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SUMMARY

Although casein kinase 1d (CK1d) is at the center of
multiple signaling pathways, its role in the expansion
of CNS progenitor cells is unknown. Using mouse
cerebellar granule cell progenitors (GCPs) as amodel
for brain neurogenesis, we demonstrate that the loss
of CK1d or treatment of GCPs with a highly selective
small molecule inhibits GCP expansion. In contrast,
CK1d overexpression increases GCP proliferation.
Thus, CK1d appears to regulate GCP neurogenesis.
CK1d is targeted for proteolysis via the anaphase-
promoting complex/cyclosome (APC/CCdh1) ubiqui-
tin ligase, and conditional deletion of the APC/
CCdh1 activator Cdh1 in cerebellar GCPs results in
higher levels of CK1d. APC/CCdh1 also downregu-
lates CK1d during cell-cycle exit. Therefore, we
conclude that APC/CCdh1 controls CK1d levels to bal-
ance proliferation and cell-cycle exit in the devel-
oping CNS. Similar studies in medulloblastoma cells
showed that CK1d holds promise as a therapeutic
target.

INTRODUCTION

The casein kinase 1 (CK1) family of monomeric serine/threonine

protein kinases is evolutionarily conserved in eukaryotes. Seven

members have been identified in mammals: a, b, d, ε, g1, g2, and

g3 (Gross and Anderson, 1998; Knippschild et al., 2005; Rowles

et al., 1991; Zhai et al., 1995). These kinases target a broad spec-

trum of substrates to control diverse biological processes, e.g.,

signal transduction, circadian rhythms, nuclear import, DNA

repair, apoptosis, spindle assembly, vesicle trafficking, neurite

outgrowth, and primary cilia formation (Behrend et al., 2000; Be-
yaert et al., 1995; Cheong and Virshup, 2011; Desagher et al.,

2001; Gault et al., 2012; Gross and Anderson, 1998; Knippschild

et al., 2005; Petronczki et al., 2006; Price, 2006; Vielhaber and

Virshup, 2001). However, whether CK1 mediates the generation

of specific classes of CNS neurons is unknown (Löhler et al.,

2009).

During brain development, cerebellar granule cell progenitors

(GCPs) expand to produce the most numerous neuronal popula-

tion in the brain. This proliferation is followed by cell-cycle exit

and differentiation. Thus, we predict that drivers of GCP expan-

sion and proliferation are downregulated during cell-cycle exit.

However, others have postulated that CK1 isoforms are unregu-

lated (Knippschild et al., 2005). Whether CK1d is downregulated

during GCP cell-cycle exit is unknown. CK1d is targeted for ubiq-

uitin-mediated proteolysis via the anaphase-promoting com-

plex/cyclosome (APC/CCdh1). Conditional deletion of the APC/

C activator Cdh1 in the developing cerebellum increases CK1d

levels in vivo. Furthermore, CK1d stabilization increases GCP

proliferation, suggesting a crucial role of APC-dependent CK1d

degradation during cell-cycle exit. Moreover, downregulation

of CK1d in GCPs increases the level of Wee1, a cell-cycle inhib-

itory kinase. Wee1 turnover increases Cdk1 activity and mitotic

entry (Owens et al., 2010; Smith et al., 2007; Watanabe et al.,

2004, 2005). We previously demonstrated that CK1d controls

Wee1 degradation (Penas et al., 2014), which is important for

cell proliferation.

APC/CCdh1 is a tumor suppressor; thus, APC/C-dependent

degradation of CK1d is most likely deregulated in some can-

cers. GCPs are thought to give rise to medulloblastoma, the

most common malignant pediatric brain tumor. Several GCP

developmental pathways are deregulated in medulloblastoma,

including WNT, SHH, MYC, and some undefined pathways

(Hatten and Roussel, 2011). Mutations in the SHH receptors

Patched (PTCH1), Suppressor of fused (SUFU), and Smooth-

ened (SMO) are associated with medulloblastoma and other

malignancies (Evans et al., 1991; Hallahan et al., 2004; Svärd
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Figure 1. CK1d Expression in Postnatal

GCPs and Control of GCP Proliferation

In Vitro and Ex Vivo

(A) Cerebellar sections from P8 pups were stained

with antibodies against CK1d (green) or calbindin

(red) and DAPI (blue).

(B) CK1a, CK1d, and CK1ε mRNA were amplified

by qRT-PCR, and fold change in gene expres-

sion in postnatal mouse cerebellum was deter-

mined by normalizing to GAPDH values relative to

control.

(C) GCPs were incubated for 24 hr with increasing

concentrations of SR-653234 or SR-1277, and the

amount of proliferation was determined by 3H-

thymidine incorporation. Results were plotted

relative to that seen in the DMSO control.

(D) GCPs were treated with 100 nM SR-653234 or

SR-1277 for 24 hr, and then Sytox and Hoechst

staining was performed (NS, not significant, as

determined by one-way ANOVA and Dunnett

multiple comparisions test).

(E and F) (E) D4476 (20 mM) reduces GCP prolif-

eration and (F) SR-653234 (100 nM) and SR-1277

(100 nM) increase the percentage of GCPs in the S

or G2/M phase. GCPs were treated for 24 hr with

the indicated compounds or DMSO, and the pro-

portion of cells in each cell-cycle phase was

determined by PI-FACS.

(G) Organotypic cerebellar slices were treated

with SR-1277 (100 nM), SR-653234 (100 nM),

D4476 (20 mM), or DMSO for 1 hr, after which EdU

was added to the media for 20 hr. Slices were

stained with EdU (red) and the nuclear marker

DAPI (blue).

(H) Quantification of (G). Results are shown as

the average values of three independent ex-

periments and are represented as the mean ±

SEM (*p < 0.05, **p < 0.001, ***p < 0.001, ****p <

0.0001).
et al., 2006; Taylor et al., 2002; Yauch et al., 2009). Group 3

(G3) medulloblastoma, the most aggressive form of the dis-

ease, is associated with MYC overexpression (Cho et al.,

2011; Ellison et al., 2011; Northcott et al., 2011; Pfister et al.,

2009). Recent sequencing studies have demonstrated CK1d

overexpression in G3 medulloblastoma, suggesting a role for

CK1 isoforms in some medulloblastoma subgroups (Gibson

et al., 2010; Jones et al., 2012; Northcott et al., 2012; Pugh

et al., 2012; Robinson et al., 2012).

CK1d is expressed in mouse cerebellum (Löhler et al., 2009),

an opportune model for CNS neurogenesis. Here we investi-

gated the role of CK1d in GCP expansion in the developing

CNS. We also examined whether proteolytic degradation via

APC/CCdh1 regulates CK1d in vitro and in vivo. Finally, we

measured the levels of CK1d in medulloblastoma cells relative

to that in control GCPs, and we determined whether the cells

are responsive to CK1d inhibition in vivo in allograft and intracra-

nial xenograft mousemodels. Our results indicate that CK1dmay

be a novel therapeutic target in medulloblastoma.
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RESULTS

CK1d Is Required for Cerebellar GCP Proliferation
During normal brain development, GCPs expand to generate 45

billion granule neurons; the adult human brain contains 100

billion neurons (Roussel and Hatten, 2011). Because CK1d is

expressed postnatally in cerebellar GCPs (Figures 1A and 1B),

we examined whether it is involved in GCP neurogenesis and

cell-cycle exit. Purified GCPs are used to study proliferation

and differentiation because they proliferate effectively in cell

aggregates in suspension. Conversely, they exit the cell cycle

and differentiate when plated on poly-D-lysine/laminin-coated

plates.

To determine whether CK1d inhibition affects GCP prolifera-

tion, we treated cells in suspension with SR-653234 or SR-

1277, two highly specific, potent small-molecule inhibitors of

CK1d (Bibian et al., 2013; Penas et al., 2014). We measured

the rate of proliferation of purified GCPs in the presence and

absence of SR-653234 or SR-1277 by 3H-thymidine uptake



(Figure 1C). Both compounds inhibited GCP proliferation with a

similar IC50 (Figure 1C), but neither caused cell death (Figure 1D).

Treatment with the well-characterized CK1d inhibitor D4476 also

reduced GCP proliferation in vitro (Figure 1E). The proportion

of GCPs in S phase was higher in cells treated with SR-653234

or SR-1277 (13.7% and 18.9%, respectively) than it was in

DMSO-treated controls (3.4%), as were those in G2/M (SR-

653234, 5.8%; SR-1277, 5.6%; DMSO, 0.1%), as determined

by propidium iodide fluorescence-activated cell sorting (PI-

FACS) (Figure 1F). We did not observe cells containing DNA con-

tent lower than 2N (sub-G1 phase), which further confirmed that

the inhibitor concentrations used did not kill the cells (Figure 1F).

These results suggest that pharmacologic inhibition of CK1d

induces GCP cell-cycle arrest in the S or G2/M phases.

To test whether CK1d is required for GCP proliferation in an

ex vivo model, we treated slices of postnatal cerebellar tissue

with D4476, SR-653234, or SR-1277 (Figure 1G). The cerebellar

GCP is a well-studied model of proliferation; dividing cells are

restricted to the external germinal layer. Postmitotic GCPs

localize beneath mitotic cells, initiate differentiation by extending

parallel fiber axons, and migrate along the radial fibers of Berg-

mann glia (Edmondson and Hatten, 1987; Rakic, 1972). Thus,

the position of labeled GCPs in organotypic slices of developing

cerebellum indicates their proliferation status. EdU assays of

organotypic slices of postnatal cerebellum in culture (Tomoda

et al., 1999) showed less EdU uptake in D4476-treated slices

and dramatically less in SR-653234- or SR-1277-treated cells

relative to the DMSO-treated control (Figure 1G). EdU incorpora-

tion is ameasure of proliferation; therefore, these results suggest

that CK1d inhibition disrupts GCP proliferation ex vivo.

CK1dKnockdownReducesCerebellar GCPProliferation
To validate the requirement of CK1d in GCP proliferation, we

depleted CK1d levels by small interfering RNA (siRNA)-mediated

knockdown. Electroporation of purified GCPs with two different

siRNAs effectively decreased CK1d mRNA and qRT-PCR anal-

ysis shows that CK1ε or CK1a levels were unchanged (Figures

2A and 2B). SHH is a potent mitogen of GCP proliferation; there-

fore, we tested whether depleting the level of CK1d affected the

rate of SHH-mediated incorporation of EdU into GCPs. CK1d

knockdown decreased the levels of the proliferative markers

phospho-Histone H3 and cyclin B1 in the absence or presence

of SHH (Figures 2B and 2C). Furthermore, EdU incorporation

was reduced in GCPs electroporated with CK1d-specific

siRNAs, relative to control siRNA (Figures 2E and 2F). In contrast,

CK1ε depletion did not affect EdU incorporation (Figure 2D).

These results indicate that CK1d is required for GCP prolifera-

tion in vitro, and reducing its levels attenuates SHH-induced

mitogenesis.

To determine whether CK1d is important for GCP proliferation

ex vivo, we conditionally deleted CK1d in cerebellar GCPs

by using Atoh1-Cre, a GCP-specific Cre driver, and measured
3H-thymidine incorporation in purified GCPs. GCPs purified

from Tg(Atoh1-Cre)+;Csnk1dfl/fl mice had a slightly lower

rate of 3H-thymidine incorporation than did GCPs purified from

Tg(Atoh1-Cre)–;Csnk1dfl/fl mice. However, we observed a more

pronounced decrease in proliferation in GCPs from Tg(Atoh1-

Cre)+;Csnk1dfl/fl mice treated with SHH (Figure 2G). Cyclin B1
and phospho-Histone 3 levels were also lower after CK1d dele-

tion (Figure 2H), suggesting that GCP expansion is reduced

upon CK1d deletion ex vivo. Wee1 levels were upregulated after

CK1d deletion (Figures 2H and 2I); thus, increased Wee1 levels

may also limit GCP expansion. Together, these results demon-

strate that CK1d functions in cerebellar GCP proliferation

in vitro and ex vivo.

CK1d Inhibition Affects GCP Cell-Cycle Progression
To better understand the role of CK1d in GCP proliferation, we

analyzed the levels of cell-cycle regulators after pharmacologic

inhibition of CK1d in purified GCPs. GCPs were treated with

SHH, SR-1277, or both for 24 or 48 hr and processed for qRT-

PCR analysis. We first analyzed the levels of various cyclins

that are essential regulators of cyclin-dependent kinases and

cell-cycle transitions in multiple model systems, including

GCPs. SR-1277 decreased the mRNA levels of cyclins A1

(Ccna1), B1 (Ccnb1), D2 (Ccnd2), and E1 (Ccne1) induced by

SHH (Figure 3A), but did not alter that of the cyclin-dependent

kinase inhibitors p21Cip1 (Cdkn1a) and p27Kip1 (Cdkn1b). Similar

results were found after electroporation of purified GCPs with

specific CK1d siRNAs (Figure 3B). Incubation with SR-1277 or

electroporation with CK1d siRNAs also decreased the levels of

the main effectors of the SHH pathway, Gli1 and Gli2, in GCPs

(Figures S1A and S1B). These results confirmed that specific in-

hibition or decreased levels of CK1d arrest the GCP cell cycle.

APC/CCdh1 Specifically Targets CK1d for Proteolysis
Many cell-cycle regulators are subject to ubiquitin-dependent

proteolysis; therefore, we asked whether CK1d is degraded via

this process. APC/CCdh1 recognizes many substrates via a ca-

nonical destruction (D-box) motif that contains a minimal con-

sensus sequence of RXXL, where X is any amino acid. Cdh1

binding to RXXL motifs initiates ubiquitin transfer and subse-

quent ubiquitin-dependent substrate degradation (Barford,

2011; Owens and Hoyt, 2005; Song and Rape, 2011). We exam-

ined the protein sequence of all human CK1 isoforms for putative

RXXL motifs. CK1d has two RXXL motifs, one at position 8

(RYRL; DB1) and one at position 193 (RDDL; DB2), that are

evolutionarily conserved (Figure 4A).

We hypothesized that the putative D-box motifs in CK1d are

functional and mediate recognition by APC/CCdh1. Deletion or

mutation of bona fide D-boxes in previously reported APC/

CCdh1 substrates decreased Cdh1-dependent ubiquitination

and degradation (Penas et al., 2012); therefore, we performed

site-directed mutagenesis to produce versions of CK1d-V5 that

had mutations in DB1 (DDB1), DB2 (DDB2), or both (DDB1

DB2). Both D-boxes were mutated with alanine substitutions of

their respective arginine (R) and leucine (L) residues (Figure 4A).

Several studies have shown that the D-box-dependent destruc-

tion of substrates can be ablated with RXXL-to-AXXA substitu-

tions (Choi et al., 2008; King et al., 1996; Listovsky et al., 2004;

Stewart and Fang, 2005; Zur and Brandeis, 2002).

We measured the in vitro degradation of wild-type or D-box-

mutated CK1d in somatic HeLa cell extracts that were isolated

from cells in early G1 phase, when APC/CCdh1 is most active.

Mutating DB1 or DB2 reducedCK1d destruction, but inactivating

both D-boxes profoundly stabilized the protein (Figures 4B and
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Figure 2. CK1d Knockdown Reduces GCP

Proliferation In Vitro and Ex Vivo

(A) GCP cells electroporated with two different

CK1d siRNAs were analyzed by qRT-PCR. CK1d

was significantly knocked down, but CK1a and

CK1ε levels were not altered. The mRNA was

amplified by qRT-PCR, and the fold change in

gene expression was determined by normalizing

to GAPDH values relative to controls.

(B) After electroporation of GCPs with or without

SHH (75 ng/ml), the levels of CK1d, cyclin B1, and

phospho-Histone H3 were analyzed by immuno-

blotting with antibodies against the proteins. Skp1

served as a loading control. CK1d was knocked

down by both siRNAs.

(C) Quantification of the amount of CK1d, phos-

pho-Histone H3, phospho-Tyr-Cdk1 (ameasure of

Wee1 inhibition of Cdk1), and cyclin B1, relative to

the loading control Skp1, after CK1d siRNA elec-

troporation in GCPs from (B) is shown.

(D) GCPs electroporated with CK1ε siRNA were

analyzed by qRT-PCR. CK1ε was significantly

knocked down, but EdU uptake was not reduced

in the presence of SHH. Levels are expressed as

the percentage of EdU uptake in cells treated with

the negative siRNA.

(E) CK1d siRNA electroporation reduces EdU up-

take of GCPs in the presence of SHH. Proliferative

GCP aggregates were stained with EdU (red) and

the nuclear marker DAPI (blue).

(F) Quantification of the EdU incorporation in (E).

Levels are expressed as a percentage compared

to that in cells treated with the negative siRNA

without SHH.

(G) GCPs isolated from Csnk1d-deleted mice

proliferate less in the presence or absence of SHH.

Purified GCPs were treated for 24 hr with the

compounds, and then 3H-thymidine was added to

the media for an additional 24 hr. Plots repre-

senting the amounts of 3H-thymidine incorporated

by GCPs from CK1d-deleted or control mice are

shown.

(H) GCPs purified from conditional Csnk1d-

deleted mice have lower levels of CK1d, cyclin B1,

and phospho-Histone H3, indicating decreased

proliferation. Representative immunoblots of CK1d, Wee1, cyclin B1, phospho-Histone H3, and phospho-Tyr-cdc2 relative to Skp1 are shown.

(I) Quantification of the amount of CK1d, Wee1, phospho-Histone H3, phospho-Tyr-Cdc2, and cyclin B1 protein, relative to the loading control Skp1, in GCPs

isolated from Tg(Atoh1-Cre)+;Csnk1dfl/fl or Tg(Atoh1-Cre)�;Csnk1dfl/fl mice from (H). Results are shown as the averages of three independent experiments and

are represented as the mean ± SEM (***p < 0.001, ****p < 0.0001).
4C). Furthermore, the degradation of wild-type CK1d was simi-

larly inhibited by the 26S proteasome inhibitor MG132 (Kisselev

et al., 2012), suggesting that D-box-mediated degradation of

CK1d is ubiquitin pathway dependent (Figures 4D and 4E).

To test whether CK1d is an in vitro substrate of APC/CCdh1, we

incubated immunopurified APC/CCdh1 with CK1d, Ube2s, and

ubiquitin. CK1d was robustly ubiquitinated via APC/CCdh1 (Fig-

ures 4F–4H). To assess whether mutation of CK1 D-boxes

reduced APC/CCdh1-mediated ubiquitination, we performed

in vitro ubiquitination assays with purified G1 APC/CCdh1 and

in-vitro-translated, 35S-labeled CK1d-V5 or CK1d-V5 D-box mu-

tants as substrates. Each single mutant significantly reduced

CK1d ubiquitination (Figures 4F and 4G), and the double mutant

nearly abolished polyubiquitination. Consistent with this finding,
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mutating both D-boxes stabilized CK1d more than inactivating

either one independently (Figures 5A and 5B).

To determine whether Cdh1 depletion reduces CK1d turn-

over, we measured the degradation of CK1 isoforms in HeLa

cells transfected with Cdh1 siRNA or control GFP siRNA.

Although CK1d and cyclin B1 were degraded in cells transfected

with GFP siRNA, they were stabilized in Cdh1-depleted

cells; other CK1 isoforms did not degrade in the same manner

(Figures 5C and 5D), suggesting that Cdh1 specifically targets

CK1d. We previously described CK1d-dependent Wee1 turn-

over (Penas et al., 2014); thus, we predicted that Cdh1 con-

trols the level of Wee1. Wee1 levels were upregulated when

CK1d was downregulated (Figures S2A and S2B), and they

were reduced even more when the CK1d D-box mutant was



Figure 3. Inhibition or Knockdown of CK1d

Reduces the mRNA Levels of Cell-Cycle

Components

(A) SR-1277 (100 nM) decreases the expression of

SHH-induced levels of Ccna1, Ccnb1, Ccnd2,

Ccne1, Cdkn1a, and Cdkn1b mRNA in GCPs.

GCPswere treatedwith SHH (75 ng/ml) and/or SR-

1277 for 24 or 48 hr. The mRNA was amplified by

qRT-PCR, and fold change in gene expression was

determined by normalizing to GAPDH values

relative to control samples.

(B) CK1d knockdown reduces the expression of

Ccna1, Ccnb1, Ccnd2, and Ccne1 mRNA levels in

the presence of SHH. GCPs were electroporated

with two different siRNAs against CK1d, and the

mRNA levels were analyzed after 72 hr in vitro.

Results shown are the averages of three inde-

pendent experiments and are represented as the

mean ± SEM (*p < 0.05, **p < 0.001, ***p < 0.001,

****p < 0.0001).
overexpressed (Figures S2C and S2D). Cdh1-knockdown-

mediated increase of CK1d also decreased Wee1 levels (Fig-

ure S2A). Thus, the relationships between Cdh1 and CK1d and

Cdh1 and Wee1 were inverse.

APC/CCdh1 substrate levels oscillate during the cell cycle,

reaching a minimum during G1 when APC/CCdh1 is most active

(Penas et al., 2012). Thus, we predicted that if CK1d were an

APC/CCdh1 substrate, its levels would also decrease. To test

this directly, we synchronized HeLa cells in mitosis via a well-es-

tablished thymidine/nocodazole protocol, released them into G1

by washing away nocodazole, and monitored CK1d levels via

western blot analysis (Figures S2E and S2F). Cell-cycle progres-

sion was monitored by PI-FACS (Figure S2G). CK1d levels were

stable through mitosis and early G1 but decreased late in G1,

6 to 7 hr after release from nocodazole-induced arrest (Fig-

ure S2E). CK1d was undetectable before cells entered S phase
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(Figures S2E and S2F). In contrast,

CK1a, ε, and g2 levels did not decrease

during G1, suggesting that CK1d is a

unique APC/CCdh1 substrate among CK1

isoforms. Cyclin B1 levels decreased

upon exit from mitosis (2 hr after nocoda-

zole release), as determined by phospho-

Histone H3 staining and PI-FACS (Figures

S2E–S2G).

APC/CCdh1 Controls CK1d in
Cerebellar GCPs In Vivo
To test whether APC/CCdh1 regulates

CK1d ubiquitination and degradation

in vivo, we conditionally deleted Cdh1

(or Fzr1) in cerebellar GCPs by crossing

Tg(Atoh1-Cre)+ mice with Fzr1fl/fl mice

(Garcı́a-Higuera et al., 2008; Schüller

et al., 2007). Atoh1 is a bHLH transcription

factor required for GCP neurogenesis

(Ben-Arie et al., 1997); thus, Tg(Atoh1-

Cre)+;Fzr1fl/fl mice should have lower
Cdh1 levels in GCPs relative to their wild-type orCre– littermates.

Cdh1 protein level was lower in GCPs purified frompostnatal day

(P) 7 Tg(Atoh1-Cre)+;Fzr1fl/fl mice than in Tg(Atoh1-Cre)–;Fzr1fl/fl

mice (Figures 6A and 6B). Lower Cdh1 levels also were associ-

ated with increased CK1d protein in Tg(Atoh1-Cre)+;Fzr1fl/fl

mice. These results suggest that CK1d is degraded via APC/

CCdh1 in GCPs in the developing mouse cerebellum. Although

GCPs from Tg(Atoh1-Cre)+;Fzr1fl/fl mice express higher levels

of cell-cycle regulators (e.g., cyclin B1), their cerebella develop

normally. This could be attributed to the incomplete knockout

by Atoh1-Cre or compensatory mechanisms of Cdc20, another

APC/C activator in GCPs.

We previously showed that APC/CCdh1 targets substrates for

degradation during the GCP cell cycle (Harmey et al., 2009).

Because reducing CK1d levels or activity suppressed GCP

expansion and APC/CCdh1 substrates often induce cell-cycle
260, April 14, 2015 ª2015 The Authors 253



Figure 4. APC/CCdh1 InducesCK1dUbiquiti-

nation and Degradation In Vitro

(A) Two destruction boxes (D-boxes) in human

CK1d, DB1 andDB2, weremutated by substituting

alanine (A) for the corresponding arginine (R) and

leucine (L) residues.

(B and C) Both D-boxes in CK1d are required for

proteolysis. (B) In vitro degradation assay indi-

cating 35S-labeled wild-type CK1d-V5, DB1

mutant (CK1d-V5 DDB1), DB2 mutant (CK1d-V5

DDB2), and DB1 DB2 double mutant (CK1d-V5

DDB1 DB2) after incubation in extracts prepared

from HeLa cells in G1 is shown. Samples collected

at the indicated time points were analyzed by

autoradiography. (C) The quantification of (B);

protein levels were measured in three separate

experiments using Quantity One image analysis

software (Bio-Rad). An unpaired t test was per-

formed, and a p value of 0.01 was obtained.

(D) Autoradiogram indicating in vitro degradation

of 35S-labeled wild-type CK1d-V5 in HeLa cell

extracts at G1, in the presence or absence of the

proteasome 26S inhibitor MG132 (100 mM), is

shown.

(E) Quantification of CK1d-V5 from (D) is shown.

(F and G) Both D-boxes in CK1d are required for

efficient ubiquitination. (F) Autoradiogram of 35S-

labeled wild-type CK1d-V5 and DDB1, DDB2, and

DDB1 DB2 mutants after in vitro ubiquitination by

anti-Cdc27 immunoprecipitates from HeLa cell

extracts at G1 is shown. (G) The extent of poly-

ubiquitination was quantified for the entire lane

above the inputs by using Quantity One image

analysis software. From three separate experi-

ments, an unpaired t test was performed, and a p

value of 0.005 was obtained. Results shown are

the averages of three independent experiments

and are represented as the mean ± SEM.

(H) Purified CK1d and immunoprecipitated APC/C

were incubated together in vitro, and the extent of

ubiquitination was determined after SDS-PAGE

and anti-CK1d autoradiography.
transition, we asked whether CK1d overexpression would stim-

ulate GCP proliferation. Relative to V5 empty control vector,

CK1d-V5 or CK1d-V5 DDB1 DB2 overexpression increased

GCP proliferation (Figures 6C and 6D). These results suggest

that controlling CK1d levels is key to GCP cell-cycle transition.

When GCPs were plated on poly-D-lysine/laminin-coated

dishes, their CK1d levels decreased. The cells then exited the

cell cycle and differentiated. This reduction was similar to that

observed for cyclin B1 (Figures 6E and 6F).

CK1d Inhibition Decreases Medulloblastoma Growth
Ex Vivo
CK1d controls GCP proliferation in vitro and ex vivo, and GCPs

are thought to give rise to some forms of medulloblastoma

(Gibson et al., 2010; Kawauchi et al., 2012; Schüller et al.,

2008; Yang et al., 1999). Therefore, we tested whether CK1d is

a possible therapeutic target for medulloblastoma. First we

measured CK1d protein and mRNA levels in tumors obtained

from mouse models of medulloblastoma (Figures 7A, 7B, S3A,
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and S3B). CK1d protein levels were higher in tumors derived

from Ptch1+/– or Myc mice (Goodrich et al., 1997; Kimura et al.,

2005) than in untransformed GCPs (Figure 7A). Higher protein

levels were not accompanied by increased Csnk1d (CK1d)

mRNA, indicating possible differential regulation of CK1d in me-

dulloblastoma relative to GCPs. Consistent with this notion, the

level of the APC/C repressor Emi1 (FBXO31) in c-Myc (Myc)-

derived tumors was higher (Figures S3C and S3D), indicating

altered APC/C activity that could contribute to the difference in

protein and RNA levels. Furthermore, increased CK1d protein

levels corresponded with decreased Wee1 levels (Figures 7A

and 7B), suggesting that CK1d-dependent control of Wee1 turn-

over also mediates medulloblastoma cell proliferation.

Ptch1 functions as an antagonist of SHH, which is a potent

mitogen for cerebellar medulloblastoma (Wechsler-Reya and

Scott, 1999, 2001). Ptch1 mutation constitutively activates

the SHH pathway and induces medulloblastoma tumors in

14% to 20% of mice. Ptch1+/– mice have been used ex-

tensively to model human SHH-subgroup medulloblastoma.



Figure 5. CK1d Is Degraded by APC/CCdh1

in a D-box-Dependent Manner

(A) CK1d D-box mutations reduce the turnover of

the protein in HeLa cells. HeLa cells transfected

with the wild-type CK1d-V5 or D-box mutants

were treated with cycloheximide (100 mg/ml).

Samples were then collected at the indicated time

points and analyzed by immunoblotting.

(B) Quantification of (A) is shown.

(C) Cdh1 is required for CK1d degradation. HeLa

cells were transfected with the indicated siRNA,

treated with cycloheximide for the indicated

times, retrieved at the time points shown, and

analyzed by immunoblotting.

(D) Quantification of (C) is shown.
CK1d upregulation in mouse models of medulloblastoma sug-

gests that it might be an attractive therapeutic target. To test

this directly, we assessed the effectiveness of SR-1277 in

reducing tumor growth in vivo. We implanted allografts from

Ptch1+/– mice into immunocompromised recipients and started

treatment when the tumors reached a volume of 50 to 90 mm3.

SR-1277 treatment significantly inhibited tumor growth (Figures

7C and 7D).

Human G3 medulloblastoma has been modeled recently in

mice by overexpressing Myc (c-Myc) in neural progenitors

purified from the cerebellum of P7 Cdkn2c–/–;Trp53–/– mice

and transplanting those cells into the cortices of naive CD1

nude mice (Kawauchi et al., 2012). CK1d protein was upregu-

lated in G3 medulloblastoma cells (Figures 7A and 7B); there-

fore, we tested whether its inhibition reduces proliferation in

this model. We treated mouse G3 medulloblastoma neuro-

spheres with SR-1277 and measured the proliferation via an

EdU-incorporation assay in vitro. SR-1277 inhibited prolifera-

tion, suggesting that CK1d inhibition has potential as a ther-

apeutic strategy for multiple human tumors. These results

further indicate that human medulloblastoma cells also may

respond to SR-1277. Treatment of two human medulloblas-

toma cell lines, DAOY and D283, with SR-1277 reduced

proliferation (Figures 7G, S3E, and S3F). SR-1277 inhibited

DAOY and D283 cell proliferation with the same efficacy as

multiple compounds currently in clinical trials for cancer

(Figures S3E and S3F). SR-1277 is 24% brain penetrant

(Bibian et al., 2013); thus, it also reduced DAOY cell prolifer-

ation intracranially (Figures 7H and 7I). Collectively, these

results validate CK1d as a therapeutic target for human

medulloblastoma.
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DISCUSSION

In the present study, three lines of evi-

dence demonstrated that CK1d regulates

granule cell neurogenesis during normal

cerebellar development. First, condi-

tional loss of CK1d in GCPs or siRNA

knockdown in wild-type GCPs reduced

proliferation, as measured by EdU and
3H-thymidine incorporation. The loss of

CK1d also diminished SHH-induced
GCP proliferation. Second, treatment of GCPs with specific

CK1d inhibitors dramatically reduced proliferation in vitro and

ex vivo. Third, CK1d overexpression had the opposite effect,

namely, it stimulated GCP proliferation. Our studies further

showed that CK1d is targeted for proteolysis via the APC/

CCdh1 ubiquitin ligase, and conditional deletion of the APC/C

activator Cdh1 in cerebellar GCPs increased CK1d levels. These

findings also increase our understanding of developmental brain

tumor formation. We observed high levels of CK1d in a mouse

model of medulloblastoma, and treatment with specific inhibi-

tors of CK1d dramatically reduced tumor growth. Together,

these results suggest that CK1d regulates normal GCP neuro-

genesis in the developing brain and medulloblastoma growth

and that APC/CCdh1-dependent degradation of CK1d controls

the proliferation rate of normal cells and tumor cells.

Although CK1d is expressed in several tissues (Löhler et al.,

2009), its role in development has not been elucidated. Here

we demonstrate that CK1d is required for the proliferation and

expansion of GCPs, one of two principal classes of neurons in

the developing cerebellum. Decreasing CK1d levels lowered cy-

clin levels. Furthermore, consistent with decreased cell-cycle

transition in the absence of CK1d, inhibition or knockdown of

CK1d decreased the levels of the main effectors of the SHH

pathway, which is an important mitogenic pathway for GCP

expansion during cerebellar development (Salero and Hatten,

2007; Wechsler-Reya and Scott, 1999).

Centrosomal CK1dmediates the formation of primary cilia, an

organelle that functions in WNT and SHH signal transduction

(Greer et al., 2014). In fact, several proteins that localize to pri-

mary cilia or are involved in ciliogenesis restrict cell proliferation

by arresting cells at G1/S, G2/M, or both phases. Therefore,
60, April 14, 2015 ª2015 The Authors 255



Figure 6. Conditional Deletion of Fzr1 in the

Cerebellum Increases CK1d Levels

(A) Immunoblot analysis shows that the levels of

cyclin B1 and CK1d, but not CK1ε, are higher in

GCPs purified from Fzr1-knockout mice than in

those from control mice. Protein extracts were

made directly after GCP purification. GCPs were

not maintained in culture.

(B) Quantification of (A) is shown.

(C) Overexpression of CK1d-V5 in purified GCPs

increases cell proliferation, as indicated by the

amount of EdU-positive cells (red) in the presence

of SHH (75 ng/ml). EdU incorporation into cells

electroporated with the CK1d-V5 or CK1d-V5

DDB1 DB2 construct was normalized to that of

cells electroporated with the empty control vector

(V5).

(D) Quantification of (C) is shown.

(E) CK1d levels decrease during GCP cell-cycle

exit. Representative western blotting of CK1d,

Cdh1, cyclin B1, and the loading control Skp1 is

shown.

(F) Quantification of (E). Results shown are aver-

ages of three independent experiments and are

represented as the mean ± SEM (*p < 0.05, **p <

0.001).
CK1d deletion or inhibition may affect the cell cycle by disrupting

ciliogenesis. Another possibility is that, after CK1d deletion or in-

hibition, increased levels ofWee1 induce cell-cycle arrest (Penas

et al., 2014). We found that CK1d overexpression and depletion

had the opposite effects on Wee1 levels. Namely, CK1d overex-

pression reduced the level of Wee1, and CK1d depletion

increased it. Thus, modulating CK1d levels appears to directly

control Wee1 turnover, which is important for transitioning

through the S and G2/M phases.

The present study shows that APC/CCdh1 complex-mediated

degradation controls CK1d levels in GCPs. Conditional deletion

of Fzr1, which encodes Cdh1, in GCPs of the developing cere-

bellum increased the levels of CK1d, but not CK1a or CK1ε,

and overexpression of CK1d increased GCP proliferation.

Although we demonstrated that APC/CCdh1 regulates CK1d

levels, we did not detect a difference in EdU incorporation in

the Fzr1-knockout mice relative to their wild-type littermates,

which may be due to incomplete deletion of Fzr1 or compensa-
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tion from Cdc20, another APC/C acti-

vator. CK1d is the only CK1 isoform that

is targeted by APC/CCdh1 in the devel-

oping cerebellum. How APC/CCdh1 ac-

quires specificity for the CK1d isoform in

the context of GCP proliferation is un-

known, since other CK1 isoforms also

contain D-boxes that could potentially

mediate turnover via APC/CCdh1. How-

ever, CK1d is the only CK1 isoform that

contains an N-terminal D-box motif; the

other CK1 members may require activa-

tion of upstream signaling pathways to

be recognized by APC/CCdh1. The identi-
fication of GCP-specific interactors or substrates also may shed

light on the mechanism by which APC/CCdh1 regulates CK1d

levels during cell-cycle progression in this system.

CK1d may be deregulated in medulloblastoma. CK1d protein

level was higher in two different types of medulloblastoma,

Ptch1–/–-driven and Myc-driven medulloblastomas, which

model SHH and G3 subtypes of human medulloblastoma,

respectively. Increased CK1d expression in medulloblastoma is

consistent with previous findings of elevated CK1d levels in

adenocarcinoma (Brockschmidt et al., 2008) and breast cancer

(Knippschild et al., 2005). Thus, CK1d is an attractive therapeutic

target because highly specific, small-molecule inhibitors can be

generated against it (Bischof et al., 2012; Rena et al., 2004). We

developed and characterized the highly selective CK1d small-

molecule inhibitor SR-1277, which reduced medulloblastoma

tumor growth in vivo. SR-1277 decreased the proliferation of

medulloblastoma cells that either contained alterations in SHH

signaling or overexpressed Myc. C-MYC expression has been



Figure 7. Murine Medulloblastoma Cells Ex-

press Elevated Levels of CK1d, the Inhibition

of Which Reduces Tumor Growth In Vivo

(A) CK1d protein is overexpressed in Ptch1+/–,

Cdkn2–/–, Trp53–/–, and c-Myc tumors, whereas

Wee1 is downregulated. Skp1 was used as a

loading control.

(B) Quantification of (A) is shown.

(C and D) SR-1277 decreases proliferation of

Ptch1+/– allograft tumors. Ptch1+/– tumor cells

were injected subcutaneously into mice. Once the

tumor reached a volume of 50 to 90 mm3, treat-

ment with vehicle or SR-1277 (20 mg/kg, twice

daily) was initiated. (C) Tumor size was quantified

in four samples for each time point, and the aver-

ages are shown. (D) An image shows representa-

tive SR-1277-treated (left) and vehicle-treated

(right) tumors.

(E) Proliferation of Cdkn2–/–, Trp53–/–, and c-Myc

tumor cells is reduced in the presence of SR-1277.

(F) Quantification of EdU incorporation into

Cdkn2–/–, Trp53–/–, or c-Myc tumor cells after

DMSO or SR-1277 treatment is shown.

(G) EdU-incorporation assay shows that prolifera-

tion of DAOY cells is reduced in the presence of

SR-1277 (500 nM).

(H and I) SR-1277 also reduces the intracranial

growth of DAOY cells. (H) Twelve days after mice

were transplanted with DAOY tumor cells, D-

luciferin was administered intraperitoneally and

bioluminescence was measured. (I) Fluorescence

imaging of representative mice in which DAOY

cells were implanted intracranially and then treated

with SR-1277 (20 mg/kg, twice daily) or vehicle for

21 days. Bioluminescence was quantified from the

encircled regions that enclose the entire tumor.

Results shown are the means ± SEM of three in-

dependent experiments (*p < 0.05, **p < 0.001,

***p < 0.001).
linked to poor outcome in multiple studies of patients with me-

dulloblastoma (Gilbertson and Ellison, 2008; Hatten and Rous-

sel, 2011); thus, it will be important to study the effectiveness

of SR-1277 treatment for human G3 medulloblastoma.

In summary, the present study showed that CK1d regulates

cerebellar GCP proliferation, suggesting an important role of

CK1 in brain development. In addition, CK1d may influence

the malignant transformation of GCPs, as medulloblastoma

growth also was related to CK1d levels. Furthermore, our re-

sults demonstrate that CK1d is targeted for proteolysis via

the APC/CCdh1 ubiquitin ligase, suggesting that APC/CCdh1 reg-

ulates CK1d in proliferating cells. They also indicate that

measuring CK1d protein levels in tumors will be essential for

determining responsiveness to CK1d-inhibitor treatment, as

APC/CCdh1 is deregulated in various cancers (Garcı́a-Higuera

et al., 2008; Penas et al., 2012).
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EXPERIMENTAL PROCEDURES

Animal Husbandry

This study was approved by the Institutional Ani-

mal Care and Use Committees of the University

of Miami, The Rockefeller University, Scripps Flor-
ida, and St. Jude Children’s Research Hospital (see Supplemental Experi-

mental Procedures).

GCP Culture System

GCPs were purified from cerebellar cortices of P6 CD-1 (Jackson Laboratory),

Tg(Atoh1-Cre);Csnk1dfl/fl, or Tg(Atoh1-Cre);Fzr1fl/fl mice by using Percoll

gradient sedimentation (see Supplemental Experimental Procedures). For pro-

liferation assays, GCPs were suspended in culture medium; for cell-cycle exit

and differentiation assays, GCPs were plated in poly-D-lysine/laminin-coated

plates. GCPs were treated with compounds and then subsequently used for

apoptosis, 3H-thymidine-incorporation, or EdU-proliferation assays; fixed for

FACS analysis; or lysed to obtain protein for western blot analysis or RNA

for qRT-PCR analysis (see Supplemental Experimental Procedures).

Plasmids, siRNAs, and Site-Directed Mutagenesis

The CK1d-V5 construct was generated by cloning the full-length Csnk1d gene

from the Gateway donor vector pDONR223-CSNK1D (Addgene) into the

Gateway destination vector pcDNA-DEST40 (Invitrogen). The siRNAs and
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primers used for cloning are listed in the Supplemental Experimental

Procedures.

HeLa Cell Culture System

HeLa cells were transfected with plasmids by using TransIT-LT1 transfection

reagent (Mirus Bio) or with siRNAs using DharmaFECT 1 transfection reagent

(Thermo Scientific), per each manufacturer’s instructions. HeLa cells were

lysed for in vitro cyclohexamide degradation and ubiquitination assays, to

obtain protein for western blot analysis or RNA for qRT-PCR analysis, or syn-

chronized and fixed for flow cytometric analysis (see Supplemental Experi-

mental Procedures).

Organotypic Slice Cultures and Proliferation Assays

Cerebella were isolated from P8 mice, and 250-mm sagittal slices of cerebellar

cortex were cut using a Leica VT1000S vibratome. Slices were then plated on

Millipore culture inserts in six-well culture dishes (Falcon) containing 1.5 ml

serum-free medium. Slices were treated with compounds and EdU-incorpora-

tion assay or immunohistochemical analyses performed (see Supplemental

Experimental Procedures).

In Vivo Allograft

Ptch1+/– tumor cells inmatrigel (BDBiosciences) solution were injected subcu-

taneously into the right flank of a NU-Foxn1nu mouse (Charles River Labora-

tories). Treatment with SR-1277 began when tumors reached 50 to 90 mm3

(see Supplemental Experimental Procedures).

Murine G3 Medulloblastoma Neurospheres in Culture

Tumor cells were maintained in culture as previously described (Kawauchi

et al., 2012; Supplemental Experimental Procedures). They were treated

with SR-1277 and EdU-proliferation assays were performed.

Transduction and Transplantation of DAOY Cells

DAOY cells were transduced with firefly luciferase lentivirus (Capital Biosci-

ences). Stable clones were then selected with puromycin (see Supplemental

Experimental Procedures), and 105 labeled DAOY cells were injected into

the ventral pallidum of NCr nude mice (Taconic). After 10 days, tumor growth

was monitored weekly by bioluminescence imaging of the pallidum (see Sup-

plemental Experimental Procedures).

Statistical Analyses

All experiments were conducted independently and at least in triplicate. Statis-

tical analysis was performed with Prism software (GraphPad). Data in Figures

1D, 1E, 1G, 2F, 3A, 3B, S1A, S1B, and 6D were analyzed via one-way ANOVA

followed by Bonferroni multiple comparisions test (p < 0.5); that in Figures 1F

and 2G, two-way ANOVA followed by Bonferroni multiple comparisions test

(p < 0.5); that in Figures 2D, 7F, and 7G, paired t test (p < 0.5); and that in Fig-

ures 1B, 7B, 7C, and 7H, one-way ANOVA followed by Dunnett multiple com-

parisions test (p < 0.5).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and three figures and can be found with this article online at http://dx.doi.

org/10.1016/j.celrep.2015.03.016.
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Svärd, J., Heby-Henricson, K., Persson-Lek, M., Rozell, B., Lauth, M., Berg-
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