}$ Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027, USA<br>${ }^{\mathrm{b}}$ Mathematisches Institut, Universitaet Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany

Received 1 February 2005
Available online 29 August 2005
Communicated by Gernot Stroth


#### Abstract

Let $G=A B$ be the mutually permutable product of the nontrivial subgroups $A$ and $B$ of the group $G$. Then $A$ or $B$ contains a nontrivial normal subgroup of $G$. It is also established that $S(G) \cap$ $A=S(A)$, where $S(U)$ is the solvable radical of $U$. These facts lead to some generalized results about mutually permutable products of SC-groups. It is also shown that if $G$ is a PTS-group, then $A$ and $B$ are PST-groups. © 2005 Elsevier Inc. All rights reserved.


## 1. Introduction

All groups considered are finite. Let $G=A B$ be the product of the subgroups $A$ and $B$. This product is called mutually permutable (see [1,2,9]) (respectively totally permutable (see $[2,4,6])$ ) if $A$ permutes with the subgroup of $B$ and $B$ permutes with the subgroups of $A$ (respectively if every subgroup of $A$ permutes with every subgroup of $B$ ). In [2] Asaad and Shaalan provide sufficient conditions for totally and mutually permutable products of two supersolvable subgroups to be supersolvable. The motivation for the seminal paper [2]

[^0]is that $G$ need not be supersolvable even when $A$ and $B$ are normal supersolvable subgroup of $C$.

Let $G=A B$ be a mutually permutable product of the subgroups $A$ and $B$. In [1] it is shown that $G /(A \cap B)_{G}$ is supersolvable whenever $A$ and $B$ are supersolvable. Here $(A \cap B)_{G}$ is the core of $A \cap B$ in $G$. Moreover, in [9] $G /(A \cap B)_{G}$ is $p$-supersolvable, $p$ a prime, if $A$ and $B$ are $p$-supersolvable. It is also shown in [9] that if $A$ and $B$ are Sylow tower groups with respect to a Sylow tower where all the primes $q$ dividing $p-1$ appear on top of $p$, then $G$ is a Sylow tower of the same form.

The present paper is a continuation of [9] where we investigate further some of the basic properties of mutually permutable products. Our results are often motivated by corresponding results in totally permutable products.

## 2. Theorems and proofs

The authors showed in [6] that if $G=A B$ is a totally permutable product of the nontrivial subgroups $A$ and $B$, then $A_{G} B_{G} \neq 1$. Using some of the results of [9] we prove

Theorem 1. Assume that the group $G$ is the mutually permutable product of its subgroups $A$ and $B$. Then $A_{G} B_{G} \neq 1$.

Proof. By Lemma 1 of [9] the theorem is true for simple groups. Assume that the theorem is false and that $G$ is a counterexample of smallest order. By Corollary 3 of [9] the solvable residuals $D(A)$ of $A$ and $D(B)$ of $B$ are normal subgroups of $G$ so that $D(A) \subseteq A_{G}=1$ and $D(B) \subseteq B_{G}=1$. Hence $G$ is solvable by Corollary 2 of [9]. Note that all quotient groups of $G$ satisfy the conditions of the theorem.

Let $N$ be a minimal normal subgroup of $G$. By part (viii) of Lemma 1 in [9], $N \cap A=$ $N \cap B=1$. Moreover, by Lemma 2 of [9] the order of $N$ is a prime, say $p$. Let $M / N$ be a minimal normal subgroup of $G / N$. We may assume that $M / N$ is a subgroup of $A N / N$. Thus $M=M \cap A N=N(M \cap A)$. By part (ii) of Lemma 1 in [9], $(M \cap A)(M \cap B)$ is a normal subgroup of $G$ and since $M \cap A$ is not a normal subgroup of $G$, we have $M \cap B \neq 1$. This means $M / N \cap B N / N \neq 1$ so that $B$ covers $M / N$ by part (viii) of Lemma 1 in [9]. Hence also $M=N(M \cap B)$ and $M / N$ is isomorphic to $M \cap A$ and $M \cap B$. Therefore, $|M|$ is a divisor of $|M \cap A|^{2}$ and $M / N$ is a $p$-group. This means that $M$ is also a $p$-group. By $M=(A \cap M) N=(A \cap M) Z(M)$ we find that $M$ is elementary abelian.

Let us assume that $M / N$ is noncyclic. Then $D=M \cap(A \cap B)=(A \cap M) \cap$ $(B \cap M) \neq 1$. We have $1=B_{G}=B_{A}=A \cap B_{A}=(A \cap B)_{A}$. Since $A \cap B$ is permutable in $A, A \cap B$ is contained in the hypercenter of $A$. This means that $D$ is a $p$-group which is centralized by all $p^{\prime}$-elements of $A$. Since $D_{A}=1$, there is an element $a \in A$ such that $a^{-1} D a \neq D$ and the intersection has index $p$ in $D$. By order relations we obtain $M \cap A=D a^{-1} D a$ and $M \cap A$ is contained in the hypercenter of $A$. In particular, $A / C_{A}(M \cap A)$ is a $p$-group. By symmetry, $B / C_{B}(M \cap B)$ is a $p$-group. Now $A \cap M \cong(A \cap M) N / N=M / N=(B \cap M) N / N \cong B \cap M$ and the two isomorphisms are operator isomorphisms to $A$ and $B$ respectively. We obtain that $(G / N) /\left(C_{G / N}(M / N)\right)$ is a product of $p$-groups and hence a $p$-group. But $M / N$ cannot be both noncyclic and a
minimal normal subgroup of $G / N$. Thus we have derived that $M / N$ must be cyclic and $|M|=p^{2}$.

Let $C=\mathcal{C}(M)$ and note that $G / C=(A C / C)(B C / C)$ is isomorphic to a subgroup of $C_{p-1} \times \operatorname{Hol}\left(C_{p}\right)$. Assume that there is an element $a \in A \backslash(A \cap C)$ such that $a^{p} \in A \cap C$. Then $N=[M, a]=[(A \cap M) N, a]=[A \cap M, a]=1$, a contradiction. By symmetry we obtain the same contradiction if $A$ is substituted with $B$. Now $p$ does not divide $|G / C|$ and $G / C$ is abelian of exponent dividing $p-1$. Not all the elements induce power automorphisms on $M$, otherwise $M \cap A$ and $M \cap B$ would be normal subgroups of $G$, a contradiction. Consider an element $b \in B$ that does not induce a power automorphism on $M$, then $b$ induces different power automorphisms on $N$ and $M \cap B$. Let $g \in G$. Since $G / C$ is abelian, $b$ and $g^{-1} b g$ induce the same automorphism on $M$. Thus we have $\left(g^{-1} b^{-1} g\right)(M \cap B)\left(g^{-1} b g\right)=M \cap B$ and $b^{-1}\left(g(M \cap B) g^{-1}\right) b=g(M \cap B) g^{-1}$ follows. This means that $b$ induces the same power automorphism on $M \cap B$ and $g(M \cap B) g^{-1}$, and so $M \neq(M \cap B)\left(g(M \cap B) g^{-1}\right)$. Therefore $M \cap B=g(M \cap B) g^{-1}$ for all $g \in G$. This is a contradiction and the theorem is true.

A group $G$ is called an SC-group (SNAC-group), if all chief factors (all nonabelian chief factors) of $G$ are simple. D.J.S. Robinson [14] introduced these types of groups and characterized them.

We are now in the position to say something about products of these groups.

Theorem 2. Assume that $G$ is the mutually permutable product of the subgroups $A$ and $B$. Then A and B are SNAC-groups if and only if G is a SNAC-group.

Proof. Assume that $A$ and $B$ are SNAC-groups and also assume that $G$ is not an SNACgroup and that it is of minimal order among all such groups. Then all proper quotient groups of $G$ satisfy the theorem. Further $G$ possesses just one minimal normal subgroup, $M$ say, and $M$ is nonabelian and not simple. By part (vi) of Lemma 1 in [9], $M$ is contained in at least one of the two factors $A$ and $B$. Assume now $M \subseteq A$ and $M \cap B=1$. Then the elements of $B$ induce in $M$ power automorphisms by conjugation and $A$-invariant subgroups of $M$ are also $G$-invariant. This means that $M$ is simple, a contradiction. The same is true if $M \subseteq B$ and $M \cap A=1$. Assume now $M \subseteq A \cap B$. Then $M$ is at the same time a direct product of simple $A$-invariant and of simple $B$-invariant subgroups. Since the direct product of nonabelian simple groups is unique, we obtain a contradiction to the minimality of $M$. Thus $G$ is an SNAC-group.

Conversely, assume that $G$ is an SNAC-group. Let $N$ be a minimal normal subgroup of $G$. By part (vii) of Lemma 1 in [9], $A$ and $B$ either cover or avoid $N$. Note that the SNAC-group $G / N$ is the mutually permutable product of the subgroups $A N / N$ and $B N / N$. Then $A N / N$ and $B N / N$ are SNAC-groups. If $A$ avoids $N$, then $A \cong A N / N$ so that $A$ is an SNAC-group. If $A$ covers $N$, then $A$ is also an SNAC-group since $N$ is simple. This completes the proof of the theorem.

For SC-groups the statement is less general.

Theorem 3. Assume that $G$ is the mutually permutable product of the subgroups $A$ and $B$. Then
(1) If $G$ is an $S C$-group, then $A$ and $B$ are $S C$-groups.
(2) If $A$ and $B$ are $S C$-groups, then $G /(A \cap B)_{G}$ is an SC-group.

Proof. Statement (1) is established in the same way as the second part of the proof of Theorem 2. Assume now that $A$ and $B$ are SC-groups. By Theorem 2, $G$ is an SNACgroup. Put $D=A \cap B$ and note by part (v) of Lemma 1 in [9] that $D^{G} / D_{G}$ is nilpotent and $G / D^{G}$ is a totally permutable product of $A D^{G} / D^{G}$ and $B D^{G} / D^{G}$. Both factors are SC-groups so that $G / D^{G}$ is an SC-group by Theorem A of [4]. It remains to show that every $G$-chief factor $H / K$ with $D_{G} \subseteq H \subset K \subseteq D^{G}$ is cyclic. We know that $H / K$ is a $p$-group for some prime $p$ since $D^{G} / D_{G}$ is nilpotent. By part (vi) of Lemma 1 in [9], $A$ and $B$ cover or avoid $H / K$. Suppose first that $A$ and $B$ avoid $H / K$. Then, by Lemma 2 of [9], $|H / K|=p$, and the chief factor is cyclic. Assume now that $A$ covers $H / K$ and $B$ avoids $H / K$. Then $B$ induces power automorphisms on $H / K$, and $A$-invariant subgroups of $H / K$ are also $B$-invariant. Hence $H / K$ is a minimal normal subgroup of $A K / K$ and so it must be cyclic. The same is true if $A$ and $B$ are interchanged.

Assume finally that both $A$ and $B$ cover $H / K$. Consider $W / K=\mathcal{C}_{(G / K)}(H / K)$. The group of automorphisms induced by $A K / K$ on $H / K$ is isomorphic to $A W / W$. Since $A$ is an SC-group, there is a chief series of $A K / K$ containing $H / K$ and quotients of consecutive terms from 1 to $H / K$ are simple of order $p$. This means that $A W / W$ must be an extension of a $p$-group by an abelian group of exponent $p-1$. The same is true for $B W / W$. Note that $D^{G}$ is contained in $W$ and hence $G / W$ is the totally permutable product of $A W / W$ and $B W / W$. By Theorem 1 of [6], $G / W$ is an extension of a $p$-group $R / W$ by a totally permutable product of two abelian groups of exponent $p-1$ and therefore supersolvable by [2,6]. Since $[R, H] K / K$ is a normal subgroup of $G / K$ different from $H / K$, we have $[R, H] \subseteq K$ and $R=W$ by definition of $W$. It now follows that $A W / W$ and $B W / W$ are abelian of exponent $p-1$. By Lemma 4 of [9] we also have $[A, B] \subseteq W$ so that $G / W$ is abelian of exponent $p-1$. Now minimality of $H / K$ yields that $H / K$ is cyclic and so $G / D_{G}$ is an SC-group. This completes the proof.

Theorem 3 has also been established by Ballester-Bolinches, Cossey and PedrazaAquilera [3] using a completely different approach.

Let $G=A B$ be the mutually permutable product of the subgroups $A$ and $B$ and assume that $A$ is an SC-group. What condition on $B$ guarantees that $G$ is an SC-group? In Theorem 7 of [9] a similar problem is considered: In that theorem $A$ is a supersolvable group and the Frattini quotient group $B / \Phi(B)$ of $B$ is a solvable T-group. In particular, $B$ is supersolvable and $G$ is also supersolvable. In [3] the authors consider the above question and show in Theorem 2 of [3] that $G$ is an SC-group whenever $B$ is a quasinilpotent group. A group $G$ is called quasinilpotent if for every chief factor $H / K$ the automorphisms induced by elements of $G$ are already induced by elements of $H$. The class of quasinilpotent groups is considered in [10], it is quotient closed; by Theorem 13.6 of [10] a group $G$ is quasinilpotent if and only if its quotient group $G / Z_{*}(G)$ modulo its hypercenter $Z_{*}(G)$ is semisimple. In particular, a quasinilpotent group is an SC-group.

The next result gives some more information about the above question.
Corollary 1. Let the group $G$ be a mutually permutable product of the subgroups $A$ and $B$. If $A$ is an SC-group and B is a T-group, then G is an SC-group.

Proof. Note that $B$ is an SC-group. Assume that the corollary is false and let $G$ be a counterexample of minimal order. Let $N$ be a minimal normal subgroup of $G$. By Theorems 2 and $3, N$ is an elementary abelian $p$-group for some prime $p$ and $N \subseteq A \cap B$. Let $x$ be a nontrivial element of $N$ such that $\langle x\rangle$ is normal in $A$. Since $B$ is a T-group, $\langle x\rangle$ is normalized by $B$. Thus $\langle x\rangle$ is normal in $G$, a contradiction; and the corollary follows.

The class $\mathcal{F}$ of SC-groups is a formation, and from Corollary 1 we obtain the following result: if $G=A B$ is a normal product of the SC-group $A$ and the T-group $B$, then $G$ is an SC-group. Thus $B$ is contained in the Fitting core of the formation $\mathcal{F}$. For details about the Fitting core of a formation see [7].

We will consider further the inner structure of the product of two mutually permutable subgroups in connection with its factors. We know by Corollary 3 of [9] that the solvable residuals of the factors are normal in the product $G$, so their product is the solvable residual of $G$ by Corollary 2 of [9]. Somewhat dual is the concept of the solvable radical of $G$. We denote the solvable radical of the group $X$ by $S(X)$. Here we obtain the following statement.

Theorem 4. If $G$ is the mutually permutable product of the subgroups $A$ and $B$, then $S(A)=S(G) \cap A$.

Proof. By construction, $S(G) \cap A$ is a solvable normal subgroup of $A$, so $S(G) \cap A \leqslant$ $S(A)$ and likewise $S(G) \cap B \leqslant S(B)$. Let $G$ be a minimal counterexample to the theorem. By Theorem 1 we can assume $A_{G} \neq 1$. Consider a minimal normal subgroup $M$ of $G$ with $M \leqslant A$. If $M$ is abelian, then $S(G / M)=S(G) / M, S(A / M)=S(A) / M$ and further $S(B M / M)=S(B) M / M$. By minimality of $G$ we obtain $S(G) \cap A=S(A)$ and $S(G) \cap$ $B M=S(B) M$ with $S(G) \cap B=S(B) M \cap B=S(B)$. Assume now that $M$ is nonabelian. Then $S(G)=S(C(M))$ and $S(A)=S(C(M) \cap A)$. If $M \leqslant B$, then $S(B)=S(C(M) \cap B)$; on the other hand if $M \nless B$, then $M \leqslant C(B)$, by part (viii) of Lemma 1 of [9], and again $S(B)=S(C(M) \cap B)$. Now consider the product $(C(M) \cap A)(C(M) \cap B)$. This product is a proper normal subgroup of $G$ which is also a mutually permutable product by parts (i) and (ii) of Lemma 1 of [9]. Thus

$$
S(C(M)) \cap(C(M) \cap A)=S(C(M) \cap A)=S(A)
$$

and

$$
S(C(M)) \cap(C(M) \cap B)=S(C(M) \cap B)=S(B)
$$

The theorem now follows from the nonexistence of a counterexample since $S(G)=$ $S(C(M))$.

In the light of Theorem 4 one might ask if $S(G)=S(A) S(B)$. That this is not case follows from

Example. Let $G=S_{5} \times C_{2}$ where $S_{5}$ is the symmetric group on five letters with transposition (12). Put $C_{2}=\langle x\rangle$. Now $A=S_{5}$ and $B=\left\langle A_{5}, x(12)\right\rangle$ are normal subgroups of $G=A B$, and $S(A)=S(B)=1 \neq\langle x\rangle=S(G)$.

A group $G$ is called a PT-group (T-group) if permutability (normality) is a transitive relation in $G$. By a result of Ore (see [13, 13.3.2]), PT-groups are exactly those groups where all the subnormal subgroups are permutable (see [2]). PST-groups are also defined via a transitivity property, namely with respect to $S$-permutability (see [4,8]): a subgroup of a group $G$ is called $S$-permutable if it permutes with all the Sylow subgroup of $G$ (see [13]). By a result of Kegel [12, Satz 1], every $S$-permutable subgroup is subnormal and hence PST-groups are exactly those groups in which all subnormal subgroups are permutable. In particular, PT-groups are PST-groups.

Let $\mathcal{T}, \mathcal{P} \mathcal{T}, \mathcal{P S} \mathcal{T}$ denote the class of all finite T-groups, PT-groups, PST-groups respectively (see $[1,5,8,12,14]$ ). All three classes are closed with respect to quotient groups and normal subgroups. Let $\Theta$ be one of $\{\mathcal{T}, \mathcal{P} \mathcal{T}, \mathcal{P S T}\}$. A subnormal subgroup $H$ of a finite group $G$ is said to be $\Theta$-well embedded in $G$ if
(a) $H$ is normal subgroup of $G$ for $\Theta=\mathcal{T}$,
(b) $H$ is permutable in $G$ for $\Theta=\mathcal{P} \mathcal{T}$,
(c) $H$ is S-permutable in $G$ for $\Theta=\mathcal{P S T}$.

The following facts concerning $\Theta$-well placed subnormal subgroups follow easily:
(1) If $H$ is $\Theta$-well placed in $G$ and $N$ is a normal subgroup of $G$ then $H N / N$ is $\Theta$-well placed in $G / N$;
(2) if $H$ is $\Theta$-well placed in $G$ if and only if $H / H_{G}$ is $\Theta$-well placed in $G / H_{G}$.

We are now able to formulate the next theorem and its proof.

Theorem 5. Let $G=A B$ be a mutually permutable product of the subgroups $A$ and $B$. If $G \in \Theta$, then $A \in \Theta$.

Proof. We collect facts for a minimal counterexample.
(1) Every minimal normal subgroup of $G$ is contained in $A$.

To show this we assume that the minimal normal subgroup $N$ of $G$ is not contained in $A$. Then by part (viii) of Lemma 1 in [9] we have $A \cap N=1$ and so $A \cong A /(A \cap N) \cong A N / N$. Since $G$ is a minimal counterexample and $G / N \in \Theta$, it follows that $A \cong A N / N \in \Theta$. This is a contradiction.
(2) Let $H$ be a subnormal subgroup of $A$ which is not $\Theta$-well placed in $A$ and assume that $H$ is of minimal order. Then $H$ is solvable.

Let $D(A), D(H)$ be the solvable residuals of $A, H$ respectively. Then $D(H)$ is a subnormal subgroup of $D(A)$. By Corollary 3 of [9], $D(A)$ is normal in $G$ and so $D(H)$ is subnormal in $G$. Because of Lemma 2 and Theorem 3 of [4] the perfect subnormal subgroup $D(H)$ of $G$ is normal in $G$ and so $D(H)$ is contained in $H_{G}$. Assume $H_{G} \neq 1$. Then $H / H_{G}$ is $\Theta$-well placed in $G / H_{G}$ and hence $H$ is $\Theta$-well placed in $G$, a contradiction. This $D(H) \subseteq H_{G}=1$ and $H$ is solvable.
(3) Let $S(G), S(A)$ be the solvable radical of $G, A$ respectively. Then $H$ is contained in $S(G)$.

By Theorem 4 we have $H \subseteq S(A)=A \cap S(G)$, so $H \subseteq S(G)$.
Put $S=S(G)$ and let $S^{\mathcal{N}}$ denote the nilpotent residual of $S$. Then $S^{\mathcal{N}}$ is a normal subgroup of $G$ and the elements of $G$ act by conjugation on $S^{\mathcal{N}}$ as power automorphisms (see part (4) of Theorem 3 in [4]). In particular, every subgroup of $S^{\mathcal{N}}$ is normal in $G$.
(4) $H$ is nilpotent, $H \cap S^{\mathcal{N}}=1$ and $S^{\mathcal{N}} \neq 1$.

For assume $W=H \cap S^{\mathcal{N}} \neq 1$. Then $W$ is a normal subgroup of $G$ by (3) and $W \subseteq H_{G}=1$. Now $H \cong H S^{\mathcal{N}} / S^{\mathcal{N}} \subseteq S / S^{\mathcal{N}}$ is nilpotent.

Assume that $S^{\mathcal{N}}=1$. Then $S$ is nilpotent and $H$ is subnormal in $G$. But $G \in \Theta$ and so $H$ is $\Theta$-well placed $A$, a contradiction. So $S^{\mathcal{N}} \neq 1$.
(5) $H$ is a $p$-group for some prime $p$.

Assume that $H$ is not a $p$-group. Since $H$ is nilpotent, it is a direct product of its Sylow subgroups each of which is $\Theta$-well placed in $A$. Thus $H$ is $\Theta$-well placed in $A$, a contradiction. Therefore $H$ is a $p$-group for some prime $p$.
(6) Let $M$ be a minimal normal subgroup of $G$ which is contained in $S^{\mathcal{N}}$. Then $(|H|,|M|)=1$ and $H M$ is $\Theta$-well placed in $A$.
$M \subseteq A$ by (1). Now $S=S(G)$ is a solvable $\Theta$-group and, by Theorem 3 of [8], $S^{\mathcal{N}}$ is a Hall subgroup of $S$. Since $H \cap S^{\mathcal{N}}=1$ we obtain $(|H|,|M|)=1$. Also by choice $A / M$ is a $\Theta$-group so that $H M / M$ is $\Theta$-well placed in $A / M$. Hence $H M$ is $\Theta$-well placed in $A$.
(7) $H M=H \times M$ and $H$ is $\Theta$-well placed in $A$.

By a result of Wielandt (see [13, 13.3.7]), $M$ normalizes $H$ and so $H M=H \times M$. If $\Theta=T$, then $H \times M$ is normal in $A$ and $H$ is normal in $A$. If $\Theta=P T$, then $H$ is permutable in $A$ by a result of Ito-Szep [11]. If $\Theta=P S T$, then $H$ is S-permutable in $A$ by a result of P. Schmid [15]. Therefore, $H$ is $\Theta$-well placed in $A$ in all cases, a final contradiction.

## References

[1] M.J. Alejandre, A. Ballester-Bolinches, J. Cossey, Permutable products of supersoluble groups, J. Algebra 276 (2004) 453-461.
[2] M. Assad, A. Shaalan, On the supersolubility of finite groups, Arch. Math. 53 (1989) 318-326.
[3] A. Ballester-Bolinches, J. Cossey, M.C. Pedraza-Aquilera, On mutually permutable products of finite groups, submitted for publication.
[4] J.C. Beidleman, P. Hauck, H. Heineken, Totally permutable products of certain classes of finite groups, J. Algebra 276 (2004) 826-835.
[5] J.C. Beidleman, H. Heineken, Pronormal and subnormal subgroups and permutability, Boll. Unione Mat. Ital. (8) 6 (2003) 605-615.
[6] J.C. Beidleman, H. Heineken, Totally permutable torsion groups, J. Group Theory 2 (1999) 377-392.
[7] J.C. Beidleman, H. Heineken, On the Fitting core of a formation, Bull. Austral. Math. Soc. 68 (2003) 107112.
[8] J.C. Beidleman, H. Heineken, Finite soluble groups whose subnormal subgroups permute with certain classes of groups, J. Group Theory 6 (2003) 139-158.
[9] J.C. Beidleman, H. Heineken, Mutually permutable subgroups and group classes, Arch. Math. 85 (2005) 12-30.
[10] B. Huppert, N. Blackburn, Finite Groups III, Springer, Berlin, 1982.
[11] N. Ito, J. Szep, Über die Quasinormalteiler von endlichen Gruppen, Acta Sci. Math. (Szeged) 23 (1962) 168-170.
[12] O.H. Kegel, Sylowgruppen und Subnormalteiler endlicher Gruppen, Math. Z. 78 (1962) 205-221.
[13] D.J.S. Robinson, A Course in the Theory of Groups, Springer, Berlin, 1996.
[14] D.J.S. Robinson, The structure of finite groups in which permutability is a transitive relation, J. Aust. Math. Soc. 70 (2001) 143-159.
[15] P. Schmid, Subgroups permutable with all Sylow subgroups, J. Algebra 207 (1998) 285-293.


[^0]:    * Corresponding author.

    E-mail addresses: clark@ms.uky.edu (J.C. Beidleman), heineken@mathematik.uni-wuerzburg.de (H. Heineken).

